首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
2.
Yun HJ  Yoon JH  Lee JK  Noh KT  Yoon KW  Oh SP  Oh HJ  Chae JS  Hwang SG  Kim EH  Maul GG  Lim DS  Choi EJ 《The EMBO journal》2011,30(12):2465-2476
Microglia, the resident macrophages of the mammalian central nervous system, migrate to sites of tissue damage or infection and become activated. Although the persistent secretion of inflammatory mediators by the activated cells contributes to the pathogenesis of various neurological disorders, most activated microglia eventually undergo apoptosis through the process of activation-induced cell death (AICD). The molecular mechanism of AICD, however, has remained unclear. Here, we show that Daxx and mammalian Ste20-like kinase-1 (MST1) mediate apoptosis elicited by interferon-γ (IFN-γ) in microglia. IFN-γ upregulated the expression of Daxx, which in turn mediated the homodimerization, activation, and nuclear translocation of MST1 and apoptosis in microglial cells. Depletion of Daxx or MST1 by RNA interference also attenuated IFN-γ-induced cell death in primary rat microglia. Furthermore, the extent of IFN-γ-induced death of microglia in the brain of MST1-null mice was significantly reduced compared with that apparent in wild-type mice. Our results thus highlight new functions of Daxx and MST1 that they are the key mediators of microglial cell death initiated by the proinflammatory cytokine IFN-γ.  相似文献   

3.
4.
5.
The present study attempts to investigate the effect of H(2)S on lipopolysaccharide (LPS)-induced inflammation in both primary cultured microglia and immortalized murine BV-2 microglial cells. We found that exogenous application of sodium hydrosulfide (NaHS) (a H(2)S donor, 10-300 micro mol/L) attenuated LPS-stimulated nitric oxide (NO) in a concentration-dependent manner. Stimulating endogenous H(2)S production decreased LPS-stimulated NO production, whereas lowering endogenous H(2)S level increased basal NO production. Western blot analysis showed that both exogenous and endogenous H(2)S significantly attenuated the stimulatory effect of LPS on inducible nitric oxide synthase expression, which is mimicked by SB 203580, a specific p38 mitogen-activated protein kinase (MAPK) inhibitor. Exogenously applied NaHS significantly attenuated LPS-induced p38 MAPK phosphorylation in BV-2 microglial cells. Moreover, both NaHS (300 micro mol/L) and SB 203580 (1 micro mol/L) significantly attenuated LPS-induced tumor necrosis factor-alpha secretion, another inflammatory indicator. In addition, NaHS (10-300 micro mol/L) dose-dependently decreased LPS-stimulated NO production in primary cultured astrocytes, suggesting that the anti-neuroinflammatory effect of H(2)S is not specific to microglial cells alone. Taken together, H(2)S produced an anti-inflammatory effect in LPS-stimulated microglia and astrocytes, which may be due to inhibition of inducible nitric oxide synthase and p38 MAPK signaling pathways. These findings may have important implications in the treatment of neuroinflammation-related diseases.  相似文献   

6.
Recent studies revealed that folic acid deficiency (FD) increased the likelihood of stroke and aggravated brain injury after focal cerebral ischaemia. The microglia‐mediated inflammatory response plays a crucial role in the complicated pathologies that lead to ischaemic brain injury. However, whether FD is involved in the activation of microglia and the neuroinflammation after experimental stroke and the underlying mechanism is still unclear. The aim of the present study was to assess whether FD modulates the Notch1/nuclear factor kappa B (NF‐κB) pathway and enhances microglial immune response in a rat middle cerebral artery occlusion‐reperfusion (MCAO) model and oxygen‐glucose deprivation (OGD)‐treated BV‐2 cells. Our results exhibited that FD worsened neuronal cell death and exaggerated microglia activation in the hippocampal CA1, CA3 and Dentate gyrus (DG) subregions after cerebral ischaemia/reperfusion. The hippocampal CA1 region was more sensitive to ischaemic injury and FD treatment. The protein expressions of proinflammatory cytokines such as tumour necrosis factor‐α, interleukin‐1β and interleukin‐6 were also augmented by FD treatment in microglial cells of the post‐ischaemic hippocampus and in vitro OGD‐stressed microglia model. Moreover, FD not only dramatically enhanced the protein expression levels of Notch1 and NF‐κB p65 but also promoted the phosphorylation of pIkBα and the nuclear translocation of NF‐κB p65. Blocking of Notch1 with N‐[N‐(3, 5‐difluorophenacetyl)‐l‐alanyl]‐S‐phenylglycine t‐butyl ester partly attenuated the nuclear translocation of NF‐κB p65 and the protein expression of neuroinflammatory cytokines in FD‐treated hypoxic BV‐2 microglia. These results suggested that Notch1/NF‐κB p65 pathway‐mediated microglial immune response may be a molecular mechanism underlying cerebral ischaemia‐reperfusion injury worsened by FD treatment.  相似文献   

7.
8.
9.
Reactive oxygen species (ROS) have been shown to be a contributor to aging and disease. ROS also serve as a trigger switch for signaling cascades leading to corresponding cellular and molecular events. In the central nervous system (CNS), microglial cells are likely the main source of ROS production. However, activated astrocytes also appear to be capable of generating ROS. In this study we investigated ROS production in human astrocytes stimulated with interleukin (IL)-1β and interferon (IFN)-γ and its potential harmful effects. Although IFN-γ alone had no effect, it potentiated IL-1β-induced ROS production in a time-dependent manner. One of the sources of ROS in IL-1β-activated astrocytes was from increased superoxide production in mitochondria accompanied by enhanced manganese superoxide dismutase and inhibited catalase expression. NADPH oxidase (NOX) may also contribute to ROS production as astrocytes express NOX isoforms. Glutamate uptake, which represents one of the most important methods of astrocytes to prevent excitotoxicity, was down-regulated in IL-1β-activated astrocytes, and was further suppressed in the presence of IFN-γ; IFN-γ itself exerted minimal effect. Elevated levels of 8-isoprostane in IL-1β ± IFN-γ-activated human astrocytes indicate downstream lipid peroxidation. Pretreatment with diphenyleneiodonium abolished the IL-1β ± IFN-γ-induced ROS production, restored glutamate uptake function and reduced 8-isoprostane to near control levels suggesting that ROS contributes to the dysfunction of activated astrocytes. These results support the notion that dampening activated human astrocytes to maintain the redox homeostasis is vital to preserve their neuroprotective potential in the CNS.  相似文献   

10.
Damage to the central nervous system (CNS) leads to increased production of TNF-α and TGF-β1 cytokines that have pro- or anti-inflammatory actions, respectively. To define whether astrocytes or microglia express these cytokines, prior studies have used mixed glial cultures (MGC) to represent astrocytes, thought these results are inevitably complicated by the presence of contaminating microglia within MGC. To clarify the cellular source of these cytokines, here we employed a recently described method of preparing microglia-free astrocyte cultures, in which neural stem cells (NSC) are differentiated into astrocytes. Using ELISA to quantify cytokine production in three types of glial culture: MGC, pure microglia or pure astrocytes, this showed that microglia but not astrocytes, produce TNF-α, and that this expression is increased by LPS, IFN-γ, and to a lesser extent by vitronectin, but decreased by TGF-β1. In contrast, TGF-β1 was produced by microglia and astrocytes, though at 10-fold higher levels by microglia. TGF-β1 expression in microglia was increased by vitronectin and to a lesser extent by TNF-α and LPS, but astrocyte TGF-β1 expression was not regulated by any factor tested. In summary, our data reveal that microglia, not astrocytes are the major source of TNF-α and TGF-β1 in postnatal glial cultures, and that microglial production of these antagonistic cytokines is tightly regulated by cytokines, LPS, and vitronectin.  相似文献   

11.
Calcium-mediated intercellular communication is a mechanism by which astrocytes communicate with each other and modulate the activity of adjacent cells, including neurons and oligodendrocytes. We have investigated whether microglia, the immune effector cells involved in several diseases of the CNS, are actively involved in this communication network. To address this issue, we analyzed calcium dynamics in fura-2-loaded cocultures of astrocytes and microglia under physiological conditions and in the presence of the inflammatory cytokine IFN-gamma. The intracellular calcium increases in astrocytes, occurring spontaneously or as a result of mechanical or bradykinin stimulation, induced the release of ATP, which, in turn, was responsible for triggering a delayed calcium response in microglial cells. Repeated stimulations of microglial cells by astrocyte-released ATP activated P2X(7) purinergic receptor on microglial cells and greatly increased membrane permeability, eventually leading to microglial apoptosis. IFN-gamma increased ATP release and potentiated the P2X(7)-mediated cytolytic effect. This is the first study showing that ATP mediates a form of calcium signaling between astrocytes and microglia. This mechanism of intercellular communication may be involved in controlling the number and function of microglial cells under pathophysiologic CNS conditions.  相似文献   

12.
Almost all degenerative diseases of the CNS are associated with chronic inflammation. A central step in this process is the activation of brain mononuclear phagocyte cells, called microglia. While it is recognized that healthy neurons and astrocytes regulate the magnitude of microglia-mediated innate immune responses and limit excessive CNS inflammation, the endogenous signals governing this process are not fully understood. In the peripheral nervous system, recent studies suggest that an endogenous 'cholinergic anti-inflammatory pathway' regulates systemic inflammatory responses via alpha 7 nicotinic acetylcholinergic receptors (nAChR) found on blood-borne macrophages. These data led us to investigate whether a similar cholinergic pathway exists in the brain that could regulate microglial activation. Here we report for the first time that cultured microglial cells express alpha 7 nAChR subunit as determined by RT-PCR, western blot, immunofluorescent, and immunohistochemistry analyses. Acetylcholine and nicotine pre-treatment inhibit lipopolysaccharide (LPS)-induced TNF-alpha release in murine-derived microglial cells, an effect attenuated by alpha 7 selective nicotinic antagonist, alpha-bungarotoxin. Furthermore, this inhibition appears to be mediated by a reduction in phosphorylation of p44/42 and p38 mitogen-activated protein kinase (MAPK). Though preliminary, our findings suggest the existence of a brain cholinergic pathway that regulates microglial activation through alpha 7 nicotinic receptors. Negative regulation of microglia activation may also represent additional mechanism underlying nicotine's reported neuroprotective properties.  相似文献   

13.
14.
15.
16.
Inflammatory response following spinal cord injury (SCI) is important in regulation of the repair process. Olfactory ensheathing cells (OECs) and Schwann cells (SCs) are important donor cells for repairing SCI in different animal models. However, synergistic or complementary effects of co-transplantation of both cells for this purpose have not been extensively investigated. In the present study, we investigated the effects of co-transplantation of OECs and SCs on expression of pro- or anti-inflammatory factor and polarization of macrophages in the injured spinal cord of rats. Mixed cell suspensions containing OECs and SCs were transplanted into the injured site at 7 days after contusion at the vertebral T10 level. Compared with the DMEM, SC, or OEC group, the co-transplantation group had a more extensive distribution of the grafted cells and significantly reduced number of astrocytes, microglia/macrophage infiltration, and expression of chemokines (CCL2 and CCL3) at the injured site. The co-transplantation group also significantly increased arginase+/CD206+ macrophages (IL-4) and decreased iNOS+/CD16/32+ macrophages (IFN-γ), which was followed by higher IL-10 and IL-13 and lower IL-6 and TNF-α in their expression levels, a smaller cystic cavity area, and improved motor functions. These results indicate that OEC and SC co-transplantation could promote the shift of the macrophage phenotype from M(IFN-γ) to M(IL-4), reduce inflammatory cell infiltration in the injured site, and regulate inflammatory factors and chemokine expression, which provide a better immune environment for SCI repair.  相似文献   

17.
An inherited deficiency in the frataxin protein causes neurodegeneration of the dorsal root ganglia and Friedreich''s ataxia (FA). Frataxin deficiency leads to oxidative stress and inflammatory changes in cell and animal models; however, the cause of the inflammatory changes, and especially what causes brain microglial activation is unclear. Here we investigated: 1) the mechanism by which frataxin deficiency activates microglia, 2) whether a brain-localized inflammatory stimulus provokes a greater microglial response in FA animal models, and 3) whether an anti-inflammatory treatment improves their condition. Intracerebroventricular administration of LPS induced higher amounts of microglial activation in the FA mouse model vs controls. We also observed an increase in oxidative damage in the form of 8-oxoguanine (8-oxo-G) and the DNA repair proteins MUTYH and PARP-1 in cerebellar microglia of FA mutant mice. We hypothesized that frataxin deficiency increases DNA damage and DNA repair genes specifically in microglia, activating them. siRNA-mediated frataxin knockdown in microglial BV2 cells clearly elevated DNA damage and the expression of DNA repair genes MUTYH and PARP-1. Frataxin knockdown also induced a higher level of PARP-1 in MEF cells, and this was suppressed in MUTYH-/- knockout cells. Administration of the PARP-1 inhibitor PJ34 attenuated the microglial activation induced by intracerebroventricular injection of LPS. The combined administration of LPS and angiotensin II provoke an even stronger activation of microglia and neurobehavioral impairment. PJ34 treatment attenuated the neurobehavioral impairments in FA mice. These results suggest that the DNA repair proteins MUTYH and PARP-1 may form a pathway regulating microglial activation initiated by DNA damage, and inhibition of microglial PARP-1 induction could be an important therapeutic target in Friedreich''s ataxia.  相似文献   

18.
Differential regulation and function of Fas expression on glial cells   总被引:8,自引:0,他引:8  
Fas/Apo-1 is a member of the TNF receptor superfamily that signals apoptotic cell death in susceptible target cells. Fas or Fas ligand (FasL)-deficient mice are relatively resistant to the induction of experimental allergic encephalomyelitis, implying the involvement of Fas/FasL in this disease process. We have examined the regulation and function of Fas expression in glial cells (astrocytes and microglia). Fas is constitutively expressed by primary murine microglia at a low level and significantly up-regulated by TNF-alpha or IFN-gamma stimulation. Primary astrocytes express high constitutive levels of Fas, which are not further affected by cytokine treatment. In microglia, Fas expression is regulated at the level of mRNA expression; TNF-alpha and IFN-gamma induced Fas mRNA by approximately 20-fold. STAT-1alpha and NF-kappaB activation are involved in IFN-gamma- or TNF-alpha-mediated Fas up-regulation in microglia, respectively. The cytokine TGF-beta inhibits basal expression of Fas as well as cytokine-mediated Fas expression by microglia. Upon incubation of microglial cells with FasL-expressing cells, approximately 20% of cells underwent Fas-mediated cell death, which increased to approximately 60% when cells were pretreated with either TNF-alpha or IFN-gamma. TGF-beta treatment inhibited Fas-mediated cell death of TNF-alpha- or IFN-gamma-stimulated microglial cells. In contrast, astrocytes are resistant to Fas-mediated cell death, however, ligation of Fas induces expression of the chemokines macrophage inflammatory protein-1beta (MIP-1beta), MIP-1alpha, and MIP-2. These data demonstrate that Fas transmits different signals in the two glial cell populations: a cytotoxic signal in microglia and an inflammatory signal in the astrocyte.  相似文献   

19.
目的:探讨CD8+CD122+T细胞在脑缺血过程中的作用及其机制。方法:线栓法建立小鼠大脑中动脉栓塞模型(MCAO);激光共聚焦显微镜检测小鼠脑缺血组织中CD8+CD122+T细胞浸润情况;流式细胞仪检测脑缺血组织中CD8+CD122+T细胞/CD3+T细胞的比例及脾和胸腺中CD8+CD12TT细胞数量变化;RT—PCR方法检测CD8+CD122+T细胞对氧糖剥夺(Oxygen—glucosedeprivation,OGD)条件下星形胶质细胞表达TNF-α,IL-1β,IFN-γ的影响。结果:各时间点脑缺血组织中均有CD8+CD122+T胞浸润,且随脑缺血时间延长,缺血侧脑组织中CD8+CD122+T细胞/CD3+T细胞比例逐渐增加,5d和7d组差异显著,与非缺血侧相比,P5d〈0.05,P7d〈0.05;MCAO小鼠脾及胸腺中CD8+CD122+T细胞呈现先增高后降低的趋势。星形胶质细胞经OGD处理后,与对照组相比,IFN-γ、TNF-α、IL—1β表达显著增高,PIFN-γ〈0.01、PTNF-α〈0.001、PIL-1β〈0.01;CD122-blocked组与CD8+组相比,IFN-γ、TNF-α、IL-1β表达明显增高,PIFN-γ〈0.05、PINF-α〈0.05、PIL-1β〈0.01;CD8+组与HBSS组相比,IFN-γ表达降低,P〈0.05;IL-1β表达有降低的趋势。结论:CD8+CD122可细胞在脑缺血过程中发挥保护性作用,其保护作用通过CD122抑制星形胶质细胞TNF-α,IL-1β,IFN-γ炎症因子表达实现的。  相似文献   

20.
Previous studies indicate that astrocytes are the brain cells that express acidic fibroblast growth factor (aFGF) and that the expression is increased upon activation. However, there has been no study investigating the significance of this phenomenon. Here we report that aFGF treatment of IFNγ-stimulated human astrocytes, and LPS/IFNγ-stimulated human microglia, enhances their secretion of inflammatory cytokines and other materials toxic to human neuroblastoma SH-SY5Y cells. The mechanism of aFGF enhancement involves stimulation of the receptor FGFR2 IIIb. We show by RT-PCR that this receptor, but not other FGF receptors, is robustly expressed by astrocytes and microglia. We establish by Western blotting, and immunohistochemistry on postmortem human brain tissue that the FGFR2 IIIb protein is expressed by both of these glial cell types. We blocked the inflammatory stimulant action of aFGF by transfecting microglia and astrocytes with a small inhibitory RNA (siRNA) to FGFR2 IIIb as well as by removal of aFGF using an anti-aFGF antibody. Treatment with bFGF in combination with the stimulants was without effect, but together with aFGF, it partially counteracted the action of aFGF, indicating that it may be a weak antagonist of FGFR2 IIIb. The inflammatory effect was also attenuated by treatment with inhibitors of protein kinase C, Src tyrosine kinase, and MEK-1/2 indicating the involvement of these intracellular pathways. Our data suggest that inhibition of expression or release of aFGF could have therapeutic potential by inhibiting inflammation in neurodegenerative diseases such as Alzheimer disease where many neuroinflammatory molecules are prominently expressed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号