首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
3.
Plant RNAi: How a viral silencing suppressor inactivates siRNA   总被引:7,自引:0,他引:7  
The three-dimensional structure of an siRNA bound to the tombusvirus p19 protein--a suppressor of gene silencing--provides a first glimpse into how plant viruses can defeat their host's anti-viral RNAi defenses.  相似文献   

4.
Recently, some reports show that Ligand of Numb Protein‐X 1 (LNX1) could be a suppressor gene in gliomas, while our current research has firstly shown that PDZ domain containing ring finger 4 (PDZRN4), another member of LNX family, could also be a potential suppressor in hepatocellular carcinoma (HCC). PDZRN4, also named LNX4 (Ligand of Numb Protein‐X 4), is a member of the LNX family. We recently found that PDZRN4, but not LNX1, was down‐regulated in HCC samples, and the role of PDZRN4 in the progression of HCC had not been studied before. To address this question, firstly, we evaluated the expression of PDZRN4 in HCC samples and adjacent non‐cancerous tissues. Semi‐quantitative polymerase chain reaction showed that PDZRN4 was down‐regulated in 24/36 (66.7%) HCC samples separately. In addition, our research shows that PDZRN4 is silenced in all of the 12 HCC cell lines tested. Subsequently, cell‐based functional assay exhibited that ectopic expression of PDZRN4 inhibits the proliferation, plate colony formation and anchorage‐independent colony formation of HCC cells. Collectively, our results showed that PDZRN4 might be a potential tumour suppressor gene and had anti‐proliferative effect on HCC cell proliferation, which would be of great significance to the researches on HCC. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

5.
RNA silencing or interference (RNAi) is a gene regulation mechanism in eukaryotes that controls cell differentiation and developmental processes via expression of microRNAs. RNAi also serves as an innate antiviral defence response in plants, nematodes, and insects. This antiviral response is triggered by virus-specific double-stranded RNA molecules (dsRNAs) that are produced during infection. To overcome antiviral RNAi responses, many plant and insect viruses encode RNA silencing suppressors (RSSs) that enable them to replicate at higher titers. Recently, several human viruses were shown to encode RSSs, suggesting that RNAi also serves as an innate defence response in mammals. Here, we demonstrate that the Ebola virus VP35 protein is a suppressor of RNAi in mammalian cells and that its RSS activity is functionally equivalent to that of the HIV-1 Tat protein. We show that VP35 can replace HIV-1 Tat and thereby support the replication of a Tat-minus HIV-1 variant. The VP35 dsRNA-binding domain is required for this RSS activity. Vaccinia virus E3L protein and influenza A virus NS1 protein are also capable of replacing the HIV-1 Tat RSS function. These findings support the hypothesis that RNAi is part of the innate antiviral response in mammalian cells. Moreover, the results indicate that RSSs play a critical role in mammalian virus replication.  相似文献   

6.
The design of high-affinity, RNA-binding ligands has proven very challenging. This is due to the unique structural properties of RNA, often characterized by polar surfaces and high flexibility. In addition, the frequent lack of well-defined binding pockets complicates the development of small molecule binders. This has triggered the search for alternative scaffolds of intermediate size. Among these, peptide-derived molecules represent appealing entities as they can mimic structural features also present in RNA-binding proteins. However, the application of peptidic RNA-targeting ligands is hampered by a lack of design principles and their inherently low bio-stability. Here, the structure-based design of constrained α-helical peptides derived from the viral suppressor of RNA silencing, TAV2b, is described. We observe that the introduction of two inter-side chain crosslinks provides peptides with increased α-helicity and protease stability. One of these modified peptides (B3) shows high affinity for double-stranded RNA structures including a palindromic siRNA as well as microRNA-21 and its precursor pre-miR-21. Notably, B3 binding to pre-miR-21 inhibits Dicer processing in a biochemical assay. As a further characteristic this peptide also exhibits cellular entry. Our findings show that constrained peptides can efficiently mimic RNA-binding proteins rendering them potentially useful for the design of bioactive RNA-targeting ligands.  相似文献   

7.
8.
Most plant viruses encode suppressors of RNA silencing (VSRs) to protect themselves from antiviral RNA silencing in host plants. The capsid protein (CP) of Turnip crinkle virus (TCV) is a well-characterized VSR, whereas SUPPRESSOR OF GENE SILENCING 3 (SGS3) is an important plant-encoded component of the RNA silencing pathways. Whether the VSR activity of TCV CP requires it to engage SGS3 in plant cells has yet to be investigated. Here, we report that TCV CP interacts with SGS3 of Arabidopsis in both yeast and plant cells. The interaction was identified with the yeast two-hybrid system, and corroborated with bimolecular fluorescence complementation and intracellular co-localization assays in Nicotiana benthamiana cells. While multiple partial TCV CP fragments could independently interact with SGS3, its hinge domain connecting the surface and protruding domains appears to be essential for this interaction. Conversely, SGS3 enlists its N-terminal domain and the XS rice gene X and SGS3 (XS) domain as the primary CP-interacting sites. Interestingly, SGS3 appears to stimulate TCV accumulation because viral RNA levels of a TCV mutant with low VSR activities decreased in the sgs3 knockout mutants, but increased in the SGS3-overexpressing transgenic plants. Transgenic Arabidopsis plants overexpressing TCV CP exhibited developmental abnormalities that resembled sgs3 knockout mutants and caused similar defects in the biogenesis of trans-acting small interfering RNAs. Our data suggest that TCV CP interacts with multiple RNA silencing pathway components that include SGS3, as well as previously reported DRB4 (dsRNA-binding protein 4) and AGO2 (ARGONAUTE protein 2), to achieve efficient suppression of RNA silencing-mediated antiviral defence.  相似文献   

9.
  • ATP‐binding cassette sub‐family E member 1 (ABCE1) is recognized as a strongly conserved ribosome recycling factor, indispensable for translation in archaea and eukaryotes, however, its role in plants remains largely unidentified. Arabidopsis thaliana encodes two paralogous ABCE proteins (AtABCE1 and AtABCE2), sharing 81% identity. We previously reported that AtABCE2 functions as a suppressor of RNA silencing and that its gene is ubiquitously expressed. Here we describe the structural requirements of AtABCE2 for its suppressor function.
  • Using agroinfiltration assays, we transiently overexpressed mutated versions of AtABCE2 together with GFP, to induce silencing in GFP transgenic Nicotiana benthamiana leaves. The influence of mutations was analysed at both local and systemic levels by in vivo imaging of GFP, Northern blot analysis of GFP siRNAs and observation of plants under UV light.
  • Mutants of AtABCE2 with impaired ATP binding in either active site I or II failed to suppress GFP RNA silencing. Mutations disrupting ATP hydrolysis influenced the suppression of silencing differently at active site I or II. We also found that the N‐terminal iron–sulphur cluster domain of AtABCE2 is crucial for its suppressor function.
  • Meaningfully, the observed structural requirements of AtABCE2 for RNA silencing suppression were found to be similar to those of archaeal ABCE1 needed for ribosome recycling. AtABCE2 might therefore suppress RNA silencing via supporting the competing RNA degradation mechanisms associated with ribosome recycling.
  相似文献   

10.
The single photon response in vertebrate phototransduction is highly reproducible despite a number of random components of the activation cascade, including the random activation site, the random walk of an activated receptor, and its quenching in a random number of steps. Here we use a previously generated and tested spatiotemporal mathematical and computational model to identify possible mechanisms of variability reduction. The model permits one to separate the process into modules, and to analyze their impact separately. We show that the activation cascade is responsible for generation of variability, whereas diffusion of the second messengers is responsible for its suppression. Randomness of the activation site contributes at early times to the coefficient of variation of the photoresponse, whereas the Brownian path of a photoisomerized rhodopsin (Rh*) has a negligible effect. The major driver of variability is the turnoff mechanism of Rh*, which occurs essentially within the first 2-4 phosphorylated states of Rh*. Theoretically increasing the number of steps to quenching does not significantly decrease the corresponding coefficient of variation of the effector, in agreement with the biochemical limitations on the phosphorylated states of the receptor. Diffusion of the second messengers in the cytosol acts as a suppressor of the variability generated by the activation cascade. Calcium feedback has a negligible regulatory effect on the photocurrent variability. A comparative variability analysis has been conducted for the phototransduction in mouse and salamander, including a study of the effects of their anatomical differences such as incisures and photoreceptors geometry on variability generation and suppression.  相似文献   

11.
12.
Dicer proteins are central to the different mechanisms involving RNA interference. Plants have evolved multiple DICER‐LIKE (DCL) copies, thus enabling functional diversification. In Arabidopsis, DCL2 and DCL4 process double‐stranded RNA into 22 and 21 nucleotide small interfering (si)RNAs, respectively, and have overlapping functions with regards to virus and transgene silencing. Nonetheless, some studies have reported that dcl2 or dcl4 single mutations are sometimes sufficient to hinder silencing. To better dissect the role of DCL2 and DCL4, we analyzed silencing kinetics and efficiencies using different transgenic systems in single and double mutant backgrounds. The results indicate that DCL2 stimulates transitivity and secondary siRNA production through DCL4 while being sufficient for silencing on its own. Notably, silencing of 35S‐driven transgenes functions more efficiently in dcl4 mutants, indicating that DCL4 mostly obscures DCL2 in wild‐type plants. Nonetheless, in a dcl4 mutant compromised in phloem‐originating silencing, ectopically expressed DCL2 allows restoration of silencing, suggesting that DCL2 is not, or poorly, expressed in phloem. Remarkably, this ectopic DCL2 contribution to phloem‐originating silencing is dependent on the activity of RNA‐DEPENDENT RNA POLYMERASE6. These results indicate that, despite differences in the silencing activity of their small RNA products, DCL2 and DCL4 mostly act redundantly yet hierarchically when present simultaneously.  相似文献   

13.
FT protein acts as a long-range signal in Arabidopsis   总被引:16,自引:0,他引:16  
  相似文献   

14.
Changes in cell architecture, essentially linked to profound cytoskeleton rearrangements, are common features accompanying cell transformation. Supporting the involvement of the microfilament network in tumor cell behavior, several actin-binding proteins, including zyxin, a potential regulator of actin polymerization, may play a role in oncogenesis. In this work, we investigate the status of zyxin in Ewing tumors, a family of pediatric malignancies of bone and soft tissues, which are mainly associated with a t(11;22) chromosomal translocation encoding the EWS-FLI1 oncoprotein. We observe that EWS-FLI1-transformed murine fibroblasts, as well as human Ewing tumor-derived SK-N-MC cells, exhibit a complete disruption of their actin cytoskeleton, retaining very few stress fibers, focal adhesions and cell-to-cell contacts. We show that within these cells, zyxin is expressed at very low levels and remains diffusely distributed throughout the cytoplasm, instead of concentrating in actin-rich dynamic structures. We demonstrate that zyxin gene transfer into EWS-FLI1-transformed fibroblasts elicits reconstitution of zyxin-rich focal adhesions and intercellular junctions, dramatic reorganization of the actin cytoskeleton, decreased cell motility, inhibition of anchorage-independent growth and impairment of tumor formation in athymic mice. We observe similar phenotypic changes after zyxin gene transfer in SK-N-MC cells, suggesting that zyxin has tumor suppressor activity in Ewing tumor cells.  相似文献   

15.
Poorly known relatives of Arabidopsis thaliana   总被引:2,自引:0,他引:2  
Non-model Arabidopsis species have been widely used as outgroup taxa in studies of molecular evolution. In Arabidopsis lyrata, Arabidopsis halleri and Arabidopsis arenosa, traits pertaining to self-incompatibility, heavy metal tolerance and inter-specific hybridization have been subjected to detailed genetic analysis. However, the full potential for exploring the causes and consequences of natural variation in complex traits within the genus Arabidopsis has not been widely appreciated or realized. Here, we draw on broadly dispersed information to characterize the basic biology, ecology, population genetics and molecular evolution for these three non-model Arabidopsis species. We illustrate how the wealth of functional and genomic tools pioneered in A. thaliana can be applied to gain insights into adaptive evolution of ecologically important traits and genome-wide processes, such as polyploidy, speciation and reticulate evolution, within and among Arabidopsis species.  相似文献   

16.
17.
18.
19.
20.
Most plant viruses encode suppressors of RNA silencing (VSRs) to protect themselves from antiviral RNA silencing in host plants. The capsid protein (CP) of Turnip crinkle virus (TCV) is a well‐characterized VSR, whereas SUPPRESSOR OF GENE SILENCING 3 (SGS3) is an important plant‐encoded component of the RNA silencing pathways. Whether the VSR activity of TCV CP requires it to engage SGS3 in plant cells has yet to be investigated. Here, we report that TCV CP interacts with SGS3 of Arabidopsis in both yeast and plant cells. The interaction was identified with the yeast two‐hybrid system, and corroborated with bimolecular fluorescence complementation and intracellular co‐localization assays in Nicotiana benthamiana cells. While multiple partial TCV CP fragments could independently interact with SGS3, its hinge domain connecting the surface and protruding domains appears to be essential for this interaction. Conversely, SGS3 enlists its N‐terminal domain and the XS rice gene X and SGS3 (XS) domain as the primary CP‐interacting sites. Interestingly, SGS3 appears to stimulate TCV accumulation because viral RNA levels of a TCV mutant with low VSR activities decreased in the sgs3 knockout mutants, but increased in the SGS3‐overexpressing transgenic plants. Transgenic Arabidopsis plants overexpressing TCV CP exhibited developmental abnormalities that resembled sgs3 knockout mutants and caused similar defects in the biogenesis of trans‐acting small interfering RNAs. Our data suggest that TCV CP interacts with multiple RNA silencing pathway components that include SGS3, as well as previously reported DRB4 (dsRNA‐binding protein 4) and AGO2 (ARGONAUTE protein 2), to achieve efficient suppression of RNA silencing‐mediated antiviral defence.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号