首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Mos plays a crucial role in meiotic cell division in vertebrates. In Xenopus, Mos is involved in the initiation of oocyte maturation as an initiator and in the arrest at the metaphase II stage (MII) as a component of the cytostatic factor (CSF). The function of Mos is mediated by MAP kinase (MAPK). We investigated the function of the Mos/MAPK pathway during goldfish oocyte maturation induced by 17α,20β-dihydroxy-4-pregnen-3-one (17α,20β-DP), a natural maturation-inducing hormone in fishes. Mos was absent in immature goldfish oocytes. It appeared before the onset of germinal vesicle breakdown (GVBD), increased to a maximum in mature oocytes arrested at MII and disappeared after fertilization. MAPK was activated after Mos synthesis but before maturation-promoting factor (MPF) activation, and its activity reached maximum at MII. Injection of either Xenopus or goldfish c-mos mRNA into one blastomere of 2-cell-stage Xenopus and goldfish embryos induced metaphase arrest, suggesting that goldfish Mos has a CSF activity. Injection of constitutively active Xenopus c-mos mRNA into immature goldfish oocytes induced MAPK activation, but neither MPF activation nor GVBD occurred. Conversely, the injection of goldfish c-mos antisense RNA inhibited both Mos synthesis and MAPK activation in the 17α,20β-DP-treated oocytes, but these oocytes underwent GVBD. These results indicate that the Mos/MAPK pathway is not essential for initiating goldfish oocyte maturation despite its general function as a CSF. We discuss the general role of Mos/MAPK during oocyte maturation, with reference to the difference in contents of inactive MPF (pre-MPF) stored in immature oocytes. Received: 10 February 2000 / Accepted: 25 April 2000  相似文献   

2.
In Xenopus oocytes, metaphase II arrest is due to a cytostatic factor (CSF) that involves c-Mos, maintaining a high MPF (cdk1/cyclin B) activity in the cell. At fertilization, a rise in intracellular calcium triggers the proteolysis of both cyclin B and c-Mos. The kinase inhibitor 6-dimethylaminopurine (6-DMAP) is also able to release matured Xenopus oocytes from metaphase II block. This is characterized by c-Mos proteolysis without degradation of cyclin B. We hypothesized that 6-DMAP induced an increase in intracellular calcium. Using the calcium-sensitive fluorescent dye Fura-2, we observed a systematic increase in intracellular calcium following 6-DMAP application. In matured oocytes previously microinjected with the calcium chelator BAPTA, no calcium changes occurred after 6-DMAP addition; however, c-Mos was still proteolysed. In oocytes at the GVBD stage, c-Mos proteolysis occurred in response to 6-DMAP but not to calcium ionophore treatment. We suggest that c-Mos proteolysis is rather controlled by a phosphorylation-dependent process.  相似文献   

3.
The objective of the present study was to examine the activity changes in histone H1 kinase (also known as maturation-promoting factor [MPF]) and mitogen-activated protein kinase (MAPK) and their constituent proteins in in vitro-matured bovine oocytes after in vitro fertilization (IVF) or after parthenogenetic activation induced by calcium ionophore A23187 alone or by the ionophore followed by either 6-dimethylaminopurine (6-DMAP) or cycloheximide (CHX). Inactivation of both H1 kinase and MAPK occurred after both A23187+6-DMAP treatment and IVF; inactivation of H1 kinase preceded inactivation of MAPK. However, MAPK was inactivated much earlier in 6-DMAP-treated oocytes. Further analysis of constituent cell cycle proteins of these kinases by Western blot showed that A23187 alone could not induce changes in cdc2, cdc25, or ERK2 but induced reduction of cyclin B1. IVF and A23187+CHX induced similar changes: cyclin B1 was destroyed shortly after activation followed by accumulation of cyclin B1, phosphorylation of cdc2, and dephosphorylation of ERK2 at pronuclear formation 15 h after activation. No change in cdc25 was observed at this time. In contrast, A23187+6-DMAP treatment resulted in earlier phosphorylation of cdc2 and dephosphorylation of ERK2 at 4 h after treatment when the pronucleus formed. Moreover, accumulation of both cdc25 and cyclin B1 was detected at 15 h. Microinjection of ERK2 antibody into A23187-treated oocytes resulted in pronuclear formation. In conclusion, activation of bovine oocytes with 6-DMAP led to earlier inactivation of MAPK, while CHX induced inactivation of MAPK parallel to that following sperm-induced oocyte activation. Destruction of cyclin B is responsible for inactivation of MPF, while phosphorylation of cdc2 is likely responsible for maintaining its low activity. Inactivation of MAPK is closely associated with pronuclear development regardless of the activation protocol used.  相似文献   

4.
Xenopus oocytes are arrested at the G2/prophase boundary of meiosis I and enter meiosis in response to progesterone. A hallmark of meiosis is the absence of DNA replication between the successive cell division phases meiosis I (MI) and meiosis II (MII). After the MI-MII transition, Xenopus eggs are locked in metaphase II by the cytostatic factor (CSF) arrest to prevent parthenogenesis. Early Mitotic Inhibitor 1 (Emi1) maintains CSF arrest by inhibiting the ability of the Anaphase Promoting Complex (APC) to direct the destruction of cyclin B. To investigate whether Emi1 has an earlier role in meiosis, we injected Xenopus oocytes with neutralizing antibodies against Emi1 at G2/prophase and during the MI-MII transition. Progesterone-treated G2/prophase oocytes injected with anti-Emi1 antibody fail to activate Maturation Promoting Factor (MPF), a complex of cdc2/cyclin B, and the MAPK pathway, and do not undergo germinal vesicle breakdown (GVBD). Injection of purified ?90 cyclin B protein or blocking anti-Emi1 antibody with purified Emi1 protein rescues these meiotic processes in Emi1-neutralized oocytes. Acute inhibition of Emi1 in progesterone treated oocytes immediately after GVBD causes rapid loss of cdc2 activity with simultaneous loss of cyclin B levels and inactivation of the MAPK pathway. These oocytes decondense their chromosomes and enter a DNA replication phase instead of progressing to MII. Prior ablation of Cdc20, addition of methyl-ubiquitin, or addition of indestructible ?90 cyclin B rescues the MI-MII transition in Emi1 inhibited oocytes.  相似文献   

5.
One distinguishing feature of vertebrate oocyte meiosis is its discontinuity; oocytes are released from their prophase I arrest, usually by hormonal stimulation, only to again halt at metaphase II, where they await fertilization. The product of the c-mos proto-oncogene, Mos, is a key regulator of this maturation process. Mos is a serine-threonine kinase that activates and/or stabilizes maturation-promoting factor (MPF), the master cell cycle switch, through a pathway that involves the mitogen-activated protein kinase (MAPK) cascade. Oocytes arrested at prophase I lack detectable levels of Mos, which must be synthesized from a pool of maternal mRNAs for proper maturation. While Mos is necessary throughout maturation in Xenopus, it seems to be required only for meiosis II in the mouse. The translational activation of c-mos mRNA at specific times during meiosis requires cytoplasmic polyadenylation. Cis- and trans-acting factors for polyadenylation are, therefore, essential elements of maturation.  相似文献   

6.
Mitogen-activated protein kinase (MAP kinase) is a serine/threonine kinase whose enzymatic activity is thought to play a crucial role in mitogenic signal transduction and also in the progesterone-induced meiotic maturation of Xenopus oocytes. We have purified MAP kinase from Xenopus oocytes and have shown that the protein is present in metaphase ll oocytes under two different forms: an inactive 41-kD protein able to autoactivate and to autophosphorylate in vitro, and an active 42-kD kinase resolved into two tyrosine phosphorylated isoforms on 2D gels. During meiotic maturation, MAP kinase becomes tyrosine phosphorylated and activated following the activation of the M-phase promoting factor (MPF), a complex between the p34cdc2 kinase and cyclin B. In vivo, MAP kinase activity displays a different stability in metaphase l and in metaphase II: protein synthesis is required to maintain MAP kinase activity in metaphase I but not in metaphase II oocytes. Injection of either MPF or cyclin B into prophase oocytes promotes tyrosine phosphorylation of MAP kinase, indicating that its activation is a downstream event of MPF activation. In contrast, injection of okadaic acid, which induces in vivo MPF activation, promotes only a very weak tyrosine phosphorylation of MAP kinase, suggesting that effectors other than MPF are required for the MAP kinase activation. Moreover, in the absence of protein synthesis, cyclin B and MPF are unable to promote in vivo activation of MAP kinase, indicating that this activation requires the synthesis of new protein(s). © 1993 Wiley-Liss, Inc.  相似文献   

7.
Bogliolo L  Ledda S  Leoni G  Naitana S  Moor RM 《Cloning》2000,2(4):185-196
The maturation promoting factor (MPF) and mitogen-activated protein kinase (MAPK) are the key regulators of both meiotic and mitotic cell cycles. Knowledge of the dynamics of these two kinases during the transition from meiosis to mitosis would be of great importance for cloning by nuclear transfer. In this study, experiments were designed to assay the changes of MPF and MAP kinase activity of in vitro matured ovine oocytes after chemical activation and culture in 0 mM or 2 mM 6-dimethylaminopurine (6-DMAP) for 12 h. Moreover, to determine the biological significance of the fluctuations of MPF, activated oocytes were fused with GV-staged partners. The biochemical results showed that the high MPF activity of MII oocytes fell to basal level precipitously within the first hour after activation, started to increase at 6-8 h, rising to 80 +/- 4% of MII after 12 h. MAPK activity decreased to a low level 4 h after activation, increased between 6-12 h, but remained below 30 +/- 3.6% of MII values. The incubation with 6-DMAP had no effect on the kinetics of MPF and MAP kinase activity. Fusion of MII oocytes to GV partners induced rapid breakdown of the GV, whereas no breakdown occurred when GV were fused with eggs in the first hours post activation. Interestingly, the high biochemical levels of MPF activity at 8-12 h after activation were not able to induce GVBD in fusion partners.  相似文献   

8.
6-dimethylaminopurine (6-DMAP), a potent protein kinase inhibitor, drives most cells into an interphasic stage. Experiments were undertaken with oocytes from three marine invertebrate species, i.e., Mytilus edulis, Spisula solidissima, and Strongylocentrotus droebachiensis, wherein oocytes were arrested at different phases of meiosis. 6-DMAP induced a continuous DNA synthesis in meiotic cells, whereas it allowed a single round of DNA replication in treated mitotic cells, regardless of species considered. The effects of 6-DMAP were accompanied in all cases by rephosphorylation on tyrosine of the p34cdc2 homolog, the M-phase promoting factor (MPF) catalytic subunit. The fact that 6-DMAP overcomes the inhibitory control of replication during meiosis suggests that this process depends upon protein phosphorylation, while DNA synthesis regulation in mitotic cells relies on 6-DMAP-insensitive events. © 1996 Wiley-Liss, Inc.  相似文献   

9.
The aim of the present study was to investigate the implication of protein kinase C (PKC) in the mouse egg activation process. We used OAG (1-oleoyl-2-acetyl-sn-glycerol) as a PKC activator, calphostin C as a specific PKC inhibitor, and the calcium ionophore A23187 as a standard parthenogenetic agent. The exposure of zona-free eggs to 150 μM or 50 μM OAG for 10 min resulted in meiosis II completion in ∼80% of instances. By contrast, at a lower concentration (25 μM), the PKC stimulator was ineffective as parthenogenetic agent. Shortly after the application of 150 μM OAG, the cytosolic Ca2+ concentration ([Ca2+]i) increased transiently in all the eggs examined, whereas after the addition of 50 μM OAG, [Ca2+]i remained unchanged for at least 20 min. During this period, the activity of M-phase promoting factor (MPF) dramatically decreased and most of the eggs entered anaphase except when the PKC was inhibited by calphostin C. Similarly, MPF inactivation and meiosis resumption were prevented in calphostin C-loaded eggs following treatment with A23187, even though the ionophore-induced Ca2+ signalling was not affected. Taken together, our results indicate that stimulation of PKC is a sufficient and necessary event to induce meiosis resumption in mouse eggs and strongly suggest that, in this species, the mechanism by which a transient calcium burst triggers MPF inactivation involves a PKC-dependent pathway. Mol. Reprod. Dev. 48:292–299, 1997. © 1997 Wiley-Liss, Inc.  相似文献   

10.
Nitric oxide (NO) is identified as a signaling molecule involved in many cellular or physiological functions including meiotic maturation and parthenogenetic activation of mammalian oocytes. We observed that nitric oxide donor SNAP was potent to induce parthenogenetic activation in Xenopus eggs. NO-scavenger CPTIO impaired the effects of SNAP, providing evidence for the effects of the latter to be specific upon NO release. In Xenopus eggs, SNAP treatment induced pigment rearrangement, pronucleus formation and exocytosis of cortical granules. At a biochemical level, SNAP exposure lead to MAPK and Rsk inactivation within 30 minutes whereas MPF remained active, in contrast to calcium ionophore control where MPF activity dropped rapidly. MAPK inactivation could be correlated to pronuclear envelope reformation observed. In SNAP-treated eggs, a strong increase in intracellular calcium level was observed. NO effects were impaired in calcium-free or calcium limited medium, suggesting that that parthenogenetic activation of Xenopus oocytes with a NO donor was mainly calcium-dependent.  相似文献   

11.
In vertebrates, unfertilized eggs are arrested at meiotic metaphase II (meta-II) by cytostatic factor (CSF), with Cdc2 activity maintained at a constant, high level. CSF is thought to suppress cyclin B degradation through the inhibition of the anaphase-promoting complex/cyclosome (APC/C)-Cdc20 while cyclin B synthesis continues in unfertilized eggs. Thus, it is a mystery how Cdc2 activity is kept constant during CSF arrest. Here, we show that the APC/C-Cdc20 can mediate cyclin B degradation in CSF-arrested Xenopus eggs and extracts, in such a way that when Cdc2 activity is elevated beyond a critical level, APC/C-Cdc20-dependent cyclin B degradation is activated and Cdc2 activity consequently declines to the critical level. This feedback control of Cdc2 activity is shown to be required for keeping Cdc2 activity constant during meta-II arrest. We have also shown that Mos/MAPK pathway is essential for preventing the cyclin B degradation from inactivating Cdc2 below the critical level required to sustain meta-II arrest. Our results indicate that under CSF arrest, Mos/MAPK activity suppresses cyclin B degradation, preventing Cdc2 activity from falling below normal meta-II levels, whereas activation of APC/C-Cdc20-mediated cyclin B degradation at elevated levels of Cdc2 activity prevents Cdc2 activity from reaching excessively high levels.  相似文献   

12.
Unfertilized eggs of the newt, Cynops pyrrhogaster, are arrested at the second meiotic metaphase, with activity of the M‐phase promoting factor (MPF) maintained at a high level. After fertilization, the eggs resume the cell cycle, and emit the second polar body. When the change in [Ca2+]i in the fertilized eggs was monitored by aequorin, an early increase in [Ca2+]i was observed 5–10 min after insemination and continued for about 30 sec. A late increase in [Ca2+]i then occurred 10–15 min after fertilization and continued for 30–40 min. The injection of 1,2‐Bis (2 aminophenoxy) ethane‐N,N,N′,N′,‐tetraacetic acid (BAPTA) into unfertilized eggs inhibited reinitiation of the cell cycle after fertilization. Western blot analysis with antibodies against cyclin B1 or Mos indicated that both cyclin B1 and Mos were present in unfertilized eggs, but both disappeared within 30 min after fertilization. Treatment with Ca2+‐ionophore decreased both cyclin B1 and Mos. Chymotryptic activity in Cynops egg extracts was not significantly increased after fertilization or activation by treatment with the Ca2+‐ionophore. No change in [Ca2+]i was observed following treatment with cycloheximide, but the amount of both cyclin B1 and Mos rapidly decreased. These results indicate that resumption of meiosis in Cynops eggs is induced by an increase in [Ca2+]i at fertilization, which causes degradation of both cyclin B1 and Mos by inhibition of de novo synthesis of those proteins. Mol. Reprod. Dev. 53:341–349, 1999. © 1999 Wiley‐Liss, Inc.  相似文献   

13.
Summary The aim of the present study was to determine oocyte activation and change in M-phase promoting factor (MPF) activity induced by treatment with calcium ionophore and roscovitine in comparison with those induced by treatment with roscovitine alone and treatment with calcium ionophore and puromycin in mice. Freshly ovulated oocytes obtained from 6-8-week-old mice were divided into five groups (no activation treatment; 5 μM calcium ionophore A23187; 50 μM roscovitine; 5 μM calcium ionophore and 10 μg/ml puromycin; and 5 μM calcium ionophore and 50 μM roscovitine) and were incubated for 6 h. Oocyte activation, assessed by morphological changes, and changes in MPF activity in the five groups at 0, 2, 4 and 6 h of incubation were examined. Activated oocytes were defined as oocytes with at least one pronucleus. Oocytes treated with roscovitine alone were not activated during the 6-h incubation period. All of the oocytes in the calcium ionophore with puromycin group and in the calcium ionophore with roscovitine group were activated. The percentage activity of MPF in oocytes treated with roscovitine alone was decreased after 2 h and increased after 4 h of incubation. The percentage activity of MPF in oocytes treated with calcium ionophore and roscovitine was significantly decreased with suppression of MPF activity being maintained for 6 h, and this change was similar to that in oocytes treated with calcium ionophore and puromycin. Roscovitine with calcium ionophore is effective for induction of oocyte activation through suppression of MPF activity in mice.  相似文献   

14.
Mammalian eggs are arrested in metaphase II of meiosis until fertilization. Arrest is maintained by cytostatic factor (CSF) activity, which is dependent on the MOS-MEK-MAPK pathway. Inhibition of MEK1/2 with a specific inhibitor, U0126, parthenogenetically activated mouse eggs, producing phenotypes similar to Mos(-/-) parthenogenotes (premature, unequal cleavages and large polar bodies). U0126 inactivated MAPK in eggs within 1 h, in contrast to the 5 h required after fertilization, while the time course of MPF inactivation was similar in U0126-activated and fertilized eggs. We also found that inactivation of MPF by the cdc2 kinase inhibitor roscovitine induced parthenogenetic activation. Inactivation of MPF by roscovitine resulted in the subsequent inactivation of MAPK with a time course similar to that following fertilization. Notably, roscovitine also produced some Mos(-/-)-like phenotypes, indistinguishable from U0126 parthenogenotes. Simultaneous inhibition of both MPF and MAPK in eggs treated with roscovitine and U0126 produced a very high proportion of eggs with the more severe phenotype. These findings confirm that MEK is a required component of CSF in mammalian eggs and imply that the sequential inactivation of MPF followed by MAPK inactivation is required for normal spindle function and polar body emission.  相似文献   

15.
Cell-free extracts of Xenopus eggs cause cyclic change in permeabilized sperm nucleus, nuclear envelope breakdown, chromosome condensation, and reformation of nuclei. In this study, the ability of cell-free extracts to cause similar changes in zebrafish sperm was examined. When lysolecithin-treated sperm from zebrafish were incubated in Xenopus egg extracts, a series of changes in sperm nuclear morphology were observed periodically. These changes correlated with maturation-promoting factor (MPF) activity. Furthermore, sperm nuclei of zebrafish replicated DNA during reconstitution in Xenopus egg extracts. These results showed that cell-free extracts of Xenopus egg possess the ability to cause cell-cycle-dependent changes in zebrafish sperm, implying the possibility of generating transgenic zebrafish in a similar way to transgenic Xenopus. Received October 21, 1999; accepted July 18, 2000.  相似文献   

16.
Summary

We present the results of a variety of studies showing that activation of protein kinase C (PKC) in oocytes of Chaetopterus pergamentaceus results in germinal vesicle breakdown (GVBD). Phorbol esters and diacylglycerol can initiate a morphologically normal GVBD accompanied by a spectrum of associated biochemical processes, including increased protein phosphorylation, a shift in protein synthesis and activation of a protein kinase, maturation promoting factor (MPF). MPF activation is essential for GVBD in response to phorbol esters. In addition, inhibitors of PKC can block naturally-induced GVBD. We also present evidence that PKC can phosphorylate p34cde2, the catalytic subunit of MPF and that phosphorylation by PKC increases the histone H1 kinase activity of immunoprecipitated MPF. Immunoblot studies show that Chaetopterus oocyte p34cdc2 is not tyrosine phosphorylated prior to the initiation of GVBD, indicating that activation of MPF at GVBD in this species does not require p80cdc25, the activator of MPF at mitosis. These results suggest that PKC is an essential regulator of GVBD which can directly phosphorylate and regulate p34cdc2. Since PKC is the intracellular receptor for and is directly activated by tumor-promoters, tumor promotion might involve acceleration of the cell cycle through modification of the enzymatic activity of MPF by PKC.  相似文献   

17.
This study determined the effects of postactivation treatment with demecolcine and/or 6-dimethylaminopurine (6-DMAP) on in vivo and in vitro developmental competence of somatic cell nuclear transfer (SCNT) embryos in pigs. SCNT embryos were treated for 4 hours with 0.4?µg/mL demecolcine, 2?mM 6-DMAP, or both after electric activation, then transferred to surrogate pigs or cultured for 7 days. The formation rate of SCNT embryos with a single pronucleus was higher in combined treatment with demecolcine and 6-DMAP (95.2%) than treatment with demecolcine alone (87.1%). Blastocyst formation of SCNT embryos was significantly increased in combined treatment with demecolcine and 6-DMAP (48.7%) compared with demecolcine (22.2%) or 6-DMAP alone (37.3%). Fluctuation of maturation promoting factor activity showed different patterns among various postactivation treatments. Pregnancy was established in 1 of 5 surrogates after transfer of SCNT embryos that were treated with demecolcine and 6-DMAP. The pregnant surrogate delivered one healthy live piglet. The results of our study demonstrated that postactivation treatment with demecolcine and 6-DMAP together improved preimplantation development and supported normal in vivo development of SCNT pig embryos, probably influencing MPF activity and nuclear remodeling, including induction of single pronucleus formation after electric activation.  相似文献   

18.
The effect of the protein kinase inhibitor, 6-dimethylaminopurine (6-DMAP), on the maturation promoting factor (MPF) activity, pronuclear formation, and parthenogenetic development of electrically activated in vitro matured (IVM) porcine oocytes was investigated. Oocytes were activated by exposure to two DC pulses, each of 1.5 kV/cm field strength and 60 microsec duration, applied 1 sec apart. In the first experiment, subsequent incubation with 2 or 5 mM 6-DMAP for 3 hr increased the incidence of blastocyst formation compared with no treatment, whereas incubation with 2 or 5 mM 6-DMAP for 5 hr did not. In the proceeding experiments, oocytes exposed to 6-DMAP were incubated with 2 mM of the reagent for 3 hr. Assaying histone H1 kinase activity in the second experiment revealed that the levels of active MPF in electrically activated oocytes treated with 6-DMAP were depleted more rapidly and remained depleted for longer compared with electrical activation alone. The kinetics of MPF activity following 6-DMAP treatment were similar to that found in inseminated oocytes in the third experiment. The effect of 6-DMAP was correlated with an increased incidence of parthenogenetic blastocyst formation. A fourth experiment was undertaken to examine the diploidizing effect of 6-DMAP. Electrically activated oocytes treated with 6-DMAP and cytochalasin B, either alone or in combination, displayed a higher incidence of second polar body retention compared with those that were untreated or treated with cycloheximide alone. After 6 days of culture in vitro, parthenotes exposed to 6-DMAP, either alone or in combination with cytochalasin B, formed blastocysts at a greater rate compared with those exposed to cytochalasin B alone, cycloheximide alone or no treatment. The combined 6-DMAP and cytochalasin B treatment induced the highest rate of blastocyst formation (47%), but the numbers of trophectoderm and total cells in these blastocysts were lower compared with those obtained following exposure to 6-DMAP alone. These results suggest that the increased developmental potential of 6-DMAP-treated parthenotes may be attributable to the MPF-inactivating effect of 6-DMAP, rather than the diploidizing effect of 6-DMAP.  相似文献   

19.
Using the monoclonal antibody (MoAb) Xa5B6 as probe, the authors examined the mechanisms of cytoplasmic rearrangement occurring during maturation of theXenopus oocyte. The antigen molecules recognized by the MoAb are arranged in radial striations of the oocyte cytoplasm. The radial striations were disorganized in vitro by progesterone treatment, and the antigen molecules were uniformly distributed, predominantly in the animal hemisphere. Even when the germinal vesicle was mechanically removed or when germinal vesicle breakdown was suppressed in a K+-free medium, progesterone induced a disorganization of the radial striations. This progesterone-induced disorganization was inhibited by the protein synthesis inhibitor cycloheximide. When full-sized oocytes were treated with cytochalasin B, the radial striations were also disorganized, but the antigen molecules did not disperse into the large mass. Colchicine treatment had little effect. Antigen molecules were no longer arranged in radial striations and were completely dispersed when the oocyte was simultaneously treated with both drugs. These results indicate that the two compartments in the oocyte cytoplasm, the yolk-free cytoplasm and yolk column, are organized by different types of cytoskeletal system. It is also suggested that the maturation-promoting factor (MPF) activated during progesterone-induced maturation disrupts these cytoskeletal systems and disorganizes the radial striations. Correspondence to: A.S. Suzuki  相似文献   

20.
Xenopus laevis eggs pricked or microinjected with water or saline in medium containing a limited quantity of free Ca (1.0 to 2.0 microM) remain unactivated for at least 6 hr, even after transfer to oocyte medium containing Ca at higher concentrations (0.5-1.0 mM). These injected eggs, when later pricked in oocyte medium or exposed to A23187 or urethane are fully capable of activation. This confirms the observations of Wangh ('89). However, eggs injected in this Ca-limited medium (CaLM) with 6-DMAP as well as those simply exposed to this drug undergo changes characteristic of activation, including cortical contraction, cortical granule breakdown, a loss of MPF and CSF activities, and pronuclear formation. The time required for 6-DMAP to induce egg activation is inversely correlated to its concentration. Interestingly, eggs that have been injected with EGTA, and thus are unable to respond to activation stimuli such as pricking and A23187 or urethane treatment, can also be activated by exposure to 6-DMAP. In contrast, eggs exposed to or injected with a 6-DMAP analogue (6-aminopurine or puromycin) or a protein synthesis inhibitor (cycloheximide or emetine or puromycin) are not activated. As well, eggs injected in CaLM with 6-DMAP simultaneously with a phosphatase inhibitor (NaF or ammonium molybdate) fail to become activated. Although 6-DMAP-activated eggs remain at the pronucleus stage so long as 6-DMAP is present, they resume cell cycle activities after the drug is withdrawn. They form cleavage furrows, disassemble pronuclear envelopes, and recondense chromosomes. Also, MPF activity reappears and cycles at least twice, peaking each time shortly before cleavage furrow formation. These results suggest that activation of Xenopus eggs arrested at metaphase II by inhibition of protein phosphorylation does not require intracellular Ca release and that maintenance of the egg at metaphase II depends upon continuous protein phosphorylation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号