首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
To date, the function of most genes in the Arabidopsis (Arabidopsis thaliana) genome is unknown. Here we present the first analysis of the novel, plant-specific BRX (BREVIS RADIX) gene family. BRX has been identified as a modulator of root growth through a naturally occurring loss-of-function allele. The biochemical function of BRX is enigmatic, however several domains in BRX are conserved in the proteins encoded by the related BRX-like (BRXL) genes. The similarity between Arabidopsis BRXL proteins within these domains ranges from 84% to 93%. Nevertheless, analysis of brx brx-like multiple mutants indicates that functional redundancy of BRXLs is limited. This results mainly from differences in protein activity, as demonstrated by assaying the propensity of constitutively expressed BRXL cDNAs to rescue the brx phenotype. Among the genes tested, only BRXL1 can replace BRX in this assay. Nevertheless, BRXL1 does not act redundantly with BRX in vivo, presumably because it is expressed at a much lower level than BRX. BRX and BRXL1 similarity is most pronounced in a characteristic tandem repeat domain, which we named BRX domain. One copy of this domain is also present in the PRAF (PH, RCC1, and FYVE)-like family proteins. The BRX domain mediates homotypic and heterotypic interactions within and between the BRX and PRAF protein families in yeast (Saccharomyces cerevisiae), and therefore likely represents a novel protein-protein interaction domain. The importance of this domain for BRX activity in planta is underscored by our finding that expression of the C-terminal fragment of BRX, comprising the two BRX domains, is largely sufficient to rescue the brx phenotype.  相似文献   

2.
In this issue of Molecular Cell, Savir and Tlusty (2010) apply signal detection theory to show that homologous recombination machinery is optimally tuned to find homologous DNA sequences within an exceptionally high background of heterologous sequences.  相似文献   

3.
Sugarcane has become an increasingly important first-generation biofuel crop in tropical and subtropical regions. It has a large, complex, polyploid genome that has hindered the progress of genomic research and marker-assisted selection. Genetic mapping and ultimately genome sequence assembly require a large number of DNA markers. Simple sequence repeats (SSRs) are widely used in genetic mapping because of their abundance, high rates of polymorphism, and ease of use. The objectives of this study were to develop SSR markers for construction of a saturated genetic map and to characterize the frequency and distribution of SSRs in a polyploid genome. SSR markers were mined from expressed sequence tag (EST), reduced representation library genomic sequences, and bacterial artificial chromosome (BAC) sequences. A total of 5,675 SSR markers were surveyed in a segregating population. The overall successful amplification and polymorphic rates were 87.9 and 16.4%, respectively. The trinucleotide repeat motifs were most abundant, with tri- and hexanucleotide motifs being the most abundant for the ESTs. BAC and genomic SSRs were mostly AT-rich while the ESTs were relatively GC-rich due to codon bias. These markers were also aligned to the sorghum genome, resulting in 1,203 markers mapped in the sorghum genome. This set of SSRs conserved in sugarcane and sorghum would be the most informative for mapping quantitative trait loci in sugarcane and for comparative genomic analyses. This large collection of SSR markers is a valuable resource for sugarcane genomic research and crop improvement.  相似文献   

4.
Functional redundancy in ecology and conservation   总被引:15,自引:0,他引:15  
Jordan S. Rosenfeld 《Oikos》2002,98(1):156-162
Multiple studies have shown that biodiversity loss can impair ecosystem processes, providing a sound basis for the general application of a precautionary approach to managing biodiversity. However, mechanistic details of species loss effects and the generality of impacts across ecosystem types are poorly understood. The functional niche is a useful conceptual tool for understanding redundancy, where the functional niche is defined as the area occupied by a species in an n-dimensional functional space. Experiments to assess redundancy based on a single functional attribute are biased towards finding redundancy, because species are more likely to have non-overlapping functional niches in a multi-dimensional functional space. The effect of species loss in any particular ecosystem will depend on i) the range of function and diversity of species within a functional group, ii) the relative partitioning of variance in functional space between and within functional groups, and iii) the potential for functional compensation (degree of functional niche overlap) of the species within a functional group. Future research on functional impairment with species loss should focus on identifying which species, functional groups, and ecosystems are most vulnerable to functional impairment from species loss, so that these can be prioritized for management activities directed at maintaining ecosystem function. This will require a better understanding of how the organization of diversity into discrete functional groups differs between different communities and ecosystems.  相似文献   

5.
Tropical montane forests suffer from increasing fragmentation and replacement by other types of land-use such as coffee plantations. These processes are known to affect gene flow and genetic structure of plant populations. Epiphytes are particularly vulnerable because they depend on their supporting trees for their entire life-cycle. We compared population genetic structure and genetic diversity derived from AFLP markers of two epiphytic fern species differing in their ability to colonize secondary habitats. One species, Pleopeltis crassinervata, is a successful colonizer of shade trees and isolated trees whereas the other species, Polypodium rhodopleuron, is restricted to forests with anthropogenic separation leading to significant isolation between populations. By far most genetic variation was distributed within rather than among populations in both species, and a genetic admixture analysis did not reveal any clustering. Gene flow exceeded by far the benchmark of one migrant per generation to prevent genetic divergence between populations in both species. Though populations are threatened by habitat loss, long-distance dispersal is likely to support gene flow even between distant populations, which efficiently delays genetic isolation. Consequently, populations may rather be threatened by ecological consequences of habitat loss and fragmentation.  相似文献   

6.
1. The conversion of forested landscapes to agriculture and, increasingly, to suburban and urban development significantly affects the structure and function of both terrestrial and aquatic ecosystems. While a growing body of research is examining how biotic communities change in response to human alteration of landscapes, less is known about how these changes in community structure affect biotic interactions. 2. The objective of this study was to examine top‐down control by macroconsumers (fish and crayfish) across a human‐impacted landscape. We predicted that changes in stream macroconsumers and physicochemical characteristics associated with increased catchment development (e.g. decreased abundance of fish that are obligate benthic invertivores, increased sedimentation) would diminish top‐down control of benthic insects. We expected that effects on algal assemblages would be more variable, with increased top‐down control at sites dominated by algivorous fish and diminished control elsewhere. To test these predictions, we experimentally excluded fish and crayfish from areas of the bed of five streams whose catchments ranged from 100% to <50% forested, and examined the effects of exclusion on benthic insects and algae. 3. Despite cross‐site differences in physical, chemical and biological characteristics, the outcome of our experiments was consistent across five sites representing a range of catchment development. Across all sites, macroconsumers reduced total insect biomass, largely due to decreases in Chironomidae and Hydropsychidae larvae. Macroconsumers also affected algal assemblages, reducing chlorophyll‐a and the proportion of upright and filamentous diatoms (e.g. Melosira, Cymbella) but increasing the proportion of adnate diatoms (e.g. Achnanthes) across all sites. 4. We expected that differences in factors such as macroconsumer assemblage composition, nutrient and light availability and sedimentation would result in variable responses to macroconsumer exclusion in the five streams. Contrary to these expectations, only one response variable (ash‐free dry mass) showed a statistically significant interaction (i.e. site × exclusion) effect. Most responses to exclusion were relatively consistent, suggesting functional redundancy in assemblages of macroconsumers among the sites despite differences in catchment land use.  相似文献   

7.
Colonial social spiders experience extreme inbreeding and highly restricted gene flow between colonies; processes that question the genetic cohesion of geographically separated populations and which could imply multiple origins from predecessors with limited gene flow. We analysed species cohesion and the potential for long-distance dispersal in the social spider Stegodyphus dumicola by studying colony structure in eastern South Africa and the cohesion between this population and Namibian populations previously published. Data from both areas were (re)analysed for historic demographic parameters. Eastern South African S. dumicola were closely related to an east Namibian lineage, showing cohesion of S. dumicola relative to its sister species. Colony structure was similar in both areas with mostly monomorphic colonies, but haplotype diversity was much reduced in eastern South Africa. Here, the population structure indicated recent population expansion. By contrast, Namibia constitutes an old population, possibly the geographic origin of the species. Both the comparison of the eastern South African and Namibian lineages and the distribution within eastern South Africa show the potential for long-distance dispersal in few generations via colony propagation.  相似文献   

8.
It has been argued that one of the best ways to conserve biological diversity is to maintain the integrity of functional processes within communities, and this can be accomplished by assessing how much ecological redundancy exists in communities. Evidence suggests, however, that the functional roles species play are subject to the influences of local environmental conditions. Species may appear to perform the same function (i.e. be redundant) under a restricted set of conditions, yet their functional roles may vary in naturally heterogeneous environments. Incorporating the environmental context into ecological experiments would provide a critical perspective for examining functional redundancy among species.  相似文献   

9.
Extensive cDNA analysis demonstrated that all human and mouse protocadherin-beta genes are one-exon genes. The protein sequences of these genes are highly conserved, especially the three most membrane-proximal extracellular domains. Phylogenetic analysis suggested that this unique gene family evolved by duplication of one single protocadherin-beta gene to 15 copies. The final difference in the number of protocadherin-beta genes in man (#19) and mouse (#22) is probably caused by duplications later in evolution. The complex relationship between human and mouse genes and the lack of pseudogenes in the mouse protocadherin-beta gene cluster suggest a species-specific evolutionary pressure for maintenance of numerous protocadherin-beta genes.  相似文献   

10.
Caffeic acid O‐methyltransferase (COMT), the lignin biosynthesis gene modified in many brown‐midrib high‐digestibility mutants of maize and sorghum, was targeted for downregulation in the small grain temperate cereal, barley (Hordeum vulgare), to improve straw properties. Phylogenetic and expression analyses identified the barley COMT orthologue(s) expressed in stems, defining a larger gene family than in brachypodium or rice with three COMT genes expressed in lignifying tissues. RNAi significantly reduced stem COMT protein and enzyme activity, and modestly reduced stem lignin content while dramatically changing lignin structure. Lignin syringyl‐to‐guaiacyl ratio was reduced by ~50%, the 5‐hydroxyguaiacyl (5‐OH‐G) unit incorporated into lignin at 10‐–15‐fold higher levels than normal, and the amount of p‐coumaric acid ester‐linked to cell walls was reduced by ~50%. No brown‐midrib phenotype was observed in any RNAi line despite significant COMT suppression and altered lignin. The novel COMT gene family structure in barley highlights the dynamic nature of grass genomes. Redundancy in barley COMTs may explain the absence of brown‐midrib mutants in barley and wheat. The barley COMT RNAi lines nevertheless have the potential to be exploited for bioenergy applications and as animal feed.  相似文献   

11.
We studied differentiation and geneflow patterns between enantiomorphic door‐snail species in two hybrid zones in the Bucegi Mountains (Romania) to investigate the effects of intrinsic barriers (complications in copulation) and extrinsic selection by environmental factors. A mitochondrial gene tree confirmed the historical separation of the examined populations into the dextral Alopia livida and the sinistral Alopia straminicollis in accordance with the morphological classification, but also indicated gene flow between the species. By contrast, a network based on amplified fragment length polymorphisms (AFLP) markers revealed local groups of populations as units independent of their species affiliation. Admixture analyses based on AFLP data showed that the genomes of most individuals in the hybrid zones are composed of parts of the genomes of both parental taxa. The introgression patterns of a notable fraction of the examined markers deviated from neutral introgression. However, the patterns of most non‐neutral markers were not concordant between the two hybrid zones. There was also no concordance between non‐neutral markers in the two genomic clines and markers that were correlated with environmental variables or markers that were correlated with the proportion of dextral individuals in the populations. Neither extrinsic selection by environmental factors nor intrinsic barriers resulting from positive frequency‐dependent selection of the prevailing coiling direction were sufficient to maintain the distinctness of A. straminicollis and A. livida. Despite being historically separated units, we conclude that these taxa now merge where they come into contact.  相似文献   

12.
Environmentally induced changes in rRNA gene redundancy   总被引:3,自引:0,他引:3  
J N Timmis  J Ingle 《Nature: New biology》1973,244(138):235-236
  相似文献   

13.
Genome-scale metabolic networks can be characterized by a set of systemically independent and unique extreme pathways. These extreme pathways span a convex, high-dimensional space that circumscribes all potential steady-state flux distributions achievable by the defined metabolic network. Genome-scale extreme pathways associated with the production of non-essential amino acids in Haemophilus influenzae were computed. They offer valuable insight into the functioning of its metabolic network. Three key results were obtained. First, there were multiple internal flux maps corresponding to externally indistinguishable states. It was shown that there was an average of 37 internal states per unique exchange flux vector in H. influenzae when the network was used to produce a single amino acid while allowing carbon dioxide and acetate as carbon sinks. With the inclusion of succinate as an additional output, this ratio increased to 52, a 40% increase. Second, an analysis of the carbon fates illustrated that the extreme pathways were non-uniformly distributed across the carbon fate spectrum. In the detailed case study, 45% of the distinct carbon fate values associated with lysine production represented 85% of the extreme pathways. Third, this distribution fell between distinct systemic constraints. For lysine production, the carbon fate values that represented 85% of the pathways described above corresponded to only 2 distinct ratios of 1:1 and 4:1 between carbon dioxide and acetate. The present study analysed single outputs from one organism, and provides a start to genome-scale extreme pathways studies. These emergent system-level characterizations show the significance of metabolic extreme pathway analysis at the genome-scale.  相似文献   

14.
Whole cells of the extreme thermophile Thermus thermophilus HB8 contained a membrane-bound respiratory chain (comprised of nicotinamide nucleotide transhydrogenase, NADH dehydrogenase, menaquinone, and cytochromes b, c, aa3, o), which exhibited a maximumH+/O quotient of approximately 8 g-ion H+·g-atom O-1 for the oxidation of endogenous substrates. Whole cell respiration at 70° at the expense of endogenous substrates or ascorbate-TMPD generated a transmembrane protonmotive force (p) of up to 197 mV and an intracellular phosphorylation poteintial (Gp), measured under similar conditions, of approximately 43.9 kJ·mol-1.The measured Gp/p ratio thus indicated anH+/ATP quotient of approximately 2.3 g-ion H+·mole ATP-1. Glucose-limited continuous cultures of T. thermophilus at 60°, 70° and 78.5° exhibited extremely low moler growth yields (Y O2 max 27.6 g cells·mol O 2 -1 ; Y glucose max 64.4 g cells ·mol glucose-1) compared with mesophilic bacteria of similar respiratory chain composition and proton translocation efficiency. These low yields are probably at least partly explained by the extremely high permeability of the cytoplasmic membrane to H+, which thus causes the cells to respire rapidly in order to maintain the protonmotive force at a level commensurate with cell growth.Abbreviations TPMP+ triphenylmethylphosphonium cation - FCCP carbonylcyanide p-trifluoromethoxy phenythydrazone - TMPD N,N,N,N-tetramethyl-p-phenylene diamine  相似文献   

15.
16.
The relationship between probability of survival and the number of deleterious mutations in the genome is investigated using three different models of highly redundant systems that interact with a threatening environment. Model one is a system that counters a potentially lethal infection; it has multiple identical components that act in sequence and in parallel. Model two has many different overlapping components that provide three-fold coverage of a large number of vital functions. The third model is based on statistical decision theory: an ideal detector, following an optimum decision strategy, makes crucial decisions in an uncertain world. The probability of a fatal error is reduced by a redundant sampling system, but the chance of error rises as the system is impaired by deleterious mutations. In all three cases the survival profile shows a synergistic pattern in that the probability of survival falls slowly and then more rapidly. This is different than the multiplicative or independent survival profile that is often used in mathematical models. It is suggested that a synergistic profile is a property of redundant systems. Model one is then used to study the conservation of redundancy during sexual and asexual reproduction. A unicellular haploid organism reproducing asexually retains redundancy when the mutation rate is very low (0001 per cell division), but tends to lose high levels of redundancy if the mutation rate is increased (001 to 01 per cell division). If a similar unicellular haploid organism has a sexual phase then redundancy is retained for mutation rates between 0001 and 01 per cell division. The sexual organism outgrows the asexual organism when the above mutation rates apply. If they compete for finite resources the asexual organism will be extinguished. Variants of the sexual organism with increased redundancy will outgrow those with lower levels of redundancy and the sexual process facilitates the evolution of more complex forms. There is a limit to the extent that complexity can be increased by increasing the size of the genome and in asexual organisms this leads to progressive accumulation of mutations with loss of redundancy and eventual extinction. If complexity is increased by using genes in new combinations, the asexual form can reach a stable equilibrium, although it is associated with some loss of redundancy. The sexual form, by comparison, can survive, with retention of redundancy, even if the mutation rate is above one per generation. The conservation and evolution of redundancy, which is essential for complexity, depends on the sexual process of reproduction.  相似文献   

17.
Males exhibit striking variation in the degree to which they invest in offspring, from merely provisioning females with sperm, to providing exclusive post-zygotic care. Paternity assurance is often invoked to explain this variation: the greater a male's confidence of paternity, the more he should be willing to provide care. Here, we report a striking exception to expectations based on paternity assurance: despite high levels of female promiscuity, males of a marine snail provide exclusive, and costly, care of offspring. Remarkably, genetic paternity analyses reveal cuckoldry in all broods, with fewer than 25% of offspring being sired by the caring male, although caring males sired proportionally more offspring in a given clutch than any other fathers did individually. This system presents the most extreme example of the coexistence of high levels of female promiscuity, low paternity, and costly male care, and emphasises the still unresolved roles of natural and sexual selection in the evolution of male parental care.  相似文献   

18.
19.
The distribution of 1731 retrotransposon-hybridizing sequences in the family Drosophilidae has been studied using a 1731 probe from Drosophila melanogaster. Squash blot and Southern blot analyses of 42 species reveal that the 1731 sequences are widespread within both the Sophophora and Drosophila subgenera and are also present in the genera Scaptomyza and Zaprionus. Hence the 1731 retrotransposon family appears to have a long evolutionary history in the Drosophilidae genome. Differences of hybridization signal intensity suggested that the 1731 sequence is well conserved only in the three species most closely related to D. melanogaster (D. simulans, D. mauritiana, and D. sechellia). A survey of insertion sites in numerous different populations of the previous four species by in situ hybridization to polytene chromosomes has shown in all cases both chromocentric hybridizations and a low number of sites (0-5) on the chromosomal arms. This number of sites is among the lowest observed in D. melanogaster and D. simulans when 1731 is compared with other retrotransposon families. In addition, we have observed species-specific patterns of the chromocentric hybridization signal, suggesting rapid modifications of the beta-heterochromatin components since the radiation of the melanogaster subgroup.   相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号