首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Relative net vertical impulse determines jumping performance   总被引:1,自引:0,他引:1  
The purpose of this investigation was to determine the relationship between relative net vertical impulse and jump height in a countermovement jump and static jump performed to varying squat depths. Ten college-aged males with 2 years of jumping experience participated in this investigation (age: 23.3 ± 1.5 years; height: 176.7 ± 4.5 cm; body mass: 84.4 ± 10.1 kg). Subjects performed a series of static jumps and countermovement jumps in a randomized fashion to a depth of 0.15, 0.30, 0.45, 0.60, and 0.75 m and a self-selected depth (static jump depth = 0.38 ± 0.08 m, countermovement jump depth = 0.49 ± 0.06 m). During the concentric phase of each jump, peak force, peak velocity, peak power, jump height, and net vertical impulse were recorded and analyzed. Net vertical impulse was divided by body mass to produce relative net vertical impulse. Increasing squat depth corresponded to a decrease in peak force and an increase in jump height and relative net vertical impulse for both static jump and countermovement jump. Across all depths, relative net vertical impulse was statistically significantly correlated to jump height in the static jump (r = .9337, p < .0001, power = 1.000) and countermovement jump (r = .925, p < .0001, power = 1.000). Across all depths, peak force was negatively correlated to jump height in the static jump (r = -0.3947, p = .0018, power = 0.8831) and countermovement jump (r = -0.4080, p = .0012, power = 0.9050). These results indicate that relative net vertical impulse can be used to assess vertical jump performance, regardless of initial squat depth, and that peak force may not be the best measure to assess vertical jump performance.  相似文献   

2.
Resisted jumping devices and resisted plyometric training have become more common in recent years. The effectiveness of such training has yet to be determined among high school athletes. Sixty-four high school athletes (50 boys and 14 girls) from a variety of sports were divided into 2 groups and participated in a training intervention that differed only by the use of the VertiMax jump trainer in 1 group. Lower-body power was tested before and after the intervention and compared statistically for differences between the groups. Athletes from both groups followed a periodized training program with resistance exercises performed 2 or 3 days per week, and sprint and plyometric training (i.e., training control group) or sprint, plyometric, and VertiMax training (i.e., VertiMax group) 1 or 2 days per week, for 12 total weeks. In addition to the traditional compound lower-body lifts and equated sprint work, the VertiMax group performed supplementary exercises on the VertiMax training apparatus. The average improvement in power observed in the training control group was 49.50 +/- 97.83 W, and the increase in power in the VertiMax group was 217.14 +/- 99.21 W. The differences in power after the test and improvements in power with training were found to differ between the groups (P < 0.05) and favored the VertiMax training group. Combined with previous research with college athletes, these data show the added effectiveness of resisted jump training on the VertiMax among athletes for the development of lower-body power.  相似文献   

3.
Resistance training at the load that maximizes peak power (Pmax) may produce greater increases in peak power than other loads. Pmax for lower-body lifts can occur with no loading but whether Pmax can be increased further with negative loading is unclear. The purpose of this investigation was therefore to determine lower-body Pmax (jump squat) using a spectrum of loads. Box squat 1 repetition maximum (1RM) was measured in 18 elite rugby-union players. Pmax was then determined using loads of -28 to 60%1RM. Elastic bands were used to unload body weight for negative loads. Jump squat Pmax occurred with no loading (body weight: 8,880 ± 2,186 W) in all but 2 subjects. There was a discontinuity in the power-load relationship for the jump squat, possibly because of the increased countermovement in the body weight jump. The self-selected depth (dip) before the propulsive phase of the jump was greater by 24 ± 11 to 40 ± 16% (moderate to large effect size) than all positive loads. These findings highlight methodological issues that need to be taken into consideration when comparing power outputs of loaded and unloaded jumps.  相似文献   

4.
This study aims to provide a physiologic profile of professional cricketers and note positional differences at the start of the 2007/08 competitive season. Fifteen participants (9 bowlers, 6 batsmen) aged 25.0 ± 5.0 years (mean ± SD) took part in this study. Participants (bowlers and batsmen) completed a series of field-based fitness assessments: body composition (sum of 7 skinfolds, 72.5 ± 16.5 and 65.5 ± 19.3 mm, respectively), flexibility (sit and reach 8.1 ± 10.3 and 6.0 ± 6.2 cm, respectively), predicted maximal oxygen uptake (multistage shuttle run, 54.1 ± 2.8 and 56.1 ± 4.5 ml-1·kg-1·min-1, respectively), upper- (medicine ball throw, 7.7 ± 0.6 and 7.0 ± 0.1 m, respectively) and lower-body strength (countermovement jump, 45.7 ± 5.8 and 43.9 ± 4.1 cm, respectively), speed (sprint 17.7 m, 2.76 ± 0.6 and 2.77 ± 0.1 s, respectively), and explosive power (repeated jump, 31.0 ± 2.0 and 34.1 ± 4.8 cm, respectively). The data provided the physical fitness profile for each player, which, compared with normative data, identified that this cohort of professional cricketers had some superior fitness parameters compared with the general population, and where applicable, were comparable with other professional athletes. In addition, after effect size calculations, the results showed that some physical fitness differences existed between playing positions. Cricket professionals possess a superior level of physical fitness and strength, and conditioning coaches should seek to progress these physical parameters and further identify position-specific physical requirements to progress the modern game.  相似文献   

5.
Resisted movement training is that in which the sports movement is performed with added resistance. To date, the effectiveness on enhancing sprint speed or vertical jump height had not been reviewed. The objectives of this review were to collate information on resisted training studies for sprinting and vertical jumping, ascertain whether resisted movement training was superior to normal unresisted movement training, and identify areas for future research. The review was based on peer-reviewed journal articles identified from electronic literature searches using MEDLINE and SPORTDiscus data bases from 1970 to 2010. Resisted sprint training was found to increase sprint speed but, in most cases, was no more effective than normal sprint training. There was some evidence that resisted sprint training was superior in increasing speed in the initial acceleration phase of sprinting. Resisted jump training in the form of weighted jump squats was shown to increase vertical jump height, but it was no more effective than plyometric depth jump training. Direct comparisons between resisted jump training and unresisted normal jump training were limited, but loaded eccentric countermovement jump squat training with unloaded concentric phase and eccentric landing was shown to generate superior results for elite jumpers. More prospective studies on resisted sprint training are required along with monitoring both kinematic and kinetic adaptations to fully determine any underlying mechanisms for any improvements in sprint speed. Based on the available data, the benefits and superiority of resisted sprint training have not been fully established. As for resisted jump training, although there are some promising findings, these results need to be duplicated by other researchers before resisted jump training can be claimed to be more effective than other forms of jump training.  相似文献   

6.
Several investigations have demonstrated differences in anthropometry, jump performance, and strength variables between developmental and elite-level volleyball players. However, within the elite level of play, the magnitude of change that can occur with training is unclear. The purpose of this investigation was to examine the anthropometric, vertical jump, and strength quality changes over 2 years in a group of national team volleyball players. Fourteen national team volleyball players (age, 23.0 ± 4.1 years; height, 1.98 ± 0.07 m; weight, 91.7 ± 7.9 kg) began and completed this study. Participants had all played international matches (representing Australia) before the examination time period and continued to do so during the international season. Anthropometry (stature, mass, and sum of 7 skinfolds), vertical jump measures (countermovement vertical jump; depth jump from 0.35 m, DJ; spike jump, SPJ, all including arm swing), and lower-body power (jump squat at body mass, and jump squat + 50% body weight, JS50) measures were tested before and at the conclusion of the investigation period. Significant (p < 0.05) improvements were observed in sum of 7 skinfolds, DJ, SPJ, and JS50 performance, with large magnitude changes (d > 0.70) in the sum of 7 skinfolds reduction, SPJ, and leg extensor power. This study has demonstrated that elite male volleyball players can improve leanness and power, which contribute to improvements in vertical jump.  相似文献   

7.
Acceleration is a significant feature of game-deciding situations in the various codes of football. However little is known about the acceleration characteristics of football players, the effects of acceleration training, or the effectiveness of different training modalities. This study examined the effects of resisted sprint (RS) training (weighted sled towing) on acceleration performance (0-15 m), leg power (countermovement jump [CMJ], 5-bound test [5BT], and 50-cm drop jump [50DJ]), gait (foot contact time, stride length, stride frequency, step length, and flight time), and joint (shoulder, elbow, hip, and knee) kinematics in men (N = 30) currently playing soccer, rugby union, or Australian football. Gait and kinematic measurements were derived from the first and second strides of an acceleration effort. Participants were randomly assigned to 1 of 3 treatment conditions: (a) 8-week sprint training of two 1-h sessions x wk(-1) plus RS training (RS group, n = 10), (b) 8-week nonresisted sprint training program of two 1-h sessions x wk(-1) (NRS group, n = 10), or (c) control (n = 10). The results indicated that an 8-week RS training program (a) significantly improves acceleration and leg power (CMJ and 5BT) performance but is no more effective than an 8-week NRS training program, (b) significantly improves reactive strength (50DJ), and (c) has minimal impact on gait and upper- and lower-body kinematics during acceleration performance compared to an 8-week NRS training program. These findings suggest that RS training will not adversely affect acceleration kinematics and gait. Although apparently no more effective than NRS training, this training modality provides an overload stimulus to acceleration mechanics and recruitment of the hip and knee extensors, resulting in greater application of horizontal power.  相似文献   

8.
The aim of this study was to investigate the response to non-tackle and tackle field-based training on upper- and lower-limb neuromuscular function in elite rugby union players. Nine elite senior elite rugby union players (mean age = 21 ± 2 years; height = 184 ± 7 cm; body mass 91.0 ± 9 kg) were evaluated before and immediately following 17 training sessions. A total of 306 assessments were performed. Data on neuromuscular function of plyometric push-up and countermovement jump were calculated from force signals using inverse dynamics. The change from pre- to post-session was investigated across non-tackle and tackle training using a linear mixed model. Considering upper-limb neuromuscular function, peak concentric power [P = 0.024; ES = 0.33 95%CI (0.04, 0.62)] was significantly lower after tackle compared to non-tackle training. In addition, peak countermovement jump eccentric power was significantly lower after non-tackle compared to tackle training [P = 0.044; ES = -0.4 95%CI (-0.69, -0.1)] in lower-limb neuromuscular function. Overall, the results indicated that the type of training influences upper- and lower-limb neuromuscular function differently immediately after training. Indeed, due to physical contact, the upper-body neuromuscular function increased during tackle training. In contrast, lower-body neuromuscular function emerged only in non-tackle training, due to the greater distance covered during this type of training session. Coaches and practitioners should plan adequate weekly training sessions according to this information.  相似文献   

9.
The eccentric utilization ratio (EUR), which is the ratio of countermovement jump (CMJ) to static jump (SJ) performance, has been suggested as a useful indicator of power performance in athletes. The purpose of the study was to compare the EUR of athletes from a variety of different sports and during different phases of training. A total of 142 athletes from rugby union, Australian Rules Football, soccer, softball, and field hockey were tested. Subjects performed both CMJ and SJ on a force plate integrated with a position transducer. The EUR was measured as the ratio of CMJ to SJ for jump height and peak power. The rugby union, Australian Rules Football, and hockey athletes were tested during off-season and preseason to provide EUR data during different phases of training. For men, EUR for soccer, Australian Rules Football, and rugby was greater than softball (effect size range, 0.83-0.92). For women, EUR for soccer was greater than field hockey and softball (0.86- 1.0). There was a significant difference between the jump height and peak power method for the Australian Rules Football, rugby, and field hockey tests conducted preseason (p < 0.05). For field hockey, there was a significant increase in EUR from off-season to preseason. Athletes in sports such as soccer, rugby union, and Australian Rules Football appear to have higher EUR values, which reflects the greater reliance on stretch shortening activities in these sports. It does appear that EUR can be used to track changes in training with the values significantly increasing from off-season to preseason. The EUR provides the practitioner with information about the performance of athletes and appears to be sensitive to changes in the type of training being undertaken.  相似文献   

10.
For many sporting activities, initial speed rather than maximal speed would be considered of greater importance to successful performance. The purpose of this study was to identify the relationship between strength and power and measures of first-step quickness (5-m time), acceleration (10-m time), and maximal speed (30-m time). The maximal strength (3 repetition maximum [3RM]), power (30-kg jump squat, countermovement, and drop jumps), isokinetic strength measures (hamstring and quadriceps peak torques and ratios at 60 degrees .s(-1) and 300 degrees .s(-1)) and 5-m, 10-m, and 30-m sprint times of 26 part-time and full-time professional rugby league players (age 23.2 +/- 3.3 years) were measured. To examine the importance of the strength and power measures on sprint performance, a correlational approach and a comparison between means of the fastest and slowest players was used. The correlations between the 3RM, drop jump, isokinetic strength measures, and the 3 measures of sport speed were nonsignificant. Correlations between the jump squat (height and relative power output) and countermovement jump height and the 3 speed measures were significant (r = -0.43 to -0.66, p < 0.05). The squat and countermovement jump heights as well as squat jump relative power output were the only variables found to be significantly greater in the fast players. It was suggested that improving the power to weight ratio as well as plyometric training involving countermovement and loaded jump-squat training may be more effective for enhancing sport speed in elite players.  相似文献   

11.
Physiological, anthropometric, and power profiling data were retrospectively analyzed from 4 elite taekwondo athletes from the Australian National Olympic team 9 weeks from Olympic departure. Power profiling data were collected weekly throughout the 9-week period. Anthropometric skinfolds generated a lean mass index (LMI). Physiological tests included a squat jump and bench throw power profile, bleep test, 20-m sprint test, running VO2max test, and bench press and squat 3 repetition maximum (3RM) strength tests. After this, the athletes power, velocity, and acceleration profile during unweighted squat jumps and single-leg jumps were tracked using a linear position transducer. Increases in power, velocity, and acceleration between weeks and bilateral comparisons were analyzed. Athletes had an LMI of 37.1 ± 0.4 and were 173.9 ± 0.2 m and 67 ± 1.1 kg. Relatively weaker upper body (56 ± 11.97 kg 3RM bench press) compared to lower body strength (88 ± 2.89 kg 3RM squat) was shown alongside a VO2max of 53.29 ml(-1)·min(-1)·kg, and a 20-m sprint time of 3.37 seconds. Increases in all power variables for single-leg squat and squat jumps were found from the first session to the last. Absolute peak power in single-leg squat jumps increased by 13.4-16% for the left and right legs with a 12.9% increase in squat jump peak power. Allometrically scaled peak power showed greater increases for single-leg (right leg: 18.55%; left: 23.49%) and squat jump (14.49%). The athlete's weight did not change significantly throughout the 9-week mesocycle. Progressions in power increases throughout the weeks were undulating and can be related to the intensity of the prior week's training and athlete injury. This analysis has shown that a 9-week mesocycle before Olympic departure that focuses on core lifts has the ability to improve power considerably.  相似文献   

12.
One of the most popular exercises for developing lower-body muscular power is the weighted vertical jump. The present study sought to examine the effect of altering the position of the external load on the kinematics and kinetics of the movement. Twenty-nine resistance-trained rugby union athletes performed maximal effort jumps with 0, 20, 40, and 60% of their squat 1 repetition maximum (1RM) with the load positioned (a) on the posterior aspect of the shoulder using a straight barbell and (b) at arms' length using a hexagonal barbell. Kinematic and kinetic variables were calculated through integration of the vertical ground reaction force data using a forward dynamics approach. Performance of the hexagonal barbell jump resulted in significantly (p < 0.05) greater values for jump height, peak force, peak power, and peak rate of force development compared with the straight barbell jump. Significantly (p < 0.05) greater peak power was produced during the unloaded jump compared with all trials where the external load was positioned on the shoulder. In contrast, significantly (p < 0.05) greater peak power was produced when using the hexagonal barbell combined with a load of 20% 1RM compared with all other conditions investigated. The results suggest that weighted vertical jumps should be performed with the external load positioned at arms' length rather than on the shoulder when attempting to improve lower-body muscular performance.  相似文献   

13.
The aim of this study was to evaluate the reliability and validity of a repeated modified agility test (RMAT) to assess anaerobic power and explosiveness. Twenty-seven subjects (age: 20.2 ± 0.9 years, body mass: 66.1 ± 6.0 kg, height: 176 ± 6 cm, and body fat: 11.4 ± 2.6%) participated in this study. After familiarization, subjects completed the RMAT consisting of 10 × 20-m maximal running performances (moving in forward, lateral, and backward) with ~25-second recovery between each run. Ten subjects performed the RMAT twice separated by at least 48 hours to evaluate relative and absolute reliability and usefulness of the test. The criterion validity of the RMAT was determined by examining the relationship between RMAT indices and the Wingate anaerobic test (WAT) performances and both vertical and horizontal jumps. Reliability of the total time (TT) and peak time (PT) of the RMAT was very good, with intraclass correlation coefficient > 0.90 and SEM < 5% and low bias. The usefulness of TT and PT of the RMAT was rated as "good" and "OK," respectively. The TT of the RMAT had significant correlations with the WAT (peak power: r = -0.44; mean power: r = -0.72), vertical jumps (squat jump: r = -0.50; countermovement jump: r = -0.61; drop jump (DJ): r = -0.55; DJ with dominant leg: r = -0.72; DJ with nondominant leg: r = -0.53) and 5 jump test (r = -0.56). These findings suggest that the RMAT is a reliable and valid test for assessing anaerobic power and explosiveness in multisprint sport athletes. Consequently, the RMAT is an easily applied, inexpensive field test and can provide coaches and strength and conditioning professionals with relevant information concerning the choice and the efficacy of training programs.  相似文献   

14.
Although many studies have been focused on soccer athletes, no comprehensive studies have been conducted on adolescent soccer athletes in the United States. Therefore, the purpose of this study was to quantify the physiological and sport-specific skill characteristics of Olympic Developmental Program (ODP) soccer athletes by age group and game experience. Following written, informed consent, 59 male athletes (age = 14.6 +/- 2.0 years; wt = 60.5 +/- 1.4 kg; ht = 172.4 +/- 1.2 cm) completed a battery of tests to determine aerobic power (VO(2)max), heart rate (HR(max)), ventilation (VE(max)), respiratory exchange ratio (RER), anaerobic threshold (AT), blood pressure (BP(rest/max)), anaerobic power/capacity [peak power (PP), mean power (MP), total work output (TWO), fatigue index (FI)], leg power [vertical squat jump (VJS), countermovement jump (VJC)], body composition [percent body fat (%BF), lean body mass (LBM)], joint range of motion (trunk, back, hip, knee, and ankle), and agility/sport-specific skills (T-test, line drill test, juggling test, Johnson wall volley, and modified-Zelenka circuit). Factor analyses with subsequent multivariate analyses of variance (MANOVAs) indicated significant main effects across age (p = 0.0001) but not by game experience (p = 0.82). Older athletes exhibited greater height, weight, LBM, VE(max), Time(max), PP, TWO, and VSJ values than younger athletes. Although not significant, there were differences with increasing age in the agility tests (T-test, wall volley, and juggling test). In conclusion, improvements in anaerobic power, agility, and sport-specific skill should be addressed at this developmental level of competition.  相似文献   

15.
The purpose of this study was to compare the effects of combined strength and plyometric training with strength training alone on power-related measurements in professional soccer players. Subjects in the intervention team were randomly divided into 2 groups. Group ST (n = 6) performed heavy strength training twice a week for 7 weeks in addition to 6 to 8 soccer sessions a week. Group ST+P (n = 8) performed a plyometric training program in addition to the same training as the ST group. The control group (n = 7) performed 6 to 8 soccer sessions a week. Pretests and posttests were 1 repetition maximum (1RM) half squat, countermovement jump (CMJ), squat jump (SJ), 4-bounce test (4BT), peak power in half squat with 20 kg, 35 kg, and 50 kg (PP20, PP35, and PP50, respectively), sprint acceleration, peak sprint velocity, and total time on 40-m sprint. There were no significant differences between the ST+P group and ST group. Thus, the groups were pooled into 1 intervention group. The intervention group significantly improved in all measurements except CMJ, while the control group showed significant improvements only in PP20. There was a significant difference in relative improvement between the intervention group and control group in 1RM half squat, 4BT, and SJ. However, a significant difference between groups was not observed in PP20, PP35, sprint acceleration, peak sprinting velocity, and total time on 40-m sprint. The results suggest that there are no significant performance-enhancing effects of combining strength and plyometric training in professional soccer players concurrently performing 6 to 8 soccer sessions a week compared to strength training alone. However, heavy strength training leads to significant gains in strength and power-related measurements in professional soccer players.  相似文献   

16.
The aims of this study were to test the potential of in-season heavy upper and lower limb strength training to enhance peak power output (Wpeak), vertical jump, and handball related field performance in elite male handball players who were apparently already well trained, and to assess any adverse effects on sprint velocity. Twenty-four competitors were divided randomly between a heavy resistance (HR) group (age 20 ± 0.7 years) and a control group (C; age 20 ± 0.1 years). Resistance training sessions were performed twice a week for 8 weeks. Performance was assessed before and after conditioning. Peak power (W(peak)) was determined by cycle ergometer; vertical squat jump (SJ) and countermovement jump (CMJ); video analyses assessed velocities during the first step (V(1S)), the first 5 m (V(5m)), and between 25 and 30 m (V(peak)) of a 30-m sprint. Upper limb bench press and pull-over exercises and lower limb back half squats were performed to 1-repetition maximum (1RM). Upper limb, leg, and thigh muscle volumes and mean thigh cross-sectional area (CSA) were assessed by anthropometry. W(peak) (W) for both limbs (p < 0.001), vertical jump height (p < 0.01 for both SJ and CMJ), 1RM (p < 0.001 for both upper and lower limbs) and sprint velocities (p < 0.01 for V(1S) and V(5m); p < 0.001 for V(peak)) improved in the HR group. Upper body, leg, and thigh muscle volumes and thigh CSA also increased significantly after strength training. We conclude that in-season biweekly heavy back half-squat, pull-over, and bench-press exercises can be commended to elite male handball players as improving many measures of handball-related performance without adverse effects upon speed of movement.  相似文献   

17.
The 30-second, all-out Wingate test evaluates anaerobic performance using an upper or lower body cycle ergometer (cycle Wingate test). A recent study showed that using a modified electromagnetically braked elliptical trainer for Wingate testing (EWT) leads to greater power outcomes because of larger muscle group recruitment. The main purpose of this study was to modify an elliptical trainer using an easily understandable mechanical brake system instead of an electromagnetically braked modification. Our secondary aim was to determine a proper test load for the EWT to reveal the most efficient anaerobic test outcomes such as peak power (PP), average power (AP), minimum power (MP), power drop (PD), and fatigue index ratio (FI%) and to evaluate the retest reliability of the selected test load. Delta lactate responses (ΔLa) were also analyzed to confirm all the anaerobic performance of the athletes. Thirty healthy and well-trained male university athletes were selected to participate in the study. By analysis of variance, an 18% body mass workload yielded significantly greater test outcomes (PP = 19.5 ± 2.4 W·kg, AP = 13.7 ± 1.7 W·kg, PD = 27.9 ± 5 W·s, FI% = 58.4 ± 3.3%, and ΔLa = 15.4 ± 1.7 mM) than the other (12-24% body mass) tested loads (p < 0.05). Test and retest results for relative PP, AP, MP, PD, FI%, and ΔLa were highly correlated (r = 0.97, 0.98, 0.94, 0.91, 0.81, and 0.95, respectively). In conclusion, it was found that the mechanically braked modification of an elliptical trainer successfully estimated anaerobic power and capacity. A workload of 18% body mass was optimal for measuring maximal and reliable anaerobic power outcomes. Anaerobic testing using an EWT may be more useful to athletes and coaches than traditional cycle ergometers because a greater proportion of muscle groups are worked during exercise on an elliptical trainer.  相似文献   

18.
This study compared peak power estimated using 4 commonly used regression equations with actual peak power derived from force platform data in a group of adolescent basketball players. Twenty-five elite junior male basketball players (age, 16.5 +/- 0.5 years; mass, 74.2 +/- 11.8 kg; height, 181.8 +/- 8.1 cm) volunteered to participate in the study. Actual peak power was determined using a countermovement vertical jump on a force platform. Estimated peak power was determined using countermovement jump height and body mass. All 4 prediction equations were significantly related to actual peak power (all p < 0.01). Repeated-measures analysis of variance indicated significant differences between actual peak power and estimate peak power from all 4 prediction equations (p < 0.001). Bonferroni post hoc tests indicated that estimated peak power was significantly lower than actual peak power for all 4 prediction equations. Ratio limits of agreement for actual peak power and estimated peak power were 8% for the Harman et al. and Sayers squat jump prediction equations, 12% for the Canavan and Vescovi equation, and 6% for the Sayers countermovement jump equation. In all cases peak power was underestimated.  相似文献   

19.
Complex training has been recommended as a method of incorporating plyometrics with strength training. Some research suggests that plyometric performance is enhanced when performed 3-4 minutes after the strength training set, whereas other studies have failed to find any complex training advantage when plyometrics are performed immediately after the strength training portion of the complex. The purpose of this study was to determine if there is an ergogenic advantage associated with complex training and if there is an optimal time for performing plyometrics after the strength training set. Subjects were 21 NCAA Division I athletes who performed a countermovement vertical jump, a set of 5 repetitions maximum (5 RM) squats, and 5 trials of countermovement vertical jump at intervals of 10 seconds and 1, 2, 3, and 4 minutes after the squat. Jump height and peak ground reaction forces were acquired via a force platform. The pre-squat jump performance was compared with the post-squat jumps. Repeated measures ANOVA determined a difference (p 0.05) was found comparing subsequent jumps (0.72-0.76 m) to the pre-squat condition (0.74 m). When comparing high to low strength individuals, there was no effect on jump performance following the squat (p > 0.05). In conclusion, complex training does not appear to enhance jumping performance significantly and actually decreases it when the jump is performed immediately following the strength training set; however, a nonsignificant trend toward improvement seemed to be present. Therefore to optimize jump performance it appears that athletes should not perform jumps immediately following resistance training. It may be possible that beyond 4 minutes of recovery performance could be enhanced; however, that was not within the scope of the current study.  相似文献   

20.
The purposes of this study are to examine gender differences in the contribution of the arm swing to jump height in men and women basketball players and to examine the role of upper-body strength in the contribution of arm swing to jump height. National Collegiate Athletic Association Division I basketball players (men n = 13, women n = 12) performed 4 jumping movements: squat jumps with hands on hips (SNA) and with arm swings (SA) and countermovement jumps with hands on hips and with arm swings (CMA). Differences were found between the jump heights of men and women. Use of the arms increased the jump height of men more than women. Compared with the SNA, the SA allowed an increase of 7 cm (23%) for men and 4 cm (17%) for women. The CMA allowed for an increase of 10 cm (30%) for men and 6 cm (24%) for women. General upper-body strength measures did not correlate strongly with the effect of arms on jumping, but peak power did. As in previous studies, peak power had a high correlation with jumping performance. These results show that the arm swing contributes significantly to jump performance in both men and women basketball players and that strength training for jumping should focus on power production and lifting exercises that are jump specific.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号