首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
4.
The Nostoc-Gunnera symbiosis: carbon fixation and translocation   总被引:2,自引:0,他引:2  
The in vitro specific activity of ribulose-1,5-bisphosphate carboxylase (Rubisco; EC 4. 1. 1. 39) and the dark and light in vivo CO2 fixation activities were determined in the cyanobiont of Gunnera . Compared to the free-living isolate Nostoc PCC 9231, the in vitro Rubisco activity was high, while the in vivo CO2 fixation was very low. Light did not significantly influence CO2 fixation if the cyanobiont was left in the sliced Gunnera tissues, while a small light stimulation was found for CO2 fixation of the freshly-isolated cyanobiont. The adjacent non-infected Gunnera tissue showed a very low CO2 fixation. A rapid translocation of fixed 14CO2 from leaves towards apical parts of the plant was apparent, in particular to the symbiotic tissue. The 14C label appeared mainly in soluble form in this tissue and was rapidly catabolised as shown by 14C chase experiments. Also, short-term experiments revealed that maximum 14C accumulation occurred in the symbiotic tissue showing the highest rates of nitrogen fixation (Söderbäck et al. 1990), about 10–15 mm from the plant apex. The data were taken to indicate that there is a modification in the photosynthetic light reaction of the cyanobiont and that the cyanobiont lives heterotrophically in the dark on photo-synthate rapidly delivered from nearby leaves of the host plant.  相似文献   

5.
Gunnera/Nostoc固氮共生体固氮相对效率(RE)可在0.26~0.80之间变动,而不是一个常数。外加1.5%葡萄糖液可使其固氮活力提高约100%,同时也使组织的呼吸速率提高了近160%。加外源H2可使其固氮活力提高近100%,但却使组织的呼吸速率降低了近50%。正常生长条件下的组织净放H2量较低.而外源2%葡萄糖液可使组织净放H2量提高近2倍。外加5mmol/L的NH1Cl溶液可使其固氮活力下降约70%。故认为Gunnera/Nostoc共生体固氮活力受碳水化合物供应状况及比代谢两者构成的“还原力库”或“电子库”的调节,在此“还原力库”中,H2代谢起到了一个“中间调节者”的作用。  相似文献   

6.
7.
A polymerase chain reaction-based method was used to isolate a Nostoc sp. PCC 9229 cDNA from infected glands of Gunnera chilensis. The complete gene sequence was isolated from a genomic Nostoc sp. PCC 9229 library. Sequence analysis showed 84% amino acid similarity to a putative cyclodextrin glycosyltransferase from Nostoc sp. PCC 7120 and the gene was therefore termed cgt. Southern blot revealed that the cgt gene was present in symbiotically competent cyanobacteria. The cgt gene was expressed in free-living nitrogen-fixing cultures in light or in darkness when supplemented with fructose. This is the first expression analysis of a cgt gene from a cyanobacterium.  相似文献   

8.
Abstract. Marked increases in growth and nitrogen content were found with Gunnera tinctoria Molina (Mirbel) plants infected (+ Nostoc ) with the cyanobacterium Nostoc punctiforme L., in comparison to uninfected (— Nostoc ) plants and this was attributed to N2-fixation by the phycobiont. Whilst host and symbiont can be grown separately, preliminary data indicates that the host plant is reliant on the cyanobacterium to meet its nitrogen requirements because it has little capacity to assimilate nitrate. Although the maximum light-saturated rate of photosynthesis was higher in the + Nostoc plants, there was no reduction in photosynthetic efficiency under lightlimiting conditions, despite marked differences in plant nitrogen status. Differences in photosynthetic rate were implicated as the major reason for the differences in plant productivity. Stomatal conductance was insensitive to changes in plant nitrogen status and did not parallel the variation in photosynthetic rates. The ecological significance of the largely invariant stomatal response and the consequences of differences in water and nitrogen-use efficiencies between + and — Nostoc plants is discussed.  相似文献   

9.
Element analysis using electron spectroscopic imaging (ESI) and electron energy loss spectroscopy (EELS) was performed in a symbiotic Nostoc sp. strain found in the upper stem tissue of Gunnera manicata, and in Nostoc PCC 9229, a free-living heterocyst-forming cyanobacterium able to enter into symbiosis with the angiosperm Gunnera in reconstitution experiments. ESI and EELS unequivocally identified the four elements nitrogen (N), sulphur (S), phosphorus (P) and oxygen (O) in different inclusion bodies of these biological specimens. High amounts of nitrogen were solely detected in huge cyanophycin granules in vegetative cells of the symbiotic Nostoc strain, whereas large polyphosphate bodies, containing high amounts of phosphorus, sulphur and oxygen, could be seen in the free-living Nostoc PCC 9229. The latter were usually not present or, when found, very small in vegetative cells of the cyanobiont.  相似文献   

10.
Abstract Certain strains of the nitrogen-fixing cyanobacterium Anabaena were found to release varying quantities of ammonia without any induction, both in the presence and absence of combined nitrogen (nitrate) in the medium, during the different phases of their growth. In general, growth and ammonia release were comparable in both media, although there were strain differences. 3 patterns of ammonia release were observed in different strains during the growth period. They were: (1) release pattern parallel to the growth curve; (2) a continuous increase in release; and (3) release showing a bimodal curve.  相似文献   

11.
The effect of light on the metabolism of ammonia was studied by subjecting detached maize leaves to 150 or 1350 mol m–2 s–1 PAR during incubation with the leaf base in 2 mM 15NH4Cl. After up to 60 min, leaves were extracted. Ammonia, glutamine, glycine, serine, alanine, and aspartate were separated by isothermal distillation and ion exchange chromatography. 15N enrichments were analyzed by emission spectroscopy. The uptake of ammonium chloride did not influence CO2 assimilation (8.3 and 17.4 mol m–1 s–1 at 150 and 1350 mol m–2 s–1 PAR, respectively). Leaves kept at high light intensity contained more serine and less alanine than leaves from low light treatments. Within 1 h of incubation the enrichment of ammonia extracted from leaves rose to approximately 20% 15N. In the high light regime the amino acids contained up to 15% 15N, whereas in low light 15N enrichments were small (up to 6%). The kinetics of 15N incorporation indicated that NH3 was firstly assimilated into glutamine and then into glutamate. After 15 min 15N was also found in glycine, serine and alanine. At high light intensity nearly half of the 15N was incorporated in glycine. On the other hand, at low light intensity alanine was the predominant 15N sink. It is concluded that light influences ammonia assimilation at the glutamine synthetase reaction.  相似文献   

12.
The main pathway of ammonia assimilation in the root nodules of Trigonella foenum-graecum is via nodule cytosol glutamine synthetase-glutamate synthase.  相似文献   

13.
14.
The optimal temperature for the nitrogenase activity in the terrestrial cyanobacterium N. flagelliforme was 21–28℃; the optimal water content in thallus was 1000--1500%; the light saturation was between 150–200 J·m-2·s-1. The thallus of N. flagelliforme is extremely sensitive to higher temperature in wet. Long-term exposure of wetted thallus to high temperature at 45℃ causes rapid declination of its nitr0genase activity to zero. Under dry condition, N. flagelliforme is extremely resistant to extensive desiccation and heat exposure. Dry thalli exposed to 55℃, 5 hours daily for 21 days, show no marked change in its nitrogenase activity. The thalli preincubated in wet condition for 4–5 days, are highly sensitive against desication. However, repeated drying/wetting cycles induce a slow and gradual increase of its nitrogenase activity and improve the resistance of its nitrogenase activity against desiccation. High concentrated NaC1 salt solution (0.17–0.43 mol/L) depletes nitrogenase activity of the thalli quickly. Above result shows that N. flagelliforme is not able to resist against salt. The physiological characteristics of nitrogen fixation of cyanobacterium N. flagelliforme may be eonsidered as a result of drought adaptation of the terrestrial ecological condition aad the drying westting cycle is perhaps a necessary factor to maintain its growth.  相似文献   

15.
Cells of the cyanobacterium Nostoc commune UTEX 584 were immobilised, subjected to acute matric water stress (ψm = −128 MPa) and then desiccated. Their ultrastructure was investigated by the use of an anhydrous fixation procedure. Although shrunken and bleached, the integrity of the vegatative cells at the ultrastructural level was apparently preserved. The ease with which certain cyanobacterial cells can recover from desiccation may be consequent upon the maintenance of cellular organisation at the ultrastructural level.  相似文献   

16.
Nitrogenase activity in the Gunnera Nostoc symbiosis is shown to respond dramatically to the addition of glucose. H2 can replace glucose in stimulating nitrogenase activity, but there is no H2 stimulation in the presence of excess glucose. Net hydrogen evolution is strongly stimulated by addition of glucose. We postulate that carbohydrate supply and uptake hydrogenase can moderate the apparent activity of nitrogenase by supplying reductant and/or ATP. The recycling of a large proportion of the electron flux in nitrogenase through uptake hydrogenase maintains a high level of potential nitrogenase ready to take advantage of an influx of carbohydrate.  相似文献   

17.
发菜(Nostoc flagelliforme)培养条件的研究   总被引:10,自引:1,他引:10  
研究了光照强度、日供水次数、CO2浓度和培养基成分对发菜生长的影响。结果显示,中度光强(114μmol.m-2.s-1)下发菜生长最快;发菜的生长基本同供水次数成正相关系;CO2浓度的升高并没有显著促进发菜生长,低光条件下(57μmol.m-2.s-1),高浓度的CO2(2800μL/L)抑制了发菜的生长;用BG11培养的发菜生物量的增长显著高于用BG110培养的;BG11培养基中K+和CO32-的缺失并没有显著影响发菜的生长。  相似文献   

18.
In the nitrogen fixing symbiosis between Nostoc and the angiosperm Gunnera , the cyanobiont is found in stem glands and is thought to have a heterotrophic mode of nutrition. To investigate whether the photosynthetic machinery in the cyanobiont is down-regulated in the symbiosis, the presence of the phycobiliproteins, phycoerythrin and phycocyanin, and ribulose-1,5-bisphosphate carboxylase oxygenase (Rubisco, EC 4.1.1.39) in cyanobionts of Gunnera magellanica Lam. and in a free-living (cultured) isolate of the cyanobacterium was studied by immunoelectron microscopy. Carboxysomes were numerous in all vegetative cells (ca 3.5 per cell section), and on an area basis they showed a high Rubisco label compared to the cytoplasm; but recalculation on a volume basis demonstrated that the carboxysomal fraction of Rubisco decreased in the cyanobiont along the plant stem. Along the whole Gunnera stem both types of phycobiliproteins were present in the symbiotic Nostoc and in amounts equivalent to or above those detected in the free-living isolate. As the symbiotic Nostoc is located intracellularly, out of reach of light in the plant stem, the findings indicate a lack of regulation of the photosynthetic protein synthesis in the symbiotic state.  相似文献   

19.
Plants of duckweed (Lemna minor) were grown under constant illumination and with a controlled supply of ammonium-N so as to maintain a constant low concentration. In two kinetic experiments (differing in illumination and N level) with 15N-ammonia, plants were periodically harvested and their free amino acids analysed for 15N abundance. Attempts were then made to fit the data by computer simulation models. Only models which had at least two or more intracellular compartments gave adequate fits. Two two-compartment models were tested fully. Both had in compartment 1 the glutamine synthetase-glutamate synthase cycle and in compartment 2 a second site of glutamine synthesis. In one model the glutamate for compartment 2 was derived by transport from compartment 1; in the second model it was synthesized from ammonia by glutamate dehydrogenase at a rate equivalent to 10% of the total N uptake. This second model was rejected after it was found that plants previously treated with methionine sulphoximine and aza-serine (inhibitors of the glutamate synthase cycle) were unable to incorporate 15N. In spite of wide differences in labelling pattern between the two experiments the first model gave acceptable fits to both when different pool sizes were allowed for. Operation of the glutamate synthase cycle was confirmed by the correspondence between model and data for labelling of glutamine amide, glutamine amino and glutamic acid. Consideration of enzyme distributions suggested that compartment 1 (the glutamate synthase system) is the chloroplasts and compartment 2 the cytosol. Analysis of asparagine and neutral amino acids made it possible to construct balance sheets for N uptake in the two experiments. They suggest that all glutamine synthesized in the chloroplast is used for glutamate and asparagine synthesis and that the cytosol enzyme meets the need of the cell for glutamine per se. The high turnover rates for asparagine indicate that this compound is an important intermediate even under steady state conditions, and carries between 20 and 50% of the products of N assimilation.  相似文献   

20.
Conifers are the most important group of gymnosperms, which include tree species of great ecological and economic importance that dominate large ecosystems and play an essential role in global carbon fixation. Nitrogen (N) economy has a special importance in these woody plants that are able to cope with seasonal periods of growth and development over a large number of years. As N availability in the forest soil is extremely low, efficient mechanisms are required for the assimilation, storage, mobilization, and recycling of inorganic and organic forms of N. The cyclic interconversion of arginine and the amides glutamine and asparagine plays a central role in the N metabolism of conifers and the regulation of these pathways is of major relevance to the N economy of the plant. In this paper, details of recent progress in our understanding of the metabolism of arginine and the other major amino acids glutamine, glutamate, aspartate, and asparagine in pine, a conifer model tree, are presented and discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号