首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 765 毫秒
1.
Neurophysiological and anatomical observations are used to derive a non-linear delay-differential equation for the pupil light reflex with negative feedback. As the gain or the time delay in the reflex is increased, a supercritical Hopf bifurcation occurs from a stable fixed point to a stable limit cycle oscillation in pupil area. A Hopf bifurcation analysis is used to determine the conditions for instability and the period and amplitude of these oscillations. The more complex waveforms typical of the occurrence of higher order bifurcations were not seen in numerical simulations of the model. This model provides a general framework to study the different types of dynamical behaviors which can be produced by the pupil light reflex, e.g. edge-light pupil cycling.  相似文献   

2.
Neural field models with transmission delays may be cast as abstract delay differential equations (DDE). The theory of dual semigroups (also called sun-star calculus) provides a natural framework for the analysis of a broad class of delay equations, among which DDE. In particular, it may be used advantageously for the investigation of stability and bifurcation of steady states. After introducing the neural field model in its basic functional analytic setting and discussing its spectral properties, we elaborate extensively an example and derive a characteristic equation. Under certain conditions the associated equilibrium may destabilise in a Hopf bifurcation. Furthermore, two Hopf curves may intersect in a double Hopf point in a two-dimensional parameter space. We provide general formulas for the corresponding critical normal form coefficients, evaluate these numerically and interpret the results.  相似文献   

3.
The human pupillary control system has been the subject of interest to biologists and engineers as an example of a sensorimotor reflex which can be embedded in a control system paradigm. We present a nonlinear feedback model whose compact structure allows us to hypothesize possible physiological mechanisms which generate the proper behavior of the pupil system. The important pupil responses, including pupil size effect, asymmetry, and response to high-frequency stimuli, are defined. This model was simulated on a digital computer and comparisons to the paradigm experimental responses were performed, demonstrating a fit to each of the observed conditions. Improvements on previous models are discussed.  相似文献   

4.
Reflexes are important in the control of such daily activities as standing and walking. The goal of this study is to establish how reflexive feedback of muscle length, velocity, and force can lead to stable equilibria (i.e., posture) and limit cycles (e.g., ankle clonus and gait). The influence of stretch reflexes on the behavior and stability of musculoskeletal systems was examined using a model of human stance. We computed branches of fold and Hopf bifurcations by numerical bifurcation analysis of the model. These fold and Hopf branches divide the parameter space, constructed by the reflexive feedback gains, into regions of different behavior: unstable posture, stable posture, and stable limit cycles. These limit cycles correspond to a neural deficiency, termed ankle clonus. We also linked bifurcation analysis to known biomechanical concepts by linearizing the model: the fold branch corresponds to zero ankle stiffness and defines the minimal muscle length feedback necessary for stable posture; the Hopf branch is related to unstable reflex loops. Crossing the Hopf branch can lead to the above-mentioned stable limit cycles. The Hopf branch reduces with increasing time delays, making the subjects posture more susceptible to unstable reflex loops. This might be one of the reasons why elderly people, or those with injuries to the central nervous system, often have trouble with standing and other posture tasks. The influence of cocontraction and force feedback on the behavior of the posture model was also investigated. An increase in cocontraction leads to an increase in ankle stiffness (i.e., intrinsic muscle stiffness) and a decrease in the effective reflex loop gain. On the one hand, positive force feedback increases the ankle stiffness (i.e., intrinsic and reflexive muscle stiffness); on the other hand it makes the posture more susceptible to unstable reflex loops. For negative force feedback, the opposite is true. Finally, we calculated areas of reflex gains for perturbed stance and quiet stance in healthy subjects by fitting the model to data from the literature. The overlap of these areas of reflex gains could indicate that stretch reflexes are the major control mechanisms in both quiet and perturbed stance. In conclusion, this study has successfully combined bifurcation analysis with the more common biomechanical concepts and tools to determine the influence of reflexes on the stability and quality of stance. In the future, we will develop this line of research to look at rhythmic tasks, such as walking.  相似文献   

5.
Inferior olive neurons (IONs) have rich dynamics and can exhibit stable, unstable, periodic, and even chaotic trajectories. This paper presents an analysis of bifurcation of periodic orbits of an ION when its two key parameters (a, μ) are varied in a two-dimensional plane. The parameter a describes the shape of the parabolic nonlinearity in the model and μ is the extracellular stimulus. The four-dimensional ION model considered here is a cascade connection of two subsystems (S(a) and S(b)). The parameter plane (a - μ) is delineated into several subregions. The ION has distinct orbit structure and stability property in each subregion. It is shown that the subsystem S(a) or S(b) undergoes supercritical Poincare-Andronov-Hopf (PAH) bifurcation at a critical value μ(c)(a) of the extracellular stimulus and periodic orbits of the neuron are born. Based on the center manifold theory, the existence of periodic orbits in the asymptotically stable S(a), when the subsystem S(b) undergoes PAH bifurcation, is established. In such a case, both subsystems exhibit periodic orbits. Interestingly when S(b) is under PAH bifurcation and S(a) is unstable, the trajectory of S(a) exhibits periodic bursting, interrupted by periods of quiescence. The bifurcation analysis is followed by the design of (i) a linear first-order filter and (ii) a nonlinear control system for the synchronization of IONs. The first controller uses a single output of each ION, but the nonlinear control system uses two state variables for feedback. The open-loop and closed-loop responses are presented which show bifurcation of orbits and synchronization of oscillating neurons.  相似文献   

6.
ContextAlthough the pupil light reflex has been widely used as a clinical diagnostic tool for autonomic nervous system dysfunction, there is no systematic review available to summarize the evidence that the pupil light reflex is a sensitive method to detect parasympathetic dysfunction. Meanwhile, the relationship between parasympathetic functioning and hearing impairment is relatively unknown.ObjectivesTo 1) review the evidence for the pupil light reflex being a sensitive method to evaluate parasympathetic dysfunction, 2) review the evidence relating hearing impairment and parasympathetic activity and 3) seek evidence of possible connections between hearing impairment and the pupil light reflex.MethodsLiterature searches were performed in five electronic databases. All selected articles were categorized into three sections: pupil light reflex and parasympathetic dysfunction, hearing impairment and parasympathetic activity, pupil light reflex and hearing impairment.ResultsThirty-eight articles were included in this review. Among them, 36 articles addressed the pupil light reflex and parasympathetic dysfunction. We summarized the information in these data according to different types of parasympathetic-related diseases. Most of the studies showed a difference on at least one pupil light reflex parameter between patients and healthy controls. Two articles discussed the relationship between hearing impairment and parasympathetic activity. Both studies reported a reduced parasympathetic activity in the hearing impaired groups. The searches identified no results for pupil light reflex and hearing impairment.

Discussion and Conclusions

As the first systematic review of the evidence, our findings suggest that the pupil light reflex is a sensitive tool to assess the presence of parasympathetic dysfunction. Maximum constriction velocity and relative constriction amplitude appear to be the most sensitive parameters. There are only two studies investigating the relationship between parasympathetic activity and hearing impairment, hence further research is needed. The pupil light reflex could be a candidate measurement tool to achieve this goal.  相似文献   

7.
A steady flow through a segment of externally pressurized, collapsible tube can become unstable to a wide variety of self-excited oscillations of the internal flow and tube walls. A simple, one-dimensional model of the conventional laboratory apparatus, which has been shown previously to predict steady flows and multiple modes of oscillation, is investigated numerically here. Large amplitude oscillations are shown to have a relaxation structure, and the nonlinear interaction between different modes is shown to give rise to quasiperiodic and apparently aperiodic behavior. These predictions are shown to compare favorably with experimental observations.  相似文献   

8.
The nonlinear behavior of the Holling-Tanner predatory-prey differential equation system, employed by R.M. May to illustrate the apparent robustness of Kolmogorov’s Theorem when applied to such exploitation systems, is re-examined by means of the numerical bifurcation code AUTO 86 with model parameters chosen appropriately for a temperature-dependent mite interaction on fruit trees. The most significant result of this analysis is that there exists a temperature range wherein multiple stable states can occur, in direct violation of May’s interpretation of this system’s satisfaction of Kolmogorov’s Theorem: namely, that linear stability predictions have global consequences. In particular these stable states consist of a focus (spiral point) and a limit cycle separated from each other in the phase plane by an unstable limit cycle, all of which are associated with the single community equilibrium point of the system. The ecological implications of such metastability, hysteresis, and threshold behavior for the occurrence of outbreaks, the persistence of oscillations, the resiliency of the system, and the biological control of mite populations are discussed.  相似文献   

9.
Human stretch reflexes (SRs) are often too weak and ineffectual to provide adequate postural regulation or rhythmic movement boosting (e.g. in ankle pushoff at the end of stance phase in fast running). Recent improvements in methods of artificially enhancing skeletomotor responses, especially in therapeutic regimens, should not be widely employed until the clonus-resisting stability properties of SRs are better understood. We formulate an idealized linear servo model of a segmentally-mediated SR system which includes the often ignored electromechanical coupling delay. For typical closed-loop (delay/gain) ratios, the model is shown to be unstable for all values of loop gain when operating as a position servo, but maximally stable when operating as a velocity servo. We claim that the velocity servo or more of its nonlinear relatives is a better model for some well studied SRs than, e.g., Houk's stiff muscle hypothesis. We also present evidence that even feeble and quickly saturating monosynaptic postural servos are always unstable if operated as pure position regulators.  相似文献   

10.
Phase resetting and bifurcation in the ventricular myocardium.   总被引:1,自引:1,他引:0  
With the dynamic differential equations of Beeler, G. W., and H. Reuter (1977, J. Physiol. [Lond.]. 268:177-210), we have studied the oscillatory behavior of the ventricular muscle fiber stimulated by a depolarizing applied current I app. The dynamic solutions of BR equations revealed that as I app increases, a periodic repetitive spiking mode appears above the subthreshold I app, which transforms to a periodic spiking-bursting mode of oscillations, and finally to chaos near the suprathreshold I app (i.e., near the termination of the periodic state). Phase resetting and annihilation of repetitive firing in the ventricular myocardium were demonstrated by a brief current pulse of the proper magnitude applied at the proper phase. These phenomena were further examined by a bifurcation analysis. A bifurcation diagram constructed as a function of I app revealed the existence of a stable periodic solution for a certain range of current values. Two Hopf bifurcation points exist in the solution, one just above the lower periodic limit point and the other substantially below the upper periodic limit point. Between each periodic limit point and the Hopf bifurcation, the cell exhibited the coexistence of two different stable modes of operation; the oscillatory repetitive firing state and the time-independent steady state. As in the Hodgkin-Huxley case, there was a low amplitude unstable periodic state, which separates the domain of the stable periodic state from the stable steady state. Thus, in support of the dynamic perturbation methods, the bifurcation diagram of the BR equation predicts the region where instantaneous perturbations, such as brief current pulses, can send the stable repetitive rhythmic state into the stable steady state.  相似文献   

11.
The problem is solved of the stability of a nonneutral plasma that completely fills a waveguide and consists of magnetized cold electrons and a small density fraction of ions produced by ionization of the atoms of the background gas. The ions are described by an anisotropic distribution function that takes into account the characteristic features of their production in crossed electric and magnetic fields. By solving a set of Vlasov-Poisson equations analytically, a dispersion equation is obtained that is valid over the entire range of allowable electric and magnetic field strengths. The solutions to the dispersion equation for the m = +1 main azimuthal mode are found numerically. The plasma oscillation spectrum consists of the families of Trivelpiece-Gould modes at frequencies equal to the frequencies of oblique Langmuir oscillations Doppler shifted by the electron rotation and also of the families of “modified” ion cyclotron (MIC) modes at frequencies close to the harmonics of the MIC frequency (the frequencies of radial ion oscillations in crossed fields). It is shown that, over a wide range of electric and magnetic field strengths, Trivelpiece-Gould modes have low frequencies and interact with MIC modes. Trivelpiece-Gould modes at frequencies close to the harmonics of the MIC frequency with nonnegative numbers are unstable. The lowest radial Trivelpiece-Gould mode at a frequency close to the zeroth harmonic of the MIC frequency has the fastest growth rate. MIC modes are unstable over a wide range of electric and magnetic field strengths and grow at far slower rates. For a low ion density, a simplified dispersion equation is derived perturbatively that accounts for the nonlocal ion contribution, but, at the same time, has the form of a local dispersion equation for a plasma with a transverse current and anisotropic ions. The solutions to the simplified dispersion equation are obtained analytically. The growth rates of the Trivelpiece-Gould modes and the behavior of the MIC modes agree with those obtained by numerical simulation.  相似文献   

12.
A single-species population dynamics with dispersal in a spatially heterogeneous environment is modeled by a nonlinear reaction-diffusion equation with a potential term. To each nonlinear kinetics there corresponds a bifurcation curve that describes the relation between the growth rate and the central density of a steady-state population distribution. Our main concern is an inverse problem for this correspondence. The existence of nonlinear kinetics realizing a prescribed bifurcation curve is established. It is shown that the freedom of such kinetics is of degree finite and even, depending only on the heterogeneity of the environment, and conversely that any nonnegative even integer occurs as the degree of freedom in some environments. A discussion is also made on under what kind of environment the degree is equal to zero or is positive. The mathematical analysis involves the development of a general theory for singular multiplicative Wiener-Hopf integral equations.  相似文献   

13.
Reaction diffusion systems are often used to study pattern formation in biological systems. However, most methods for understanding their behavior are challenging and can rarely be applied to complex systems common in biological applications. I present a relatively simple and efficient, nonlinear stability technique that greatly aids such analysis when rates of diffusion are substantially different. This technique reduces a system of reaction diffusion equations to a system of ordinary differential equations tracking the evolution of a large amplitude, spatially localized perturbation of a homogeneous steady state. Stability properties of this system, determined using standard bifurcation techniques and software, describe both linear and nonlinear patterning regimes of the reaction diffusion system. I describe the class of systems this method can be applied to and demonstrate its application. Analysis of Schnakenberg and substrate inhibition models is performed to demonstrate the methods capabilities in simplified settings and show that even these simple models have nonlinear patterning regimes not previously detected. The real power of this technique, however, is its simplicity and applicability to larger complex systems where other nonlinear methods become intractable. This is demonstrated through analysis of a chemotaxis regulatory network comprised of interacting proteins and phospholipids. In each case, predictions of this method are verified against results of numerical simulation, linear stability, asymptotic, and/or full PDE bifurcation analyses.  相似文献   

14.
15.
A well established method to analyze dynamical systems described by coupled nonlinear differential equations is to determine their normal modes and reduce the dynamics, by adiabatic elimination of stable modes, to a much smaller system for the amplitudes of unstable modes and their nonlinear interactions. So far, this analysis is possible only for idealized symmetric model systems. We aim to build a framework in which realistic systems with less symmetry can be analyzed automatically. In this paper we present a first example of mode analysis with the assistance of numerical computation. Our method is illustrated using a model system for the ontogenesis of retinotopy, and the results reproduce those from theoretical analysis precisely. Aspects of organization generalized from this model system are discussed. This research was supported by EU projects Daisy and SECO, and the Hertie Foundation.  相似文献   

16.
17.
Stability, bifurcation, and dynamic behavior, investigated here in discrete, nonlinear, age-structured models, can be complex; however, restrictions imposed by compensatory mechanisms can limit the behavioral spectrum of a dynamic system. These limitations in transitional behavior of compensatory models are a focal point of this article. Although there is a tendency for compensatory models to be stable, we demonstrate that stability in compensatory systems does not always occur; for example, equilibria arising through a bifurcation can be initially unstable. Results concerning existence and uniqueness of equilibria, stability of the equilibria, and boundedness of solutions suggest that "compensatory" systems might not be compensatory in the literal sense.  相似文献   

18.
Some results are presented relating to the question whether self-sustained oscillations are possible in a sequence of biochemical reactions with end- point inhibition. The model used has a single nonlinear ordinary differential equation coupled to a set of linear equations, with all coefficients in the linear terms equal. The explicit algebraic form of the Hopf-Friedrich bifurcation theory is used to show that when the number of coupled equations is large enough this model has a stable periodic solution when the equilibrium point of the equations has just become unstable.  相似文献   

19.
Free oscillations of upright plant stems, or in technical terms, slender tapered rods with one end free, can be described by considering the equilibrium between bending moments in the form of a differential equation with appropriate boundary conditions. For stems with apical loads, where the mass of the stem is negligible, Mathematica 4.0 returns solutions for tapering modes α = 0, 0.5, and 1. For other values of α, including cases where the modulus of elasticity varies over the length of the stem, approximations leading to an upper and a lower estimate of the frequency of oscillation can be derived. For the limiting case of ω = 0, the differential equation is identical with Greenhill's equation for the stability against Euler buckling of a top-loaded slender pole. For stems without top loads, Mathematica 4.0 returns solutions only for two limiting cases, zero gravity (realized approximately for oscillations in a horizontal orientation of the stem) and for ω = 0 (Greenhill's equation). Approximations can be derived for all other cases. As an example, the oscillation of an Arundo donax plant stem is described.  相似文献   

20.
A piece-wise linear planar neuron model, namely, two-dimensional McKean model with periodic drive is investigated in this paper. Periodical bursting phenomenon can be observed in the numerical simulations. By assuming the formal solutions associated with different intervals of this non-autonomous system and introducing the generalized Jacobian matrix at the non-smooth boundaries, the bifurcation mechanism for the bursting solution induced by the slowly varying periodic drive is presented. It is shown that, the discontinuous Hopf bifurcation occurring at the non-smooth boundaries, i.e., the bifurcation taking place at the thresholds of the stimulation, leads the alternation between the rest state and spiking state. That is, different oscillation modes of this non-autonomous system convert periodically due to the non-smoothness of the vector field and the slow variation of the periodic drive as well.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号