首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The chemolithoautotroph NT-26 oxidizes arsenite to arsenate by using a periplasmic arsenite oxidase. Purification and preliminary characterization of the enzyme revealed that it (i) contains two heterologous subunits, AroA (98 kDa) and AroB (14 kDa); (ii) has a native molecular mass of 219 kDa, suggesting an alpha2beta2 configuration; and (iii) contains two molybdenum and 9 or 10 iron atoms per alpha2beta2 unit. The genes that encode the enzyme have been cloned and sequenced. Sequence analyses revealed similarities to the arsenite oxidase of Alcaligenes faecalis, the putative arsenite oxidase of the beta-proteobacterium ULPAs1, and putative proteins of Aeropyrum pernix, Sulfolobus tokodaii, and Chloroflexus aurantiacus. Interestingly, the AroA subunit was found to be similar to the molybdenum-containing subunits of enzymes in the dimethyl sulfoxide reductase family, whereas the AroB subunit was found to be similar to the Rieske iron-sulfur proteins of cytochrome bc1 and b6f complexes. The NT-26 arsenite oxidase is probably exported to the periplasm via the Tat secretory pathway, with the AroB leader sequence used for export. Confirmation that NT-26 obtains energy from the oxidation of arsenite was obtained, as an aroA mutant was unable to grow chemolithoautotrophically with arsenite. This mutant could grow heterotrophically in the presence of arsenite; however, the arsenite was not oxidized to arsenate.  相似文献   

2.
Arsenite oxidation by the facultative chemolithoautotroph NT-26 involves a periplasmic arsenite oxidase. This enzyme is the first component of an electron transport chain which leads to reduction of oxygen to water and the generation of ATP. Involved in this pathway is a periplasmic c-type cytochrome that can act as an electron acceptor to the arsenite oxidase. We identified the gene that encodes this protein downstream of the arsenite oxidase genes (aroBA). This protein, a cytochrome c(552), is similar to a number of c-type cytochromes from the alpha-Proteobacteria and mitochondria. It was therefore not surprising that horse heart cytochrome c could also serve, in vitro, as an alternative electron acceptor for the arsenite oxidase. Purification and characterisation of the c(552) revealed the presence of a single heme per protein and that the heme redox potential is similar to that of mitochondrial c-type cytochromes. Expression studies revealed that synthesis of the cytochrome c gene was not dependent on arsenite as was found to be the case for expression of aroBA.  相似文献   

3.
PhoP-PhoQ是调控沙门菌毒力的重要双组分信号转导系统,由组氨酸蛋白激酶PhoQ和反应调节蛋白PhoP组成。PhoP-PhoQ可调节沙门菌对Mg2+及其他周质环境的适应性,并调控沙门菌感染中毒力基因的转录和表达。PhoP-PhoQ调控的毒力基因参与沙门菌对上皮细胞的侵袭、胞内生存、对抗菌肽的抵抗反应、脂质A的修饰、Ⅲ型分泌系统效应蛋白的分泌等环节。PhoP-PhoQ还可与其他双组分信号转导系统或调节子合作,调控沙门菌的毒力。因此,PhoP-PhoQ双组分信号转导系统在沙门菌的毒力调控中发挥重要作用。  相似文献   

4.
The ArcB/A two-component signal transduction system of Escherichia coli modulates the expression of numerous operons in response to redox conditions of growth. We demonstrate that the putative arcA and arcB genes of Mannheimia succiniciproducens MBEL55E, a capnophilic (CO2-loving) rumen bacterium, encode functional proteins that specify a two-component system. The Arc proteins of the two bacterial species sufficiently resemble each other that they can participate in heterologous transphosphorylation in vitro, and the arcA and arcB genes of M. succiniciproducens confer toluidine blue resistance to E. coli arcA and arcB mutants. However, neither the quinone analogs (ubiquinone 0 and menadione) nor the cytosolic effectors (d-lactate, acetate, and pyruvate) affect the net phosphorylation of M. succiniciproducens ArcB. Our results indicate that different types of signaling molecules and distinct modes of kinase regulation are used by the ArcB proteins of E. coli and M. succiniciproducens.  相似文献   

5.
6.
7.
8.
Virulence of the opportunistic pathogen Pseudomonas aeruginosa involves the coordinate expression of a wide range of virulence factors including type IV pili which are required for colonization of host tissues and are associated with a form of surface translocation termed twitching motility. Twitching motility in P. aeruginosa is controlled by a complex signal transduction pathway which shares many modules in common with chemosensory systems controlling flagella rotation in bacteria and which is composed, in part, of the previously described proteins PilG, PilH, PilI, PilJ and PilK. Here we describe another three components of this pathway: ChpA, ChpB and ChpC, as well as two downstream genes, ChpD and ChpE, which may also be involved. The central component of the pathway, ChpA, possesses nine potential sites of phosphorylation: six histidine-containing phosphotransfer (HPt) domains, two novel serine- and threonine-containing phosphotransfer (SPt, TPt) domains and a CheY-like receiver domain at its C-terminus, and as such represents one of the most complex signalling proteins yet described in nature. We show that the Chp chemosensory system controls twitching motility and type IV pili biogenesis through control of pili assembly and/or retraction as well as expression of the pilin subunit gene pilA. The Chp system is also required for full virulence in a mouse model of acute pneumonia.  相似文献   

9.
Evolution of two-component signal transduction   总被引:16,自引:0,他引:16  
Two-component signal transduction (TCST) systems are the principal means for coordinating responses to environmental changes in bacteria as well as some plants, fungi, protozoa, and archaea. These systems typically consist of a receptor histidine kinase, which reacts to an extracellular signal by phosphorylating a cytoplasmic response regulator, causing a change in cellular behavior. Although several model systems, including sporulation and chemotaxis, have been extensively studied, the evolutionary relationships between specific TCST systems are not well understood, and the ancestry of the signal transduction components is unclear. Phylogenetic trees of TCST components from 14 complete and 6 partial genomes, containing 183 histidine kinases and 220 response regulators, were constructed using distance methods. The trees showed extensive congruence in the positions of 11 recognizable phylogenetic clusters. Eukaryotic sequences were found almost exclusively in one cluster, which also showed the greatest extent of domain variability in its component proteins, and archaeal sequences mainly formed species-specific clusters. Three clusters in different parts of the kinase tree contained proteins with serine-phosphorylating activity. All kinases were found to be monophyletic with respect to other members of their superfamily, such as type II topoisomerases and Hsp90. Structural analysis further revealed significant similarity to the ATP-binding domain of eukaryotic protein kinases. TCST systems are of bacterial origin and radiated into archaea and eukaryotes by lateral gene transfer. Their components show extensive coevolution, suggesting that recombination has not been a major factor in their differentiation. Although histidine kinase activity is prevalent, serine kinases have evolved multiple times independently within this family, accompanied by a loss of the cognate response regulator(s). The structural and functional similarity between TCST kinases and eukaryotic protein kinases raises the possibility of a distant evolutionary relationship.  相似文献   

10.
11.
12.
Porphyromonas gingivalis, a periodontopathogen, is an oral anaerobic gram-negative bacterium with numerous fimbriae on the cell surface. Fimbriae have been considered to be an important virulence factor in this organism. We analyzed the genomic DNA of transposon-induced, fimbria-deficient mutants derived from ATCC 33277 and found that seven independent mutants had transposon insertions within the same restriction fragment. Cloning and sequencing of the disrupted region from one of the mutants revealed two adjacent open reading frames (ORFs) which seemed to encode a two-component signal transduction system. We also found that six of the mutants had insertions in a gene, fimS, a homologue of the genes encoding sensor kinase, and that the insertion in the remaining one disrupted the gene immediately downstream, fimR, a homologue of the response regulator genes in other bacteria. These findings suggest that this two-component regulatory system is involved in fimbriation of P. gingivalis.  相似文献   

13.
Arsenite oxidation by the facultative chemolithoautotroph NT-26 involves a periplasmic arsenite oxidase. This enzyme is the first component of an electron transport chain which leads to reduction of oxygen to water and the generation of ATP. Involved in this pathway is a periplasmic c-type cytochrome that can act as an electron acceptor to the arsenite oxidase. We identified the gene that encodes this protein downstream of the arsenite oxidase genes (aroBA). This protein, a cytochrome c552, is similar to a number of c-type cytochromes from the α-Proteobacteria and mitochondria. It was therefore not surprising that horse heart cytochrome c could also serve, in vitro, as an alternative electron acceptor for the arsenite oxidase. Purification and characterisation of the c552 revealed the presence of a single heme per protein and that the heme redox potential is similar to that of mitochondrial c-type cytochromes. Expression studies revealed that synthesis of the cytochrome c gene was not dependent on arsenite as was found to be the case for expression of aroBA.  相似文献   

14.
Species of the genus Streptomyces are major bacteria responsible for producing most natural antibiotics. Streptomyces coelicolor A3(2) and Streptomyces avermitilis were sequenced in 2002 and 2003, respectively. Two-component signal transduction systems (TCSs), consisting of a histidine sensor kinase (SK) and a cognate response regulator (RR), form the most common mechanism of transmembrane signal transduction in prokaryotes. TCSs in S. coelicolor A3(2) have been analyzed in detail. Here, we identify and classify the SK and RR of S. avermitilis and compare the TCSs with those of S. coelicolor A3(2) by computational approaches. Phylogenetic analysis of the cognate SK-RR pairs of the two species indicated that the cognate SK-RR pairs fall into four classes according to the distribution of their orthologs in other organisms. In addition to the cognate SK-RR pairs, some potential partners of non-cognate SK-RR were found, including those of unpaired SK and orphan RR and the cross-talk between different components in either strain. Our study provides new clues for further exploration of the molecular regulation mechanism of streptomycetes with industrial importance.  相似文献   

15.
16.
17.
Rewiring the specificity of two-component signal transduction systems   总被引:1,自引:0,他引:1  
Two-component signal transduction systems are the predominant means by which bacteria sense and respond to environmental stimuli. Bacteria often employ tens or hundreds of these paralogous signaling systems, comprised of histidine kinases (HKs) and their cognate response regulators (RRs). Faithful transmission of information through these signaling pathways and avoidance of detrimental crosstalk demand exquisite specificity of HK-RR interactions. To identify the determinants of two-component signaling specificity, we examined patterns of amino acid coevolution in large, multiple sequence alignments of cognate kinase-regulator pairs. Guided by these results, we demonstrate that a subset of the coevolving residues is sufficient, when mutated, to completely switch the substrate specificity of the kinase EnvZ. Our results shed light on the basis of molecular discrimination in two-component signaling pathways, provide a general approach for the rational rewiring of these pathways, and suggest that analyses of coevolution may facilitate the reprogramming of other signaling systems and protein-protein interactions.  相似文献   

18.
We took advantage of the vancomycin-dependent phenotype of Streptomyces coelicolor femX null mutants to isolate a collection of spontaneous, drug-independent femX suppressor mutants that expressed the vancomycin-resistance (van) genes constitutively. All of the suppressor mutations were in vanS but, unexpectedly, many were predicted to be loss-of-function mutations. Confirming this interpretation, a constructed vanS deletion mutation also resulted in constitutive expression of the van genes, suggesting that VanS negatively regulated VanR function in the absence of drug. In contrast, a vanS pta ackA triple mutant, which should not be able synthesize acetyl phosphate, failed to express the van genes, whereas a pta ackA double mutant showed wild-type, regulated induction of the van genes. These results suggest that in the absence of vancomycin, acetyl phosphate phosphorylates VanR, and VanS acts as a phosphatase to suppress the levels of VanR approximately P. On exposure to vancomycin, VanS activity switches from a phosphatase to a kinase and vancomycin resistance is induced. In S. coelicolor, the van genes are induced by both vancomycin and the glycopeptide A47934, whereas in Streptomyces toyocaensis (the A47934 producer) resistance is induced by A47934 but not by vancomycin. We exploited this distinction to replace the S. coelicolor vanRS genes with the vanRS genes from S. toyocaensis. The resulting strain acquired the inducer profile of S. toyocaensis, providing circumstantial evidence that the VanS effector ligand is the drug itself, and not an intermediate in cell wall biosynthesis that accumulates as result of drug action. Consistent with this suggestion, we found that non-glycopeptide inhibitors of the late steps in cell wall biosynthesis such as moenomycin A, bacitracin and ramoplanin were not inducers of the S. coelicolor VanRS system, in contrast to results obtained in enterococcal VanRS systems.  相似文献   

19.
20.

Background  

Burkholderia pseudomallei is a saprophyte in tropical environments and an opportunistic human pathogen. This versatility requires a sensing mechanism that allows the bacterium to respond rapidly to altered environmental conditions. We characterized a two-component signal transduction locus from B. pseudomallei 204, mrgR and mrgS, encoding products with extensive homology with response regulators and histidine protein kinases of Escherichia coli, Bordetella pertussis, and Vibrio cholerae.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号