首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The structural change of the nitrite reductase in the one-electron reduction at the copper center has been studied using the EXAFS technique. In the one electron reduction, the Cu(cystein) distance is elongated by about 0.1 Å, and CuN(imidazole) distance are slightly changed.  相似文献   

2.
M Ronk  J E Shively  E A Shute  R C Blake 《Biochemistry》1991,30(39):9435-9442
Rusticyanin is a small blue copper protein isolated from Thiobacillus ferrooxidans. The amino acid sequence of the rusticyanin has been determined by the structural characterization of tryptic and endoproteinase Asp-N peptides with use of amino terminal microsequencing, fast atom bombardment mass spectrometry, and electrospray triple-quadrupole mass spectrometry techniques. Amino acid analysis, carboxy-terminal sequence analysis, and circular dichroism spectroscopy were also performed on the protein. Amino acid sequence identity among rusticyanin and six other small blue copper proteins is apparent only in the limited C-terminal region of each protein bearing three of the four putative copper ligands. A structural model of the rusticyanin is proposed where the protein is principally a beta-barrel comprised of six strands. This model is consistent with the circular dichroism data and computational predictions of the secondary structure of rusticyanin. A feature of the model is the hypothesis that Asp 73 may serve as a fourth copper ligand.  相似文献   

3.
The EXAFS of the K-edge of copper in azurin from Pseudomonas aeruginosa has been measured in solutions of the oxidized and reduced protein, at both low and high pH. Model compounds of known molecular structure, exhibiting Cu-N and Cu-S bonds of varying length, were studied as well. The major shell of the high-pH oxidized azurin EXAFS contains contributions of two N(His) at 1.95 +/- 0.03 A, and one S(Cys) at 2.23 +/- 0.03 A. Some minor contributions from the carbon atoms of the histidine residues and the distal sulfur atom are observed in the 3-4 A region. Upon reduction a decrease is seen in amplitude of the main peak in the Fourier transform, due to a lengthening of one of the Cu-N(His) bonds (2.05 +/- 0.03 A), and a shortening of the other (1.89 +/- 0.03 A), both by approx. 0.1 A. Indications for a Cu-S(Met) bond are found in the reduced azurin data (2.70 +/- 0.05 A). However, in the oxidized protein, this bond could not be determined unambiguously, in line with results of a model compound featuring weak Cu-thioether coordination. The effect of pH is only slight for both the oxidized and the reduced protein, and no significant changes in bond lengths are found upon a change of pH from 4.1 to 9.1. The relevance of these findings for the interpretation of the existing data on the redox activity of the protein is discussed.  相似文献   

4.
Summary X-ray absorption spectroscopy has been applied to the in vivo examination of copper-resistant yeast cells. The in vivo structure of the metal-binding site of the accumulated copper has been compared to that of the purified yeast thionein. Analysis of the EXAFS spectra performed on intact yeast cells indicates that the accumulated copper is univalent and is exclusively coordinated to sulfur atoms at a distance of 219 pin with an average coordination number of 2. In contrast, the purified protein indicates a univalent copper trigonally coordinated to sulfur at a distance of 221 pm. These discrepancies are discussed in terms of copper location in the resistant yeast cells.  相似文献   

5.
6.
Rusticyanin is a small blue copper protein isolated from Acidithiobacillus ferrooxidans with extreme acid stability and redox potential. The protein is thought to be a principal component in the iron respiratory electron transport chain in this microorganism, but its exact role in electron transfer remains controversial. The gene of rusticyanin was cloned then overexpressed in Escherichia coli, the soluble protein was purified by one-step affinity chromatography to apparent homogeneity. It was reported that Cys138, His85 and His143 were important residues for copper binding, but the significance of Cys138 was not verified so far. We constructed the mutant expression plasmids of these three residues using site-directed mutagenesis. Mutant proteins were expressed in E. coli and purified with a nickel metal affinity column. The EPR and atomic absorption spectroscopy results confirmed that Cys138 was crucial for copper binding. Removal of the sulfhydryl group of Cys138 resulted in copper loss. Mutations of His85 and His143 showed little effect on copper binding.  相似文献   

7.
CueO, a multicopper oxidase, is part of the copper-regulatory cue operon in Escherichia coli, is expressed under conditions of copper stress and shows enhanced oxidase activity when additional copper is present. The 1.7-A resolution structure of a crystal soaked in CuCl2 reveals a Cu(II) ion bound to the protein 7.5 A from the T1 copper site in a region rich in methionine residues. The trigonal bipyramidal coordination sphere is unusual, containing two methionine sulfur atoms, two aspartate carboxylate oxygen atoms, and a water molecule. Asp-439 both ligates the labile copper and hydrogen-bonds to His-443, which ligates the T1 copper. This arrangement may mediate electron transfer from substrates to the T1 copper. Mutation of residues bound to the labile copper results in loss of oxidase activity and of copper tolerance, confirming a regulatory role for this site. The methionine-rich portion of the protein, which is similar to that of other proteins involved in copper homeostasis, does not display additional copper binding. The type 3 copper atoms of the trinuclear cluster in the structure are bridged by a chloride ion that completes a square planar coordination sphere for the T2 copper atom but does not affect oxidase activity.  相似文献   

8.
The metal content of bovine NADH-Q oxidoreductase determined by inductively-coupled plasma atomic-emission spectroscopy reveals the presence of about one atom of zinc per molecule of flavin mononucleotide. We applied Zn K-edge extended X-ray absorption fine structure spectroscopy (EXAFS) to investigate the local structure of the bound zinc ion and to identify the nature of the coordinating residues. The EXAFS spectrum is consistent with a structured zinc binding site. By combining information from first-shell analysis and from metalloprotein data bases putative binding clusters have been built and fitted to the experimental spectrum using ab initio simulations. The best fitting binding cluster is formed by two histidine and two cysteine residues arranged in a tetrahedral geometry.  相似文献   

9.
Rusticyanin from the extremophile Thiobacillus ferrooxidans is a blue copper protein with unusually high redox potential and acid stability. We present the crystal structures of native rusticyanin and of its Cu site mutant His143Met at 1.27 and 1.10 A, respectively. The very high resolution of these structures allows a direct comparison with EXAFS data and with quantum chemical models of the oxidized and reduced forms of the proteins, based upon both isolated and embedded clusters and density functional theory (DFT) methods. We further predict the structure of the Cu(II) form of the His143Met mutant which has been experimentally inaccessible due to its very high redox potential. We also present metrical EXAFS data and quantum chemical calculations for the oxidized and reduced states of the Met148Gln mutant, this protein having the lowest redox potential of all currently characterized mutants of rusticyanin. These data offer new insights into the structural factors which affect the redox potential in this important class of proteins. Calculations successfully predict the structure and the order of redox potentials for the three proteins. The calculated redox potential of H143M ( approximately 400 mV greater than native rusticyanin) is consistent with the failure of readily available chemical oxidants to restore a Cu(II) species of this mutant. The structural and energetic effects of mutating the equatorial cysteine to serine, yet to be studied experimentally, are predicted to be considerable by our calculations.  相似文献   

10.
The room temperature Cu K-edge EXAFS (extended X-ray absorption fine structure) spectrum of reduced and oxidized amicyanin, the blue copper protein from Thiobacillus versutus, was measured at low and high pH. The data interpretation was partly based on independent NMR evidence for the occurrence of a ligand histidine protonation at low pH (pKa = 6.9) in the reduced protein. In the oxidized protein two nitrogen-donors (from two histidines; Cu-N distances 1.95-2.01 A and 1.86-1.89 A) and a sulfur-donor (from a cysteine; Cu-S distance 2.11-2.13 A) were identified and the coordination appears independent of pH. Upon reduction at high pH the Cu-S bond and one of the Cu-N bonds lengthen slightly (from 2.11 to 2.19 A and from 2.01 to 2.18 A, respectively). Upon lowering of the pH one of the N-donors of the Cu in reduced amicyanin disappears from the Cu EXAFS and a second S-donor (from a methionine) becomes visible at 2.41 A from the Cu. The Debye-Waller factors are compatible with a Cu-N vibrational stretch frequency in the range of 150-250 cm-1 and one greater than 285 cm-1, and a Cu-S vibrational stretch frequency of about 150 cm-1 (Cu-Smet; reduced amicyanin at low pH) and one in the range of 230-800 cm-1 (Cu-Scys).  相似文献   

11.
We have reexamined the Ni EXAFS of oxidized, inactive (as-isolated) and H(2) reduced Desulfovibrio gigas hydrogenase. Better spatial resolution was achieved by analyzing the data over a 50% wider k-range than was previously available. A lower k(min) was obtained using the FEFF code for phase shifts and amplitudes. A higher k(max) was obtained by removing an interfering Cu signal from the raw spectra using multiple energy fluorescence detection. The larger k-range allowed us to better resolve the Ni-S bond lengths and to define more accurately the Ni-O and Ni-Fe bond lengths. We find that as-isolated, hydrogenase has two Ni-S bonds at approximately 2.2 A, but also 1-2 Ni-S bonds in the 2.35+/-0.05 A range. A Ni-O interaction is evident at 1.91 A. The as-isolated Ni-Fe distance cannot be unambiguously determined. Upon H(2) reduction, two short Ni-S bonds persist at approximately 2.2 A, but the remaining Ni-S bonds lengthen to 2.47+/-0.05 A. Good simulations are obtained with a Ni-Fe distance at 2.52 A, in agreement with crystal structures of the reduced enzyme. Although not evident in the crystal structures, an improvement in the fit is obtained by inclusion of one Ni-O interaction at 2.03 A. Implications of these distances for the spin-state of H(2) reduced H(2)ase are discussed.  相似文献   

12.
Jiménez B  Piccioli M  Moratal JM  Donaire A 《Biochemistry》2003,42(35):10396-10405
Local dynamics and solute-solvent exchange properties of rusticyanin (Rc) from Thiobacillus ferrooxidans have been studied by applying heteronuclear ((1)H, (15)N) NMR spectroscopy. (15)N relaxation parameters have been determined for the reduced protein, and a model-free analysis has been applied. The high average value of the generalized order parameter, S(2) (0.93), indicates that Rc is very rigid. The analysis of cross correlation rates recorded in both the reduced and the oxidized forms conclusively proves that Rc possesses the same dynamic features in both oxidation states. The accessibility of backbone amide protons to the solvent at different time scales has also been studied by applying specific heteronuclear pulse sequences and by H(2)O/D(2)O exchange experiments. These experiments reveal that rusticyanin is extremely hydrophobic. The first N-35 amino acids, not present in the other BCPs, protect the beta-barrel core from its interaction with the solvent, and thus, this is one of the main factors contributing to the hydrophobicity. Both characteristics (high rigidity and hydrophobicity) are maintained in the metal ion surroundings.  相似文献   

13.
Aqueous solutions of copper-proteins containing type-3 centres (ceruloplasmin, tyrosinase, haemocyanin), excited within their absorption bands at 325-345 nm, show typical luminescence spectra. The emission bands peak at 415-445 nm and their decay time is no longer than 10 ns. A strong analogous fluorescence is obtained also by excitation of concentrated solutions of carboxylic acids and amino acids, which show again absorption bands around 330 nm. Such a fluorescence, although less intense, is also observed in copper(II) carboxylate solutions. In contrast, no fluorescence has been recorded in solutions of acetic anhydride and of polypeptides (valinomycin, gramicidin D), which do not have free carboxyl groups. We tentatively attribute this novel fluorescence in the investigated copper proteins to interactions between carboxyl groups of amino acids at, or near, the active site.  相似文献   

14.
We have studied the removal of the type-2 copper from tree laccase (Rhus vernicifera) by treatment with EDTA at pH 5.2 in the presence of a redox buffer containing ferri- and ferrocyanide. The efficiency with which the copper is removed depends on the Fe(CN) 6(4-)/Fe(CN) 6(3-) ratio. We have varied this ratio from approx. 2:1 to about 50:1 and the best results were obtained with the highest ratio, i.e., the most cathodic solution potential. Nevertheless, the presence of Fe(CN) 6(3-) is required for the procedure to be effective. Although we cannot exclude the possibility that a mixed-valence form of laccase is the reactive species, we believe the results are better explained by a model which assumes that the removal of the type-2 copper depends upon an ordered sequence of oxidation-reduction reactions. Specifically, we propose that the copper is released as the monovalent ion from previously reduced laccase and then reoxidized in solution and sequestered with EDTA. The reoxidation step drives the reaction because recombination with the protein is inhibited when copper is in the divalent form. In testing this model, we have also shown that the type-2 copper can be removed under strictly reducing conditions when 4,4'-dicarboxy-2,2'-biquinoline (BCA) is present to complex the copper(I) ion. Although the BCA method is effective, the reaction takes longer, perhaps because of the limited solubility of BCA at the pH values of interest. Finally, we have found that the best results are obtained with either method when a cyanometalate ion such as Fe(CN) 6(3-) or Co(CN) 6(3-) is present in the medium. The exact role of this factor has yet to be established, but there is no indication that free cyanide has a role in the process. The most likely interpretation is that some type of binding interaction with the protein facilitates copper release.  相似文献   

15.
Reactions of NaSCPh3 with (R3tacn)Cu(OTf)2 (R is Me, iPr; tacn is 1,4,7-triazacyclononane; OTf is CF3SO3 ) yield blue complexes identified as ((R3tacn)CuSCPh3)(OTf) on the basis of UV–vis, resonance Raman, and electron paramagnetic resonance (EPR) spectroscopy and electrospray ionization mass spectrometry. These complexes exhibit spectroscopic properties typical of type 1 copper sites in proteins, including diagnostic Sπ → Cu(dx2 - y2 ) (d_{{x^{2} - y^{2} }} ) ligand-to-metal charge transfer transitions at approximately 610–630 nm and small A || values in EPR spectra of less than 100 × 10−4 cm−1. Cyclic voltammetry experiments revealed redox potentials for the complexes similar to those of several low-potential type 1 copper proteins (e.g., azurin, stellacyanin) and approximately 0.5 V higher than those of previously reported model compounds. Thus, the new complexes mimic key aspects of both the structure and the function of type 1 copper sites.  相似文献   

16.
Variants of the copper-containing nitrite reductase (NiR) of Alcaligenes faecalis S6 were constructed by site-directed mutagenesis, by which the C-terminal histidine ligand (His145) of the Cu in the type-1 site was replaced by an alanine or a glycine. The type-1 sites in the NiR variants as isolated, are in the reduced form, but can be oxidized in the presence of external ligands, like (substituted) imidazoles and chloride. The reduction potential of the type-1 site of NiR-H145A reconstituted with imidazole amounts to 505 mV vs NHE (20 degrees C, pH 7, 10 mM imidazole), while for the native type-1 site it amounts to 260 mV. XRD data on crystals of the reduced and oxidized NiR-H145A variant show that in the reduced type-1 site the metal is 3-coordinated, but in the oxidized form takes up a ligand from the solution. With the fourth (exogenous) ligand in place the type-1 site is able to accept electrons at about the same rate as the wt NiR, but it is unable to pass the electron onto the type-2 site, leading to loss of enzymatic activity. It is argued that the uptake of an electron by the mutated type-1 site is accompanied by a loss of the exogenous ligand and a concomitant rise of the redox potential. This rise effectively traps the electron in the type-1 site.  相似文献   

17.
Nucleic acid quadruplexes are composed of guanine quartets stabilized by specific metal ions. X-ray diffraction can provide high-resolution information on the structure and metal binding properties of quadruplexes, but only if they can be crystallized. NMR can provide detailed information on the solution structure of such quadruplexes but little quantitative data concerning the metal binding site. Here we apply extended X-ray absorption fine structure (EXAFS) measurements to characterize the metal ion binding site, in frozen solution, of the unimolecular quadruplex formed by the thrombin binding aptamer, d(G(2)T(2)G(2)TGTG(2)T(2)G(2)) (TBA), in the presence of Pb(2+) ions. The Pb L(III) -edge X-ray absorption spectrum of this metal-DNA complex is very similar to that we obtain for a Pb(2+)-stabilized quartet system of known structure constructed from a modified guanine nucleoside (G1). The Fourier transforms of the Pb(2+) complexes with both TBA and G1 show a first-shell interaction at about 2.6 A, and a weaker, broader shell at 3.5-4.0 A. Quantitative analysis of the EXAFS data reveals the following: (i) very close agreement between interatomic distances at the metal coordination site for the Pb(2+)-G1 complex determined by EXAFS and by X-ray crystallography; (ii) similarly close agreement between interatomic distances measured by EXAFS for the Pb(2+)-G1 and Pb(2+)-TBA complexes. These results provide strong evidence for binding of the Pb(2+) ion in the region between the two quartets in the Pb(2+)-TBA complex, coordinated to the eight surrounding guanine O6 atoms. The specific binding of Pb(2+) to DNA examined here may be relevant to the genotoxic effects of this environmentally important heavy metal. Furthermore, these results demonstrate the utility of EXAFS as a method for quantitative characterization of specific metal binding sites in nucleic acids in solution.  相似文献   

18.
X-ray crystallographic studies of the intradiol cleaving protocatechuate 3,4-dioxygenase from Pseudomonas aeruginosa have shown that the enzyme has a trigonal bipyramidal ferric active site with two histidines, two tyrosines, and a solvent molecule as ligands [Ohlendorf, D.H., Lipscomb, J.D., & Weber, P.C. (1988) Nature 336, 403-405]. Fe K-edge EXAFS studies of the spectroscopically similar protocatechuate 3,4-dioxygenase from Brevibacterium fuscum are consistent with a pentacoordinate geometry of the iron active site with 3 O/N ligands at 1.90 A and 2 O/N ligands at 2.08 A. The 2.08-A bonds are assigned to the two histidines, while the 1.90-A bonds are associated with the two tyrosines and the coordinated solvent. The short Fe-O distance for the solvent suggests that it coordinates as hydroxide rather than water. When the inhibitor terephthalate is bound to the enzyme, the XANES data indicate that the ferric site becomes 6-coordinate and the EXAFS data show a beat pattern which can only be simulated with an additional Fe-O/N interaction at 2.46 A. Together, the data suggest that the oxygens of the carboxylate group in terephthalate displace the hydroxide and chelate to the ferric site but in an asymmetric fashion. In contrast, protocatechuate 3,4-dioxygenase remains 5-coordinate upon the addition of the slow substrate homoprotocatechuic acid (HPCA). Previous EPR data have indicated that HPCA forms an iron chelate via the two hydroxyl functions.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

19.
The local structure of the iron site in ferric superoxide dismutase from P. shermanii was analyzed by X-ray absorption spectroscopy. The metal-ligand cluster of the enzyme is found to be similar to the crystallographically investigated ferric superoxide dismutase from E. coli. At pH 6.4 the enzyme is five-fold coordinated with three histidines, an aspartate and a water molecule. The average bond lengths between the metal and the histidines are about 2.10 Å, between metal and aspartate they are about 1.86 Å and between metal and water 1.96 Å. With an increase in pH a change in the coordination number from five to six is observed both in pre-edge peak and EXAFS spectra analysis. However, the bond lengths of the ligands do not change dramatically, they are conserved for the aspartate and increase slightly to 2.13 Å for the average metal - histidine distance at pH 9.3. The observation of the increase in coordination number is correlated with a decrease in enzymatic activity which occurs in the high pH range. The zinc EXAFS spectra of P. shermanii superoxide dismutase have shown that zinc can be incorporated in the active center instead of the iron.  相似文献   

20.
We investigated the subcellular localization of PDE5 in in vitro human myometrial cells. We demonstrated for the first time that PDE5 is localized in discrete cytoplasmic foci and vesicular compartments corresponding to centrosomes. We also found that PDE5 intracellular localization is not cell- or species-specific, as it is conserved in different animal and human cells. PDE5 protein levels are strongly regulated by the mitotic activity of the smooth muscle cells (SMCs), as they were increased in quiescent, contractile myometrial cultures, and conditions in which proliferation was inhibited. In contrast, PDE1C levels decreased in all conditions that inhibited proliferation. This mirrored the enzymatic activity of both PDE5 and PDE1C. Increasing cGMP intracellular levels by dbcGMP or sildenafil treatments did not block proliferation, while dbcAMP inhibited myometrial cell proliferation. Together, these results suggest that PDE5 regulation of cGMP intracellular levels is not involved in the control of SMC cycle progression, but may represent one of the markers of the contractile phenotype.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号