首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Water deficit severely decreases maize (Zea mays L.) kernel growth; the effect is most pronounced in apical regions of ears. The capacity for accumulation of storage material in endosperms is thought to he partially determined by the extent of cell division and endoreduplication (post-mitotic nuclear DNA synthesis). To gain a better understanding of the regulatory mechanisms involved, we have examined the effect of water deficit on cellular development during the post-fertilization period. Greenhouse-grown maize was subjected to water-limited treatments during rapid cell division [from 1 to 10days after pollination (DAP)] or rapid endoreduplication (9 to 15 DAP). The number of nuclei and the nuclear DNA content were determined with flow cytometry. Water deficit from 1 to 10 DAP substantially decreased the rate of endosperm cell division in apical-region kernels, but had little effect on middle-region endosperms. Rewatcring did not allow cell division to recover in apical-region endosperms. Water deficit from 9 to 15 DAP also decreased cell division in apical-region endosperms. Endoreduplication was not affected by the late treatment in either region of the car, but was inhibited by the early treatment in the apical region. In particular, the proportion of nuclei entering higher DN A-content size classes was reduced. We conclude that cell division is highly responsive to water deficit, whereas endoreduplication is less so. We also conclude that the reduced proportion of nuclei entering higher DNA-content size classes during endoreduplication is indicative of multiple control points in the mitotic and endoreduplication cycles.  相似文献   

2.
The effect of exogenous ABA on acquisition of desiccation tolerance has been well documented for the embryos of several species. including maize ( Zea mays L.). It has also been suggested that endogenous ABA plays a role in regulating the same phenomena. To test this hypothesis, endogenous ABA was quantified by radioimmunoassay. Our results show that: (1) during embryogenesis in maize, endogenous ABA increase-concomitantly with the acquisition of desiccation tolerance: (2) ABA deficient embryos of the vp 5 mutant are desiccation intolerant, but tolerance can he induced by exogenous ABA: and (3) desiccation tolerance is acquired if desiccation sensitive embryos undergo a slow drying treatment, during which ABA increases. However, when embryos were preincubated in fluridone to prevent ABA accumulation during slow drying, desiccation tolerance was induced in spite of the low level of endogenous ABA in the embryo. Our results cast doubts on an exclusive role of ABA in the acquisition of desiccation tolerance in maize embryo.  相似文献   

3.
Maize seedlings ( Zea mays L. cv. DK 246) grown for 1–4 days in the presence of abscisic acid (ABA) or triadimefon (a fungicide) demonstrated an enhanced ability to withstand the effects of a 3-h sub-lethal (40°C) or lethal (45°C) heat shock. Both the ABA and triadimefon treatments were applied solely to the roots of seedlings; however, the ability to withstand a heat shock was induced in both the root and the shoot. The level of protection provided by these agents was dependent upon the time that plants were exposed to them; prolonged exposure reduced tolerance to subsequent stress.  相似文献   

4.
Four inbred maize lines differing in chilling tolerance were used to study changes in water status and abscisic acid (ABA) levels before, during and after a chilling period. Seedlings were raised in fertilized soil at 24/22°C (day/night), 70% relative humidity. and a 12-h photoperiod with 200 μmol m−2 s−1 from fluorescent tubes. At an age of 2 weeks the plants were conditioned at 14/12°C for 4 days and then chilled for 5 days at 5/3°C. The other conditions (relative humidity, quantum flux, photoperiod) were unchanged. After the chilling period the plants were transferred to the original conditions for recovery. The third leaves were used to study changes in leaf necrosis, ion efflux, transpiration, water status and ABA accumulation. Pronounced differences in chilling tolerance between the 4 lines as estimated by necrotic leaf areas, ion efflux and whole plant survival were observed. Conditioning significantly increased tolerance against chilling at 5/3°C in all genotypes. The genotypes with low chilling tolerance had lower water and osmotic potentials than the more tolerant genotypes during a chilling period at 5/3°C. These differences were related to higher transpiration rates and lower diffusive resistance values of the more susceptible lines. During chilling stress at 5/3°C ABA levels were quadrupled. Only a small rise was measurable during conditioning at 14/12°C. However, conditioning enhanced the rise of ABA during subsequent chilling. ABA accumulation in the two lines with a higher chilling tolerance was triggered at a higher leaf water potential and reached higher levels than in the less tolerant lines. We conclude that chilling tolerance in maize is related to the ability for fast and pronounced formation of ABA as a protective agent against chilling injury.  相似文献   

5.
  总被引:2,自引:0,他引:2  
The germination process can be accelerated if seeds are stimulated either by adding cytokinins or by osmopriming. Under these conditions, cells in maize ( Zea mays ) embryo axes shorten the time at which the first round of DNA replication and mitosis takes place, thus advancing the cell cycle. Using heterologous antibodies against different cell cycle proteins, we have followed the behaviour of several markers for G1 phase (cyclin D, E2F and p53) and a marker of G2 phase (cyclin B) under either control or \"accelerated\" germination conditions. The results showed two classes of behaviour: either there was no variation in the amount of the protein present under control or accelerated germination conditions, represented by cyclin Band E2F‐type proteins, or the amount of the proteins was drastically reduced, more rapidly under accelerated germination, as was the case for cyclin D‐ and p53‐type proteins. Although the cyclin D‐type protein was synthesized de novo during germination, the balance was towards degradation so that there was no cyclin D detected 15 h after germination in benzyladenine‐treated and osmoprimed seeds. A Cdk4‐type protein seemed to be present in cyclin D immunoprecipitates and its kinase activity paralleled the fluctuations of the cyclin amount during germination. These data are discussed in the context of early seed germination.  相似文献   

6.
玉米籽粒胚乳细胞增殖及其与淀粉充实的关系   总被引:3,自引:0,他引:3  
用纤维素酶解离胚乳、滤膜法统计玉米胚乳细胞的数目,进一步借助Logistic方程模拟胚乳细胞增殖动态的结果表明,整个灌浆期间胚乳细胞增殖呈现“慢-快-慢”的变化趋势。授粉15d后,不同类型胚乳的细胞数目依序为普通玉米〉糯玉米〉甜玉米〉爆裂玉米;胚乳细胞数目主要取决于细胞的增殖速率,并与淀粉充实和粒重关系密切。胚乳发育前期以胚乳细胞增殖为主,后期以淀粉积累为主。  相似文献   

7.
  总被引:4,自引:0,他引:4  
Immunolocalization using polyclonal antibodies raised against a conserved dehydrin amino acid sequence was used to establish the temporal and spatial patterns of dehydrin accumulation in embryo tissue of Zea mays L. (var. Ohio 43) kernels imbibed in the presence of abscisic acid. The temporal pattern of accumulation indicated an increase in dehydrins over time (particularly between 15 and 30 h) and with maximum levels detected 48 h after the onset of imbibition. Dehydrins were first evident, and also the most concentrated, in the cytosol throughout the accumulation period suggesting that the primary function of dehydrins involves the cytosol and the structures contained therein. Only after an accumulation of dehydrins in the cytosol was there an increase in the abundance of nuclear dehydrins. In addition, dehydrins were also observed in association with the proteinaceous matrix of protein bodies and membranes of protein and lipid bodies; these findings have not been reported previously. The observed localization at a number of sites indicates that the specific biochemical roles of dehydrins are likely to be diverse.  相似文献   

8.
2-Amino (1-14C) isobutyric acid (AIB) was applied to the leaf tips of thirteen-day-old primary leaves of Zea mays L. cv. Goldprinz. Simultaneously, the leaves were treated in the basal region with solutions of kinetin (KN), abscisic acid (ABA) and mixtures of both hormones. The distribution of the radioactive material was determined after 72 h. Treatment with KN caused an accumulation of radioactive material at the point of application (KN spot). In comparison to controls, the leaf zones between the KN spot and the leaf tip contained lower amounts of radioactive material. Treatment with ABA caused a pattern of distribution opposite to that induced by KN. The ABA point of application (ABA spot) was depleted of radioactive material, whereas the leaf area between the ABA spot and the leaf tip showed enhanched levels of radioactive AIB. The effect of ABA was reduced by application of ABA and KN in equimolar amounts. The results are discussed in relation to the possible role of ABA in hormone-directed transport processes.  相似文献   

9.
Maize ( Zea mays L. cv . Pioneer 3925) endosperm development is sensitive to water deficit during rapid cell division and nuclear DNA endoreduplication. To gain insight into effects of water deficit on gene-products that are involved in these processes, we examined the accumulation of β-tubulin, a 50-kDa subunit of microtubules. Proteins extracted from endosperms were separated by SDS-PAGE and immunoblotted with antibodies to β-tubulin. In addition to the expected 50-kDa β-tubulin protein, monoclonal antibodies recognized a 35-kDa protein that predominated at early stages of development and progressively disappeared coincident with the appearance of 50-kDa β-tubulin. Various tests demonstrated that the cross-reacting 35-kDa protein was not a post-harvest artifact, but represented a group of in situ tubulin isotypes preferentially detected by the monoclonal antibodies we used. The pattern of appearance of the fragment suggested that differential expression or degradation of tubulin isotypes normally occurs during development. This expression pattern is prologed or altered during water deficit, which may affect cell division.  相似文献   

10.
DNA endoreduplication in Zea mays L. (cv. A619 × W64A) endosperm peaks between 16 and 18 d after pollination (DAP). The physiological function of DNA endoreduplication is not known but it is believed to be important in maize kernel development. In the present study, we investigated how 2, 4 or 6 d of high temperature (35 °C) affected DNA endoreduplication and maize kernel development in comparison with control kernels grown at 25 °C. Data were collected on fresh weight (FW), nuclei number, mitotic index, and DNA endoreduplication. Maize endosperm FW and nuclei number were reduced by exposure to 4 or 6 d of high temperature. At 18 DAP, the 2 d high temperature treatment (HTT) caused a reduction in FW and nuclei number, but had no effect on DNA endoreduplication and average DNA content per endosperm. However, when the exposure to high temperature was increased to 4 or 6 d, FW, nuclei number and the magnitude of DNA endoreduplication were progressively reduced, and the peak mitotic index was delayed compared with the control endosperm. At 18 DAP, the 4 d treatment showed 54·7% of the cells were 3 or 6 C, whereas only 41·2% were 12 C or higher. Six days of high temperature also resulted in a reduction in endosperm FW, nuclei number and a delay in the peak of mitotic index. DNA endoreduplication occurred in the kernels exposed to this treatment, although the magnitude was severely reduced compared with the control kernels. Nuclear DNA content was highly correlated (r = 0·93) with kernel FW, suggesting an important role of DNA endoreduplication in determining endosperm FW. The data suggest that high temperature during endosperm cell division exerted negative effects on DNA endoreduplication by dramatically reducing the nuclei number, leaving fewer nuclei available for DNA endoreduplication. However, the data also suggest that prolonged exposure to high temperature restricts entry of mitotic cells into the endoreduplication phase of the cell cycle.  相似文献   

11.
The growth and emergence of maize silks has a considerable importance in yield determination under drought conditions. Spatial and temporal patterns of the rates of tissue expansion and of cell division were characterized in silks of plants subjected to different soil water potentials. In all cases, silk development consisted of four phases: (1) cell division and tissue expansion occurred together uniformly all along the silk; (2) cell division progressively ceased from tip to base, while expansion remained spatially uniform including during the phase (3) after the cessation of cell division; and (4) as the silk emerged from the husks, expansion ceased in the emerged portion, probably because of direct evaporative demand, while the relative growth rate progressively decreased in the enclosed part. The rates of tissue expansion and cell division were reduced with water deficit, resulting in delayed silk emergence. The duration of cell division was not affected, and in all cases, the end of cell division in the silk coincided with anther dehiscence. The duration of phase 3, between the end of cell division and the arrest of cell growth in silk apex, considerably increased with water deficit. It corresponded to the anthesis-silking interval used by breeders to characterize the response of cultivars to stress.  相似文献   

12.
13.
Elongation, indolyl-3-acetic acid (IAA) and abscisic acid (ABA) levels, – gas chromatography-mass spectrometry quantification –, in the elongating zone were analysed for maize ( Zea mays L., Cv. LG11) roots immersed in buffer solution with or without zeatin (Z). The effect of Z depends on the initial extension rate of roots. The slower growing roots are more strongly inhibited by Z (10−7−10−5 M ) and they show a greater increase in IAA and ABA content. When compared to the rapidly growing roots, the larger reactivity of the 'slow'ones cannot be attributed to a higher Z uptake as shown when using [14C]-Z. It is suggested that Z could regulate root elongation by acting on the IAA and/or ABA level. The comparative action of these two hormones is discussed.  相似文献   

14.
Based on the distribution constant of IAA, the efficiency of solvent partitioning has been improved by modifying the proportions of the solvents. IAA is recovered almost quantitatively by this method which also renders further sample reduction superfluous. Selective IAA recovery is supported by the distribution of immunoreactive materials on chromatograms. This modified scheme simplifies prepurification of samples for more reliable immunoassay.  相似文献   

15.
During seed maturation, cells from embryonic tissues stop division at different phases of the cell cycle. In maize, neither these phases nor the effect of exogenous auxin on them are known. Disinfected whole maize ( Zea mays L. Mexican commercial hybrid H30) seeds or sectioned embryonic axes were incubated in Murashige and Skoog medium, with or without 2-(2-methyl-4-chlorophenoxy)propionic acid (MCPP), a synthetic auxin. For some in vitro experiments, radioactive [3H]-thymidine was also added. After the stated incubation period, meristems of mesocotyl, primary and seminal roots from embryonic axes were dissected, fixed, and analyzed under a microscope. The percentage of mitotic indices was recorded. In the labeling experiments, labeled and non-labeled percentage of mitotic figures (MI %) were determined. It was found that cell division is a programmed event in the meristematic tissues of maize embryonic axes. Populations of cells entering cell division were obseved during the germination process. The mesocotyl was the first tissue to divide, followed by seminal and primary roots.
Meristematic cells from dry embryos are arrested during the G2 and G1 phases of the cell cycle. MCPP has a differential effect, stimulating G2 cells to enter cell division. It is concluded that MCPP might regulate the cell cycle at specific points.  相似文献   

16.
Endoreduplication in higher plants   总被引:27,自引:0,他引:27  
Cell polyploidisation can be achieved by endoreduplication, which consists of one or several rounds of DNA synthesis in the absence of mitosis. As a consequence, chromosomes with 2n chromatids are produced without change in the chromosome number. Endoreduplication is the most common mode of polyploidisation in plants and can be found in many cell types, especially in those undergoing differentiation and expansion. Although accumulating data reveal that this process is developmentally regulated, it is still poorly understood in plants. At the molecular level, the increasing knowledge on plant cell cycle regulators allows the acquisition of new tools and clues to understand the basis of endoreduplication control and, in particular, the switch between cell proliferation and cell differentiation.  相似文献   

17.
  总被引:1,自引:0,他引:1  
Salicylic acid (SA) plays a key role in activating defenses and cell death during plant-pathogen interactions. In response to some pathogens, SA also limits the extent of cell death, indicating that it acts positively or negatively depending on the host-pathogen interaction. In addition, we previously showed that SA affects cell growth in the Arabidopsis defense-related mutants accelerated cell death 6-1 (acd6-1) and aberrant growth and death 2 (agd2). Using acd6-1, agd2 and two other defense-related mutants, lesion simulating disease 6 (lsd6), suppressor of SA-insensitivity (ssi1), we show here in detail that SA regulates cell growth by specifically affecting cell enlargement, endoreduplication and/or cell division. We find that SA can act either positively or negatively to regulate cell growth depending on the context in which signaling occurs. Additionally, Nonexpressor of PR 1 (NPR1), a key SA signaling protein important for regulating defenses and cell death, also acts to promote cell division and/or suppress endoreduplication during leaf development. We propose that SA interacts with multiple receptors or signaling pathways to control cellular alterations during normal development, pathogen attack and/or stress situations. We suggest that SA and NPR1 play broader roles in cell fate control than has previously been understood.  相似文献   

18.
  总被引:1,自引:0,他引:1  
It is known that salt stress and exogenously applied abscisic acid (ABA) can enhance the polyamine content in plants and that salt stress itself can lead to an increase in endogenous ABA production. In the present study, the relationships between salt-induced ABA and polyamine accumulation were inves- tigated using ABA-deficient mutant (vp5/vp5) maize (Zea mays L.) seedlings and ABA and polyamine biosynthesis inhibitors. The results show that reduced endogenous ABA levels, as a result of either the mutation or by using a chemical inhibitor (sodium tungstate), also reduced the accumulation of polyamines in salt-stressed leaves of maize seedlings. The polyamine synthesis inhibitors D-arginine and α- difluoromethylornithine also reduced the polyamine content of the leaves of maize seedling under salt stress. Both ABA and polyamine enhanced the dry weight accumulation of salt-stressed seedlings and also increased the activities of the two dominant tonoplast membrane enzymes, H^+-ATPase and H^+-PPase, when plants were under salt stress. The results suggest that salt stress induces an increase in endogenous ABA levels, which then enhances polyamine synthesis. Such responses may increase a plant's tolerance to salt.  相似文献   

19.
20.
Effect of salicylic acid on nitrate reductase activity in maize seedlings   总被引:2,自引:0,他引:2  
The effect of different concentrations of salicylic acid on total Kjeldahl nitrogen and nitrate reductase activity in the maize ( Zea mays L.) seedling was studied. The total nitrogen of the maize embryonic axis (root + shoot) from seedlings raised with 10 m M Ca(NO3)2 for 5 days was substantially higher than that from the control when 0.01 m M salicylic acid was supplied. As supply of high (1 m M ) concentrations of salicylic acid decreased the accumulation of organic nitrogen. The in vivo activity of nitrate reductase in the roots increased at low concentrations of salicylic acid, while high concentrations were inhibitory. The stimulative concentration of the acid protected in vivo loss of nitrate reductase activity under non-inducing conditions, whereas it had no effect on in vitro loss of enzyme. It is suggested that salicylic acid increases in vivo enzyme activity indirectly, to some extent by protecting the natural inactivation of the enzyme.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号