首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Ultraviolet B (UV-B) radiation is an important environmental signal for plant growth and development, but its signal transduction mechanism is unclear. UV-B is known to induce stomatal closure via hydrogen peroxide (H(2)O(2)), and to affect ethylene biosynthesis. As ethylene is also known to induce stomatal closure via H(2)O(2) generation, the possibility of UV-B-induced stomatal closure via ethylene-mediated H(2)O(2) generation was investigated in Vicia faba by epidermal strip bioassay, laser-scanning confocal microscopy, and assays of ethylene production. It was found that H(2)O(2) production in guard cells and subsequent stomatal closure induced by UV-B radiation were inhibited by interfering with ethylene biosynthesis as well as ethylene signalling, suggesting that ethylene is epistatic to UV-B radiation in stomatal movement. Ethylene production preceded H(2)O(2) production upon UV-B radiation, while exogenous ethylene induced H(2)O(2) production in guard cells and subsequent stomatal closure, further supporting the conclusion. Inhibitors for peroxidase but not for NADPH oxidase abolished H(2)O(2) production upon UV-B radiation in guard cells, suggesting that peroxidase is the source of UV-B-induced H(2)O(2) production. Taken together, our results strongly support the idea that ethylene mediates UV-B-induced stomatal closure via peroxidase-dependent H(2)O(2) generation.  相似文献   

3.
Fundamental studies on the availability of oxygen from the decomposition of H(2)O(2), in vivo, by Xanthomonas campestris, when H(2)O(2) is used as an oxygen source are presented. It was found that the H(2)O(2) added extracellularly (0.1-6 mM) was decomposed intracellularly. Further, when H(2)O(2) was added, the flux of H(2)O(2) into the cell, is regulated by the cell. The steady-state H(2)O(2) flux into the cell was estimated to be 9.7 x 10(-8) mol m(-2) s(-1). In addition, it was proved that the regulation of H(2)O(2) flux was coupled to the protonmotive force (PMF) using experiments with the protonophore carbonyl cyanide m-chlorophenylhydrazone (CCCP), which disrupts PMF. The coupling constant between the rate of free energy availability from PMF and the rate of reduction of H(2)O(2) flux, was found to be 46.4 mol m(-2) s(-1) J(-1) from simulations using a developed model. Also, the estimated periplasmic catalase concentration was 1.4 x 10(-9) M.  相似文献   

4.
The kinetics of the reactions of three trans-dioxoruthenium(VI) porphyrin derivatives with organic sulfides were measured. The dioxo systems studied were 5,10,15,20-tetramesityl porphyrin-dioxoruthenium(VI) (2a), 5,10,15,20-tetraphenylporphyrin-dioxoruthenium(VI) (2b), and 5,10,15,20-tetrakis(pentafluorophenyl)porphyrin-dioxoruthenium(VI) (2c). Species 2 were competent oxidants and reacted rapidly with thioanisoles to generate the corresponding sulfoxides. Typical second-order rate constants determined from pseudo-first-order kinetic studies for sulfoxidation reactions are 8-60 M− 1 s− 1, which are 3 orders of magnitude larger in comparison with those of well studied alkene epoxidations and activated C-H bond oxidations by the same dioxo species. For a given sulfide substrate, the reactivity order for the dioxoruthenium(VI) species was 2a < 2b < 2c, which is in agreement with expectation on the basis of the electron-withdrawing and steric effects of the porphyrin macrocycles. Various para-substituted thioanisoles react in a narrow kinetic range with the same dioxo species. The kinetic results obtained in this study indicate a concerted oxygen atom transfer and/or electron transfer followed by oxygen transfer mechanism from oxidant to sulfide. Competition kinetic reactions with a catalytic amount of porphyrin ruthenium(II) species and a terminal oxidant give relative rate constants for sulfoxidations of competing substrates that are somewhat smaller than the ratios of absolute rate constants, implying a multiple oxidant model for sulfoxidation reactions.  相似文献   

5.
Escherichia coli were damaged and killed by exposure to hyperbaric oxygen. Lethality was measured as the decrease in the number of colonies formed upon plating the exposed cells onto rich agar. Damage was assessed by plating onto both rich and minimal agar. Cells which gave rise to visible colonies on rich but not on minimal agar were considered to be damaged. That this differential colony count was largely due to reparable damage rather than to stable mutagenesis was shown by replica plating from the rich onto the minimal agar. Most of the cells which had been unable to grow when directly plated onto minimal agar regained this ability after growth upon rich agar. Repair of the damage imposed by exposure to oxygen was thus more readily accomplished on a nutritionally rich medium. The enzymes superoxide dismutase, catalase, and peroxidase appeared to protect against oxygen damage. It is thus likely that both O2? and H2O2 are important agents of oxygen toxicity. In accord with this conclusion were the observations that augmented intracellular levels of these enzymes correlated with increased resistance towards oxygen damage, whereas increased respiratory capacity correlated with increased sensitivity towards hyperbaric oxygen.  相似文献   

6.
Kaposi''s sarcoma-associated herpesvirus (KSHV) establishes a latent infection in the host following an acute infection. Reactivation from latency contributes to the development of KSHV-induced malignancies, which include Kaposi''s sarcoma (KS), the most common cancer in untreated AIDS patients, primary effusion lymphoma and multicentric Castleman''s disease. However, the physiological cues that trigger KSHV reactivation remain unclear. Here, we show that the reactive oxygen species (ROS) hydrogen peroxide (H2O2) induces KSHV reactivation from latency through both autocrine and paracrine signaling. Furthermore, KSHV spontaneous lytic replication, and KSHV reactivation from latency induced by oxidative stress, hypoxia, and proinflammatory and proangiogenic cytokines are mediated by H2O2. Mechanistically, H2O2 induction of KSHV reactivation depends on the activation of mitogen-activated protein kinase ERK1/2, JNK, and p38 pathways. Significantly, H2O2 scavengers N-acetyl-L-cysteine (NAC), catalase and glutathione inhibit KSHV lytic replication in culture. In a mouse model of KSHV-induced lymphoma, NAC effectively inhibits KSHV lytic replication and significantly prolongs the lifespan of the mice. These results directly relate KSHV reactivation to oxidative stress and inflammation, which are physiological hallmarks of KS patients. The discovery of this novel mechanism of KSHV reactivation indicates that antioxidants and anti-inflammation drugs could be promising preventive and therapeutic agents for effectively targeting KSHV replication and KSHV-related malignancies.  相似文献   

7.
The supply of oxygen can be improved by the direct addition of hydrogen peroxide to cultures of aerobic microbes expressing sufficient amounts of catalase. This is of special interest if normal aeration has to be kept low, for instance, in order to minimize evaporation of volatile compounds (either substrates or products) or to minimize foaming. Also, if the mechanical power input to the bioreactor is or has to be limited, addition of hydrogen peroxide may be useful. The appropriate dosage of hydrogen peroxide can be simply determined by a controller of the oxygen partial pressure or of the oxygen content in the exhaust gas using various control algorithms. The added hydrogen peroxide can be either a stabilized concentrate, e.g. 30%, or any dilute form of this. In high density cultures, Pseudomonas cells tolerated even harsh controller disturbances. This approach proved to be very robust and reliable.  相似文献   

8.
The dimeric iron-sulfur flavoprotein (Isf) from Methanosarcina thermophila contains one 4Fe-4S center and one FMN per monomer, and is the prototype of a family widely distributed among strictly anaerobic prokaryotes. Although Isf is able to oxidize ferredoxin, the physiological electron acceptor is unknown; thus, the ability of Isf to reduce O2 and H2O2 was investigated. The product of O2 or H2O2 reduction by Isf was determined to be water. The kinetic parameters of the oxidative half-reactions with O2 and H2O2 as electron acceptors were consistent with a role for Isf in combating oxidative stress. Isf depleted of the 4Fe-4S cluster was unable to oxidize ferredoxin and reduce the FMN cofactor, supporting a role for the cluster in transfer of electrons from ferredoxin to the cofactor. The implications of these properties on the possible function and mechanism of Isf are discussed.  相似文献   

9.
Hydrogen peroxide is formed in solutions of glutathione exposed to oxygen. This hydrogen peroxide or its precursors will decrease the viscosity of polymers like desoxyribonucleic acid and sodium alginate. Further knowledge of the mechanism of these chemical effects of oxygen might further the understanding of the biological effects of oxygen. This study deals with the rate of solution of oxygen and with the decomposition of hydrogen peroxide in chemical systems exposed to high oxygen pressures. At 6 atmospheres, the absorption coefficient for oxygen into water was about 1 cm./hour and at 143 atmospheres, it was about 2 cm./hour; the difference probably being due to the modus operandi. The addition of cobalt (II), manganese (II), nickel (II), or zinc ions in glutathione (GSH) solutions exposed to high oxygen pressure decreased the net formation of hydrogen peroxide and also the reduced glutathione remaining in the solution. Studies on hydrogen peroxide decomposition indicated that these ions act probably by accelerating the hydrogen perioxide oxidation of glutathione. The chelating agent, ethylenediaminetetraacetic acid disodium salt, inhibited the oxidation of GSH exposed to high oxygen pressure for 14 hours. However, indication that oxidation still occurred, though at a much slower rate, was found in experiments lasting 10 weeks. Thiourea decomposed hydrogen peroxide very rapidly. When GSH solutions were exposed to high oxygen pressure, there was oxidation of the GSH, which became relatively smaller with increasing concentrations of GSH.  相似文献   

10.
11.
F Laval 《Mutation research》1988,201(1):73-79
Pretreatment of Chinese hamster ovary (CHO) or H4 (rat hepatoma) cells with low non-toxic doses of H2O2 or xanthine-xanthine oxidase renders the cells more resistant to the toxic effect of H2O2 and gamma-rays. This increased resistance is observed both in exponentially growing and in plateau-phase cells. Cells pretreated with xanthine-xanthine oxidase are less mutated than control cultures when challenged with ionizing radiation. The number of DNA single-strand breaks (measured by nucleoid sedimentation) induced by a high dose of gamma-rays or H2O2 is lower in cells pretreated with xanthine-xanthine oxidase compared to control cultures. However, the pretreatment does not modify the rate of DNA single-strand breaks rejoining in cells challenged with H2O2 or gamma-rays. The catalase activity is not modified in pretreated cells, but the superoxide dismutase activity is increased about 2-fold.  相似文献   

12.
ESR studies using spin traps, 5,5-dimethylpyrroline-N-oxide and alpha-(4-pyridyl 1-oxide)-N-tert-butylnitrone, revealed that hydroxyl radical adducts are produced by the decomposition of hydrogen peroxide in the presence of nickel(II) oligopeptides. Order of catalytic activities of nickel(II) oligopeptides used in the production of hydroxyl radical adducts was tetraglycine greater than pentaglycine greater than triglycine greater than GlyGly, GlyHis. Ni(II) GlyGlyHis plus hydrogen peroxide produced superoxide in addition to hydroxyl radical adduct. Trapping experiments with 2,2,6,6-tetramethyl-4-piperidone suggested that singlet oxygen was generated by the reaction of hydrogen peroxide with Ni(II) GlyGlyHis, but not in the case of tetraglycine, pentaglycine, triglycine, GlyGly or GlyHis.  相似文献   

13.
Aeration without air: oxygen supply by hydrogen peroxide.   总被引:2,自引:0,他引:2  
Oxygen has been supplied to suspensions of microorganisms kept under nitrogen by the addition of hydrogen peroxide. If catalase was present in the suspension and the flow was adjusted to the rate of oxygen consumption, the cells grew at rates identical to the controls incubated under air. The applicability of oxygen supply by hydrogen peroxide and its limits are discussed.  相似文献   

14.
Light-induced generation of superoxide radicals and hydrogen peroxide in isolated thylakoids has been studied with a lipophilic spin probe, cyclic hydroxylamine 1-hydroxy-4-isobutyramido-2,2,6,6-tetramethylpiperidinium (TMT-H) to detect superoxide radicals, and the spin trap α-(4-pyridyl-1-oxide)-N-tert-butylnitron (4-POBN) to detect hydrogen peroxide-derived hydroxyl radicals. Accumulation of the radical products of the above reactions has been followed using electron paramagnetic resonance. It is found that the increased production of superoxide radicals and hydrogen peroxide in higher light is due to the enhanced production of these species within the thylakoid membrane, rather than outside the membrane. Fluorescent probe Amplex red, which forms fluorescent product, resorufin, in the reaction with hydrogen peroxide, has been used to detect hydrogen peroxide outside isolated chloroplasts using confocal microscopy. Resorufin fluorescence outside the chloroplasts is found to be suppressed by 60% in the presence of the inhibitor of aquaporins, acetazolamide (AZA), indicating that hydrogen peroxide can diffuse through the chloroplast envelope aquaporins. It is demonstrated that AZA also inhibits carbonic anhydrase activity of the isolated envelope. We put forward a hypothesis that carbonic anhydrase presumably can be attached to the envelope aquaporins. This article is part of a Special Issue entitled: Photosynthesis Research for Sustainability: from Natural to Artificial.  相似文献   

15.
16.
17.
18.
Metabolic responses of mammalian cells toward declining oxygen concentration are generally thought to occur when oxygen limits mitochondrial ATP production. However, at oxygen concentrations markedly above those limiting to mitochondria, several mammalian cell types display reduced rates of oxygen consumption without energy stress or compensatory increases in glycolytic ATP production. We used mammalian Jurkat T cells as a model system to identify mechanisms responsible for these changes in metabolic rate. Oxygen consumption was 31% greater at high oxygen (150–200 μM) compared to low oxygen (5–10 μM). Hydrogen peroxide was implicated in the response as catalase prevented the increase in oxygen consumption normally associated with high oxygen. Cell-derived hydrogen peroxide, predominately from the mitochondria, was elevated with high oxygen. Oxygen consumption related to intracellular calcium turnover was shown, through EDTA chelation and dantrolene antagonism of the ryanodine receptor, to account for 70% of the response. Oligomycin inhibition of oxygen consumption indicated that mitochondrial proton leak was also sensitive to changes in oxygen concentration. Our results point toward a mechanism in which changes in oxygen concentration influence the rate of hydrogen peroxide production by mitochondria, which, in turn, alters cellular ATP use associated with intracellular calcium turnover and energy wastage through mitochondrial proton leak.  相似文献   

19.
20.
氧对口腔链球菌产生过氧化氢的影响   总被引:1,自引:0,他引:1  
目的观察环境中氧含量对口腔链球菌过氧化氢产生速率的影响。方法采用ABTS-HRP微量板法测定在不同氧含量条件下口腔链球菌过氧化氢产生的速率。结果口腔链球菌在严格厌氧条件下过氧化氢产生速率为9.29nmol/(min×109细胞);当氧含量增高,口腔链球菌过氧化氢合成速率加快;在不同氧含量的环境中口腔链球菌产生过氧化氢的速率差异存在显著性:有氧振荡培养>有氧静置培养>厌氧(P<0.05)。结论环境中氧含量是影响口腔链球菌过氧化氢产生速率的重要因素。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号