首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Microcystins are harmful hepatotoxins produced by many, but not all strains of the cyanobacterial genera Anabaena, Microcystis, Anabaena, Planktothrix, and Nostoc. Waterbodies have to be monitored for the mass development of toxic cyanobacteria; however, because of the close genetic relationship of microcystin-producing and non-producing strains within a genus, identification of microcystin-producers by morphological criteria is not possible. The genomes of microcystin-producing cells contain mcy genes coding for the microcystin synthetase complex. Based on the sequence information of mcy genes from Microcystis and Planktothrix, a primer pair for PCR amplification of a mcyA gene fragment was designed. PCR with this primer pair is a powerful means to identify microcystin-producing strains of the genera Anabaena, Microcystis, and Planktothrix. Moreover, subsequent RFLP analysis of the PCR products generated genus-specific fragments and allowed the genus of the toxin producer to be identified. The assay can be used with DNA from field samples.Abbreviations RFLP Restriction fragment length polymorphism - MALDI-TOF Matrix-assisted laser desorption/ionization-time of flight spectrometry - HPLC High performance liquid chromatography  相似文献   

2.
The aim of this work was to test the efficacy of molecular techniques for detecting toxigenic cyanobacteria in environmental water samples collected from freshwater lakes, rivers and reservoirs in Portugal. Of 26 environmental samples tested, 21 were found to contain Microcystis using a genus-specific polymerase chain reaction (PCR). Another primer pair was applied to the same DNA template to test for the presence of microcystin synthetase genes. This primer pair resulted in the formation of a PCR product in 15 of the samples containing Microcystis and one sample that did not give a positive result in the Microcystis genus-specific PCR. A restriction assay using the enzyme EcoRV was then applied to show that in most cases, the gene fragment was from toxigenic strains of Microcystis and, in one above-mentioned case, from a microcystin-producing strain of Planktothrix. All environmental samples were examined microscopically to confirm the presence of cyanobacteria species. Samples were also tested for the presence of microcystins using the ELISA plate assay. There was good agreement between the results obtained with molecular techniques and those obtained from microscopy and chemical methods. The PCR techniques applied in this paper were found to be useful, particularly when the concentration of the target organism was very low compared with other organisms. This technique can be used to detect inocula for cyanobacterial populations and therefore provide a useful tool for assessing under which conditions particular species can grow into bloom populations.  相似文献   

3.
Cyanobacteria of genus Microcystis sp. have been commonly found in Lake Erie waters during recent summer seasons. In an effort to elucidate relationships between microcystin production, genotypic composition of Microcystis community and environmental parameters in a large lake ecosystem, we collected DNA samples and environmental data during a three-year (2003–2005) survey within Lake Erie and used the data to perform a series of correlation analyses. Cyanobacteria and Microcystis genotypes were quantified using quantitative real-time PCR (qPCR). Our data show that Microcystis in Lake Erie forms up to 42% of all cyanobacteria, and that Microcystis exists as a mixed population of potentially toxic and (primarily) non-toxic genotypes. In the entire lake, the total abundance of Microcystis as well as the abundance of microcystin-producing Microcystis is strongly correlated with the abundance of cyanobacteria suggesting that Microcystis is a significant component of the cyanobacterial community in Lake Erie during summer seasons. The proportion of total Microcystis of all cyanobacteria was strongly linked to the microcystin concentrations, while the percentage of microcystin-producing genotypes within Microcystis population showed no correlation with microcystin concentrations. Correlation analysis indicated that increasing total phosphorus concentrations correlate strongly with increasing microcystin concentrations as well as with the total abundance of Microcystis and microcystin-producing Microcystis.  相似文献   

4.
In this study we report the application of sequence-characterized amplified region (SCAR) markers in Ganoderma lucidum for strain identification, the first such study in this medicinal mushroom. One fragment unique to strain No. 9 was identified by inter-simple sequence repeats (ISSR), and then sequenced. Based on the specific fragment, one SCAR primer pair designated as GL612F and GL612R was designed to amplify a 612-bp DNA fragment within the sequenced region. Diagnostic PCR was performed using the primer pair. The results showed that this SCAR marker can clearly distinguish strain No. 9 from other related Ganoderma lucidum strains. Our data provided the foundation for a precise and rapid PCR-based strain-diagnostic system for Ganoderma lucidum.  相似文献   

5.
In order to understand the environmental variables which promote the proliferation of cyanobacteria and variation in microcystin concentrations in the Nui Coc reservoir, Vietnam, physicochemical parameters, the occurrence, and abundance of phytoplankton, cyanobacteria, and microcystin concentration were monitored monthly through the year 2009–2010. The relationships between these parameters were explored using principal component analysis (PCA) and Pearson correlation analysis. The phytoplankton community was mainly dominated by the cyanobacterium Microcystis with higher cyanobacteria abundance during summer and autumn season. PCA and Pearson correlation results showed that water temperature and phosphate concentration were the most important variables accounting for cyanobacteria, Microcystis, and microcystin occurrence. Analysis of the toxins by high-performance liquid chromatography demonstrated the presence of two microcystin variants: microcystin-LR (MC-RR) and microcystin-ddRR (MC-ddRR) with total concentrations of the toxins in filtered samples from surface water ranging from 0.11 to 1.52 μg MC-LR equiv L?1. The high concentrations of microcystin in the Nui Coc reservoir highlighted the potential risk for human health in the basin. Our study underlined the need for regular monitoring of cyanobacteria and toxins in lakes and reservoirs, which are used for drinking water supplies, not only in Vietnam but also in tropical countries.  相似文献   

6.
Summary Microcystis, which are toxic microcystin-producing cyanobacteria, normally bloom in summer and drop in numbers during the winter season in Senba Lake, Japan. Recently, this lake has been treated by ultrasonic radiation and jet circulation which were integrated with flushing with river water. This treatment was most likely sufficient for the destruction of cyanobacterial gas vacuoles. In order to confirm whether Microcystis viridis was still present, a molecular genetic monitoring technique on the basis of DNA direct extraction from the sediment was applied. Three primer sets were used for polymerase chain reaction (PCR) based on rRNA intergenic spacer analysis (RISA), the DNA dependent RNA polymerase (rpoC1) and a Microcystis sp.-specific rpoC1 fragment. The results from each primer were demonstrated on the basis of single strand conformation polymorphisms (SSCP). Using the RISA primer showed different results from the rpoC1 and Microcystis sp.-specific rpoC1 fragment; meanwhile, the rpoC1 Microcystis sp.-specific fragment was more specific than the RISA primer. Therefore, the Microcystis sp.-specific rpoC1 fragment was further analysed by denaturing gradient gel electrophoresis (DGGE). The DNA pattern representing M. viridis could not be detected in any of the sediment samples. However, the results were confirmed with another technique, terminal restriction fragment length polymorphisms (T-RFLP). Although T-RFLP patterns of 16S rDNA in sediment at 91 bp and 477 bp lengths were matched with the T-RFLP of M. viridis (HhaI and MspI endonuclease digestion, respectively), the T-RFLP pattern of 75 bp length was not matched with M. viridis (both of HhaI and MspI endonuclease digestion) which were the major T-RFLP pattern of M. viridis. Therefore, the results most likely indicated that M. viridis seems to have disappeared because of the addition of the ultrasonic radiation and jet circulation to the flushing treatment.  相似文献   

7.
During the past decade, algae blooms, which include the toxic cyanobacterium Microcystis, have reoccurred in the Laurentian Great Lakes, most commonly in the western basin of Lake Erie. Whereas the western basin is the most impacted by toxic Microcystis in Lake Erie, there has historically been little effort focused on identifying the spatial distribution of Microcystis throughout this lake. To address this lack of knowledge, we have employed a polymerase-chain-reaction-based detection of genes required for synthesis of the toxin microcystin (mcyD and mcyB), as well as 16S rDNA fragments specific to either all Microcystis or all cyanobacteria. Using a multiplex approach, we tested 21 samples from 13 field stations and found that toxigenic Microcystis were present in the western and eastern basins in the summers of 1999, 2000, and 2002 and the central basin in 1999 and 2002. This is the most extensive distribution of Microcystis reported in Lake Erie. Clone libraries (16S rDNA) of these cyanobacterial communities were generated from 7 of the 13 field stations (representing all three basins) to partially characterize this microbial community. These libraries were shown to be dominated by sequences assigned to the Synechococcus and Cyanobium phylogenetic cluster, indicating the importance of picoplankton in this large lake system.  相似文献   

8.
Toxicity of Microcystis blooms to warm-blooded animals generated by microcystins has bew reported world wide. The ecological relevance of microcystin production for cyanobacteria remains unknown. The microcystin concentration in Microcystis blooms occurring in the Bautzen reservoir Was investigated. The microcystin content of samples were determined by HPLC and ranged from undetectabel to 14.7 μg mg−1. Various chemical and physical parameters were monitored at the same time as Microcystis sampling, however, there was no correlation between these parameters and microcystin dynamics. The spatial distribution of microcystin in the Microcystis population was investigated once and showed no difference between samples taken at five stations. The microcystin concentration in ihc cell free water from the reservoir was below the detection threshold (< 1 μg L−1). Size dependent Fractions of the Microcystis population analyzed for microcystin concentration correlated with colony sim. In the small fraction (>30 <66 μm) microcystin was not detected. In the medium fraction (> 6 h < 100μm) lower microcystin concentrations were detected than in large fraction (>100μm) in which the highest microcystin concentrations were found.  相似文献   

9.
In temperate latitudes, toxic cyanobacteria blooms often occur in eutrophied ecosystems during warm months. Many common bloom-forming cyanobacteria have toxic and non-toxic strains which co-occur and are visually indistinguishable but can be quantified molecularly. Toxic Microcystis cells possess a suite of microcystin synthesis genes (mcyAmcyJ), while non-toxic strains do not. For this study, we assessed the temporal dynamics of toxic and non-toxic strains of Microcystis by quantifying the microcystin synthetase gene (mcyD) and the small subunit ribosomal RNA gene, 16S (an indicator of total Microcystis), from samples collected from four lakes across the Northeast US over a two-year period. Nutrient concentrations and water quality were measured and experiments were conducted which examined the effects of elevated levels of temperatures (+4 °C), nitrogen, and phosphorus on the growth rates of toxic and non-toxic strains of Microcystis. During the study, toxic Microcystis cells comprised between 12% and 100% of the total Microcystis population in Lake Ronkonkoma, NY, and between 0.01% and 6% in three other systems. In all lakes, molecular quantification of toxic (mcyD-possessing) Microcystis was a better predictor of in situ microcystin levels than total cyanobacteria, total Microcystis, chlorophyll a, or other factors, being significantly correlated with the toxin in every lake studied. Experimentally enhanced temperatures yielded significantly increased growth rates of toxic Microcystis in 83% of experiments conducted, but did so for non-toxic Microcystis in only 33% of experiments, suggesting that elevated temperatures yield more toxic Microcystis cells and/or cells with more mcyD copies per cell, with either scenario potentially yielding more toxic blooms. Furthermore, concurrent increases in temperature and P concentrations yielded the highest growth rates of toxic Microcystis cells in most experiments suggesting that future eutrophication and climatic warming may additively promote the growth of toxic, rather than non-toxic, populations of Microcystis, leading to blooms with higher microcystin content.  相似文献   

10.
Strains of the cyanobacterium Microcystis aeruginosa were isolated into pure culture from a variety of lakes, rivers, and reservoirs in Portugal. Samples were tested with matrix-assisted laser desorption/ionization–time-of-flight mass spectrometry (MALDI-TOF MS) to investigate the presence of various peptide groups including aeruginosins, microginins, anabaenopeptins, cyanopeptilins, microcystins, and microviridins and other peptide-like compounds. Binary data, based on the presence and absence of different peptide groups, were analyzed by phylogenetic inference. DNA was also extracted from the samples and tested using a range of primers. Those strains that gave positive results for a Microcystis-specific primer pair were further analyzed for the presence of genes linked to the biosynthesis of microginin and microcystin. The results showed that a wide range of microcystin forms were produced by the strains among which MC-LR, -FR, -RR, -WR, and -YR were the most common. The peptide profiles obtained from the MALDI analysis were assessed using cluster analysis which resulted in the formation of distinct groups or chemotypes.  相似文献   

11.
12.
One of the most serious problems related to water eutrophication is the occurrence of increasingly frequent blooms of toxic cyanobacteria in freshwater ecosystems. Microcystin (MCYST) molecular markers may be used for the detection of toxic cyanobacteria, both cultivated strains and environmental samples, independently of their taxonomic category and production of the toxin at the moment of analysis. Sixty Microcystis spp. strains from 15 water reservoirs of south, southeastern and northeastern Brazil were analyzed by polymerase chain reaction (PCR) with oligonucleotide primers for mcyB gene of the operon that encodes a microcystin synthetase. It was found out that the presence of a unique amplified product of approximately 780 bp in 18 strains, indicated the presence of the microcystin-producing genotype. There was correspondence between the presence of the mcyB gene and microcystin determined by ELISA. Eight reservoirs contained toxic strains, two of these reservoirs being used mainly for public water supply. The coexistence of a mixture of toxic and non-toxic genotypes in populations of several reservoirs was found. Thus, it is evident that Microcystis populations present in blooms compose a mosaic, with genetically different individuals within the same population, each one, possibly, with its own tolerance to environmental factors and with distinct toxicity potential.  相似文献   

13.
To differentiate Chlamydia spp., a primer pair designed to generate a genus-specific region of the major outer membrane protein (MOMP) gene was used in a PCR to amplify a single DNA fragment of 245-259 bp. In the PCR, the expected single DNA fragment was amplified from strains of Chlamydia trachomatis, C. psittaci, C. pneumoniae and C. pecorum, respectively. By restriction endonuclease analysis with AluI and PvuII, the amplified products exhibited four distinct patterns, corresponding to the four species. It is, therefore, concluded that one-step PCR followed by restriction endonuclease analysis as described in this study could be a valuable method for the detection and differentiation of Chlamydia species.  相似文献   

14.
The cyanobacterial hepatotoxins, microcystin and nodularin, are produced by a wide range of cyanobacteria. Microcystin production has been reported in the four cyanobacterial orders: Oscillatoriales, Chroococcales, Stigonematales, and Nostocales. The production of nodularin is a distinct characteristic of the Nostocales genus Nodularia. A single rapid method is needed to reliably detect cyanobacteria that are potentially capable of producing these hepatotoxins. To this end, a PCR was designed to detect all potential microcystin and nodularin-producing cyanobacteria from laboratory cultures as well as in harmful algal blooms. The aminotransferase (AMT) domain, which is located on the modules mcyE and ndaF of the microcystin and nodularin synthetase enzyme complexes, respectively, was chosen as the target sequence because of its essential function in the synthesis of all microcystins as well as nodularins. Using the described PCR, it was possible to amplify a 472 bp PCR product from the AMT domains of all tested hepatotoxic species and bloom samples. Sequence data provided further insight into the evolution of the microcystin and nodularin synthetases through bioinformatic analyses of the AMT in microcystin and nodularin synthetases, with congruence between the evolution of 16S rRNA and the AMT domain.  相似文献   

15.
Microcystin (MC)-producing Microcystis strains from environmental samples were assessed by the simultaneous amplification of up to five DNA sequences, corresponding to specific regions of six mcy genes (mcyA, mcyB, mcyC, mcyD, mcyE and mcyG), codifying for key motifs of the non-ribosomal peptide synthetase and polyketide synthase of the microcystin synthetase complex. Six primer pairs with the same melting temperature, one of them of new design, were used. A crucial point for the good performance of the new multiplex PCR test was the concentration of each primer pair. In the test, cell suspensions from laboratory cultures, field colonies and blooms were directly used as DNA source. The results of the multiplex PCR were consistent with the toxinogenic character of the samples, as checked by high performance liquid chromatography and/or matrix-assisted laser desorption ionisation time-of-flight mass spectrometry. As a whole, the newly developed test could be used for a reliable, rapid and low-cost screening of potential MC-producing Microcystis in field samples, even scattered colonies.  相似文献   

16.
Cyanobacterial mass occurrences in freshwater lakes are generally formed by Anabaena, Microcystis, and Planktothrix, which may produce cyclic heptapeptide hepatotoxins, microcystins. Thus far, identification of the most potent microcystin producer in a lake has not been possible due to a lack of quantitative methods. The aim of this study was to identify the microcystin-producing genera and to determine the copy numbers of microcystin synthetase gene E (mcyE) in Lake Tuusulanjärvi and Lake Hiidenvesi in Finland by quantitative real-time PCR. The microcystin concentrations and cyanobacterial cell densities of these lakes were also determined. The microcystin concentrations correlated positively with the sum of Microcystis and Anabaena mcyE copy numbers from both Lake Tuusulanjärvi and Lake Hiidenvesi, indicating that mcyE gene copy numbers can be used as surrogates for hepatotoxic Microcystis and Anabaena. The main microcystin producer in Lake Tuusulanjärvi was Microcystis spp., since average Microcystis mcyE copy numbers were >30 times more abundant than those of Anabaena. Lake Hiidenvesi seemed to contain both nontoxic and toxic Anabaena as well as toxic Microcystis strains. Identifying the most potent microcystin producer in a lake could be valuable for designing lake restoration strategies, among other uses.  相似文献   

17.
Nutrient limitations were investigated in Copco and Iron Gate Reservoirs, on the Klamath River in California, where blooms of the toxin-producing cyanobacterium Microcystis aeruginosa were first reported in 2005. Nutrient enrichment experiments conducted in situ in June and August, 2007 and 2008, determined responses in phytoplankton biomass, Microcystis abundance and microcystin concentration to additions of phosphorus and different forms of nitrogen (NH4+, NO3, and urea). Microcystis abundance was determined using quantitative PCR targeting the phycocyanin intergenic spacer cpcBA.Total phytoplankton biomass increased with additions of N both before and during Microcystis blooms, with no primary effects from P, suggesting overall N limitation for phytoplankton growth during the summer season. NH4+ generally produced the greatest response in phytoplankton growth, while Microcystis abundance increased in response to all forms of N. Microcystis doubling time in the in situ experiments was 1.24–1.39 days when N was not limiting growth. The results from this study suggest availability of N during the summer is a key growth-limiting factor for the initiation and maintenance of toxic Microcystis blooms in Copco and Iron Gate Reservoirs in the Klamath River.  相似文献   

18.
The South African impoundments of Hartbeespoort and Roodeplaat experience excessive blooms of Microcystis species each year. Microcystins, produced primarily by strains of cyanobacteria belonging to the genera Microcystis, Anabaena and Planktothrix, are harmful cyanobacterial hepatotoxins. These bloom-forming cyanobacteria form toxic and non-toxic strains that co-occur and are visually indistinguishable, but can be identified and quantified molecularly. We described the relationships between microcystin production and the genotypic composition of the Microcystis community involved together with environmental conditions in both the Roodeplaat and Hartbeespoort reservoirs using quantitative real time PCR. DNA copy number of the Microcystis-specific 16S rRNA and toxin biosynthesis genes, mcyE and mcyB, were measured. Planktothrix spp. occurred in both reservoirs during autumn, but no toxin-producing species was present as measured with mcyE specific primers, whereas both toxic and non-toxic strains of Microcystis were recorded in both reservoirs, with Microcystis spp. dominating in the summer months. Water-surface temperature correlated strongly with microcystin concentration, mcyE and mcyB copy number. Microcystin production was associated by temperatures higher than 23 °C. This suggests that should current environmental trends persist with surface water temperatures continuing to rise and more and more nutrients continued to be loaded into fresh water systems toxic Microcystis may outgrow non-toxic Microcystis and synthesise even more microcystins.  相似文献   

19.
To develop a SCAR primer related to the hairy-fruit trait in the genusActinidia, we took a PCR-RAPD approach using arbitrary 10-mer primers. PCR with the UBC 376 primer generated specific fragments from three species with hairy fruit skin. Those fragments were then cloned to determine their nucleotide sequences. Two SCAR primers were designed from the UBC 376 primer and nucleotide sequences were obtained from the PCR fragments. A SCAR primer, OKC385, specifically amplified a 385-bp fragment from one clone ofActinidia eriantha, four ofActinidia chinensis, and four ofActinidia deliciosa. Deduced amino acid sequences of this fragment showed high sequence homology with plant cellulose synthases, which are involved in the biosynthesis of cellulose, a major cell wall component. The 385-bp fragment was specifically detected only in the seriesPerfectae C.F. Liang of sectionStellatae Li. This type has many hairs on the leaves, fruits, and stems, suggesting that the gene containing the PCR fragment is involved in hair formation in this phylogenetic group. Taken together, our results suggest that the SCAR primer, OKC385, can be used as a specific primer for early selection of the non-hair trait in breeding of the genusActinidia.  相似文献   

20.
The reoccurrence of significant cyanobacterial blooms in Lake Erie during the last 13 years has raised questions concerning the long-term persistence of microcystin-producing cyanobacteria and the presence of natural sediment reservoirs for potentially toxic cyanobacteria in this large lake system. To address these questions, we analyzed phytoplankton and sediment samples which were collected and preserved in the 1970s as well as samples collected in 2004 from locations within Lake Erie. The identification of microcystin-producing cyanobacteria in Lake Erie was examined via PCR amplification of the mcyA gene fragment. Based on the high % sequence similarity, the mcyA sequences from all 1970s phytoplankton and sediment samples were determined to belong to Microcystis spp., in spite of reports suggesting that Lake Erie was dominated by filamentous cyanobacteria in the 1970s. In sediment samples from 2004, signature genes for Microcystis were distributed and preserved not only in the surface sediments but also up to 10–12 cm in depth. Based on cell quantities determined by a quantitative polymerase chain reaction (qPCR) method, 0.18% of eubacteria in the sediments were Microcystis cells, of which 4.8% were potential microcystin producers. In combination with experiments showing that Microcystis cells can be cultured from Lake Erie surface sediments, this paper demonstrates the potential for these sediments to act as a reservoir for pelagic Microcystis populations and that the composition of the population of microcystin-producing cyanobacteria in Lake Erie has not changed remarkably since the 1970s.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号