首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Membrane-bound ATPase (EC 3.6.1.3) of Escherichia coli K 12 is released in a soluble form by the mechanical treatments applied to the cells in order to break them. The purification of the soluble enzyme is described. The purified protein gives a single band in 7.5 % polyacrylamide gel electrophoresis. The molecular weight is estimated to be 350 000. The enzyme is cold-labile, Mg2+ dependent, insensitive to inhibition by N,N′-dicyclohexylcarbodiimide and specific for ATP and ADP. Membranes depleted of their ATPase activity by dilution in a buffer of low ionic strength and without Mg2+ are able to incorporate the purified ATPase only in the presence of 2–6 mM Mg2+. ATPase binds to particles formed by complementation between supernatant extracts of chl A and chl B mutants. There are three kinds of particles of different buoyant densities (1.10, 1.18 and 1.23); ATPase binds only to the 1.10 and 1.18 particles. The kinetics of incorporation have been studied. ATPase begins to be incorporated into the 1.10 particles after 10 min of incubation up to a maximum at 20 min: from 30 min, ATPase is incorporated only into 1.18 particles and the amount of incorporated ATPase increases in proportion with the peak of 1.18 particles. These kinetics have a hyperbolic pattern. In order to explain the mechanism of assembly involved in complementation, two hypotheses are proposed.  相似文献   

2.
Resonance energy transfer (RET) is typically limited to distances below 60 A, which can be too short for some biomedical assays. We examined a new method for increasing the RET distances by placing donor- and acceptor-labeled DNA oligomers between two slides coated with metallic silver particles. A N,N'-(dipropyl)-tetramethylindocarbocyanine donor and a N,N'-(dipropyl)-tetramethylindodicarbocyanine acceptor were covalently bound to opposite 5' ends of complementary 23 base pair DNA oligomers. The transfer efficiency was 25% in the absence of silver particles or if only one slide was silvered, and it increased to an average value near 64% between two silvered slides. The average value of the Forster distance increased from 58 to 77 A. The energy transfer data were analyzed with a model assuming two populations of donor-acceptor pairs: unaffected and affected by silver island films. In an affected fraction of about 28%, the apparent energy transfer efficiency is near 87% and the Forster distance increases to 119 A. These results suggest the use of metallic silver particles to increase the distances over which RET occurs in biomedical and biotechnology assays.  相似文献   

3.
Highly purified Na+, K+-ATPase of the dog kidney was reacted with Mg2++32Pi or Mg2++32Pi + ouabain. 32P-phosphorylation was terminated by the addition of EDTA, and the effects of various ligands on dephosphoration rate were studied. ATP reduced the dephosphorylation rates of both the native and the ouabain-complexed enzymes. K0.5 for this effect of ATP was about 0.2 mM. ADP also slowed dephosphorylation, but less effectively than ATP. The ATP effect on the native enzyme, but not that on the ouabain-complexed enzyme, was antagonized by Na+. The data establish the binding of ATP to the phosphoenzyme. Since the site that is phosphorylated by Pi is the same that is phosphorylated by ATP, coexistence of two ATP sites on the functional unit of the enzyme is suggested.  相似文献   

4.
A peptidase activity cleaving at single arginine residues has been detected in extracts of the atrial gland of Aplysia Californica. The enzyme assay consisted of incubation of enzyme with the mammalian opioid peptide dynorphin A and detection by specific radioimmunoassay of dynorphin (1-8), a single arginine cleavage product. The peptidase activity was characterized following chromatography on DEAE-cellulose. Activity was abolished by a thiol-directed inhibitor and chelators and activated by dithiothreitol and cobalt chloride. The pH optimum was 6.2 in phosphate buffer. Analysis of the products of two substrates suggested that cleavage was occurring on the amino side of the arginine residue.  相似文献   

5.
At pH 6.4, rat kidney mitochondrial kynurenine aminotransferase activity is enhanced several-fold by the addition of CaCl2, apparently because Ca++ facilitates the translocation of α-ketoglutarate, one of the substrates, across the mitochondrial inner membrane. Chloride salts or Mg++, Mn++, Na+, K+, and NH4+ did not have this effect. At pH 6.8, the enzyme activity was near maximal even without added Ca++ but was strongly depressed by either of two calcium chelating agents, quinolinic acid (Q.A.) and ethyleneglycol-bis(β-aminoethyl ether)N,N′-tetraacetic acid (EGTA). These observations support the view that Ca++ is involved in regulating kidney mitochondrial translocation of α-ketoglutarate and that the reported interference of polycarboxylate anion translocation by Q.A. in vivo depends on the ability of that agent to chelate Ca++.  相似文献   

6.
The elastase inhibitory capacity of alpha 1-proteinase inhibitor (alpha 1-PI) was measured, using a direct and reproducible method, with phagocytic cells maintained in the tissue culture plate through the assay. The oxidative inactivation of alpha 1-PI is known to be mediated by the action of myeloperoxidase (MPO). The fact that hyposialylated IgG (hs IgG) induce the release of MPO prompted us to investigate the effects of such hs IgG on the inhibitory capacity of alpha 1-PI. The results show that 1-PI inactivation was observed only when phagocytic cells were activated by aggregated hs IgG, and not by unaggregated hs IgG. These observations indicate that hyposialylation should be completed by aggregation to perpetuate the oxidative reactions characteristic of inflammatory diseases.  相似文献   

7.
Several bacteria were isolated which were able to utilize poly(beta-L-malic acid) as sole carbon source for growth. The poly(beta-L-malic acid) hydrolyzing enzyme of Comamonas acidovorans strain 7789 was detected in the membrane fraction. The enzyme was purified by isolation of crude cell membranes by ultracentrifugation of disrupted cells, solubilization of the membrane fraction with octylglucoside, selective precipitation with 50% saturated ammonium sulfate and preparative isolectric focusing. SDS-PAGE analysis revealed a M(r) of 43,000. The pH optimum was 8.1 and the Km was 0.13 microM (in terms of monomeric units) and 0.0021 microM poly(beta-L-malic acid) at pH 8.1 (100 mM glycylglycine buffer). Addition of NaCl, KCl, CaCl2 or MgCl2 (from 25 to 100 mM) decreased the hydrolase activity, whereas EDTA or polymethane sulfonic acid fluoride had no influence on the enzyme. The depolymerization of poly(beta-L-malic acid) proceeded from the ends of the polyester resulting in the formation of L-malate. Esterase activity was not detectable with p-nitrophenyl acetate or p-nitrophenyl butyrate, which is used to determine for example poly(3-hydroxybutyric acid) depolymerase activity.  相似文献   

8.
This work presents the functional characterisation of a protein phosphatase 2A (PP2A) catalytic subunit obtained by genetic engineering and its conjugation to magnetic particles (MPs) via metal coordination chemistry for the subsequent development of assays for diarrheic lipophilic marine toxins. Colorimetric assays with free enzyme have allowed the determination of the best enzyme activity stabiliser, which is glycerol at 10%. They have also demonstrated that the recombinant enzyme can be as sensitive towards okadaic acid (OA) (LOD = 2.3 μg/L) and dinophysistoxin-1 (DTX-1) (LOD = 15.2 μg/L) as a commercial PP2A and, moreover, it has a higher operational stability, which makes possible to perform the protein phosphatase inhibition assay (PPIA) with a lower enzyme amount. Once conjugated to MPs, the PP2A catalytic subunit still retains its enzyme activity and it can also be inhibited by OA (LOD = 30.1 μg/L).  相似文献   

9.
RNA is known to perform diverse roles in the cell, often as ribonucleoprotein (RNP) particles. While the crystal structure of these RNP particles could provide crucial insights into their functions, crystallographic work on RNP complexes is often hampered by difficulties in obtaining well-diffracting crystals. The small nuclear ribonucleoprotein (snRNP) core domain, acting as an assembly nucleus for the maturation of snRNPs, plays a crucial role in the biogenesis of four of the spliceosomal snRNPs. We have succeeded in crystallising the human U4 snRNP core domain containing seven Sm proteins and a truncated U4 snRNA variant. The most critical factor in our success in the crystallisation was the introduction of various tertiary interaction modules into the RNA that could promote crystal packing without altering the core structure. Here, we describe various strategies employed in our crystallisation effort that could be applied to crystallisation of other RNP particles.  相似文献   

10.
We have measured the inhibitory potencies of several local anesthetics (procaine, lidocaine, tetracaine and dibucaine) and related compounds (chlorpromazine, procainamide and propranolol) on the ATPase activities of bovine heart submitochondrial particles and purified F1 extracted from these particles. All of these agents cause inhibition of ATPase in F1 as well as in submitochondrial particles. A linear relationship is found between the log of the octanol/water partition coefficients and the log of the concentrations required for 50% inhibition of F1. Sedimentation velocity ultracentrifugation and polyacrylamide gel electrophoresis showed that 1.0 mM tetracaine caused partial dissociation of the F1 complex. Complete reversibility of the enzyme inhibitory effects was demonstrated, however. This work shows that local anesthetics can affect protein structure and enzyme activity without the mediation of lipid.  相似文献   

11.
Lipoxygenases (LOX) form a heterogeneous family of lipid peroxidizing enzymes, which catalyze specific dioxygenation of polyunsaturated fatty acids. According to their positional specificity of linoleic acid oxygenation plant LOX have been classified into linoleate 9- and linoleate 13-LOX and recent reports identified a critical valine at the active site of 9-LOX. In contrast, more bulky phenylalanine or histidine residues were found at this position in 13-LOX. We have recently cloned a LOX-isoform from Momordica charantia and multiple amino acid alignments indicated the existence of a glutamine (Gln599) at the position were 13-LOX usually carry histidine or phenylalanine residues. Analyzing the pH-dependence of the positional specificity of linoleic acid oxygenation we observed that at pH-values higher than 7.5 this enzyme constitutes a linoleate 13-LOX whereas at lower pH, 9-H(P)ODE was the major reaction product. Site-directed mutagenesis of glutamine 599 to histidine (Gln599His) converted the enzyme to a pure 13-LOX. These data confirm previous observation suggesting that reaction specificity of certain LOX-isoforms is not an absolute enzyme property but may be impacted by reaction conditions such as pH of the reaction mixture. We extended this concept by identifying glutamine 599 as sequence determinant for such pH-dependence of the reaction specificity. Although the biological relevance for this alteration switch remains to be investigated it is of particular interest that it occurs at near physiological conditions in the pH-range between 7 and 8.  相似文献   

12.
We developed a new targeted cationic nanoparticulate system composed of poly(D,L-lactic-co-glycolic acid) (PLGA), 1,2-dioleoyl-3-(trimethylammonium) propane (DOTAP) and asialofetuin (AF), and found it to be a highly effective formulation for gene delivery to liver tumor cells. The nanoparticles (NP) were prepared by a modified solvent evaporation process that used two protocols in order to encapsulate (NP1 particles) or adsorb (NP2 particles) plasmid DNA. The final particles are in the nanoscale range. pDNA loaded in PLGA/DOTAP/AF particles with high loading efficiency showed a positive surface charge. Targeted asialofetuin-nanoparticles (AF-NP) carrying genes encoding for luciferase and interleukin-12 (IL-12) resulted in increased transfection efficiencies compared to free DNA and to plain (non-targeted) systems, even in the presence of 60% fetal bovine serum (FBS). The results of transfections performed on HeLa cells, defective in asialoglycoprotein receptors (ASGPr-), confirmed the receptor-mediated endocytosis mechanism. In summary, this is the first time that asialoglycoprotein receptor targeting by PLGA/DOTAP/DNA nanoparticles carrying the therapeutic gene IL-12 has been shown to be efficient in gene delivery to liver cancer cells in the presence of a very high concentration of serum, and this could be a potential system for in vivo application.  相似文献   

13.
Lipoxygenases have been classified according to their specificity of fatty acid oxygenation and for several plant enzymes pH-dependent alterations in the product patterns have been reported. Assuming that the biological role of mammalian lipoxygenases is based on the formation of specific reaction products, pH-dependent alterations would impact enzymes' functionality. In this study we systematically investigated the pH-dependence of vertebrate lipoxygenases and observed a remarkable stability of the product pattern in the near physiological range for the wild-type enzyme species. Site-directed mutagenesis of selected amino acids and alterations in the substrate concentrations induced a more pronounced pH-dependence of the reaction specificity. For instance, for the V603H mutant of the human 15-lipoxygenase-2 8-lipoxygenation was dominant at acidic pH (65%) whereas 15-H(p)ETE was the major oxygenation product at pH 8. Similarly, the product pattern of the wild-type mouse 8-lipoxygenase was hardly altered in the near physiological pH range but H604F exchange induced strong pH-dependent alterations in the positional specificity. Taken together, our data suggest that the reaction specificities of wild-type vertebrate lipoxygenase isoforms are largely resistant towards pH alterations. However, we found that changes in the assay conditions (low substrate concentration) and introduction/removal of a critical histidine at the active site impact the pH-dependence of reaction specificity for some lipoxygenase isoforms.  相似文献   

14.
Reconstitution of succinate-Q reductase is achieved by admixing soluble succinate dehydrogenase (SDH) and ubiquinone-protein-S (QP-S), a new protein isolated from the soluble cytochrome b-c1 complex. The reconstituted reductase catalyzes reduction of Q by succinate. The reaction is fully sensitive to thenoyltrifluoroacetone. The reconstituted reductase (same as succinate-cytochrome c reductase or submitochondrial particles) does not show “low concentration ferricyanide reductase activity” as soluble dehydrogenase does. In other words, this enzymic site on SDH is occupied by QP-S. When an artificial dye, such as phenazine methosulfate or Wurster's Blue, is used as electron acceptor the rate of oxidation of succinate by SDH is not significantly changed regardless of whether the dehydrogenase is in the free or in the reconstituted succinate-Q reductase forms.  相似文献   

15.
Rapid quench methods were used to determine Ca2+ uptake, ATPase phosphorylation and Pi production in the transient state of Sarcoplasmic Reticulum. It was found that within 20 milliseconds of the addition of ATP maximal levels of phosphorylated enzyme intermediate are reached and an initial burst of Ca2+ uptake is completed. This burst, kinetically distinct from the following transport activity, is related to the phosphorylated intermediate with a molar ratio of two.  相似文献   

16.
Changes in enzyme activities of the plasma membrane makers were examined during phagocytosis using guinea-pig polymorphonuclear neutrophils. Incubation of neutrophils with fresh serum-opsonized zymosan particles showed a significant reduction in leucine aminopeptidase activity, whereas 5′-nucleotidase and alkaline phosphodieterase activities remained unchanged. Inactivation of leucine aminopeptidase activity was also observed by exposure of neutrophils to complement-opsonized zymosan particles, but not to non-opsonized zymosan, IgG-coated zymosan or polysterene latex particles. Pretreatment of neutrophils with cytochalasin B, which prevents phagocytosis but not surface binding of particles, provoked inactivation to the same degree as when the cells were allowed to phagocytose the particles. However, the inactivation during phagocytosis was protected by serine protease inhibitors. These findings suggest that loss of leucine aminopeptidase activity from phagocytosing cells may be mediated by certain serine protease inhibitor-sensitive factor(s) which are probably activated by the attachment of an opsonized zymosan particle to a specific membrane receptor, probably the C3b receptor.  相似文献   

17.
When oleoyl phosphate and ADP were incubated with heart submitochondrial particles in the presence of glucose-hexokinase trap according to a reported procedure [Griffiths, D.E. (1976) Biochem. J. 160: 809–812], a 10% yield of glucose-6-phosphate was detected by chemical analysis. Although lower concentration of oleoyl phosphate improved the yield to 80–85%, the mode of formation of glucose-6-phosphate was not clear under the experimental condition used to improve the yield. In order to test decisively whether the phosphoryl group of oleoyl phosphate was transferred to ADP to form ATP which was estimated in the form of glucose-6-phosphate, [32P]oleoyl phosphate was synthesized. The use of isotopically labelled oleoyl phosphate showed only about 5% yield of [32P]glucose-6-phosphate by paper chromatographic analysis, whereas chemical analysis of the same system gave 80% yield of glucose-6-phosphate. Such an observation demonstrated that glucose-6-phosphate estimated by chemical assay is not the result of phosphorylation of ADP with oleoyl phosphate catalyzed by the submitochondrial particles.  相似文献   

18.
Aldehyde dehydrogenases catalyze the oxidation of aldehyde substrates to the corresponding carboxylic acids. Lactaldehyde dehydrogenase from Escherichia coli (aldA gene product, P25553) is an NAD(+)-dependent enzyme implicated in the metabolism of l-fucose and l-rhamnose. During the heterologous expression and purification of taxadiene synthase from the Pacific yew, lactaldehyde dehydrogenase from E. coli was identified as a minor (相似文献   

19.
The current pandemic influenza A (H1N1) virus has revealed a complicated reassortment of various influenza A viruses. The biological study of these viruses, especially of the viral envelope proteins hemagglutinin (HA) and neuraminidase (NA), is urgently needed for the control and prevention of H1N1 viruses. We have generated H1N1-2009 and H1N1-1918 pseudotyped particles (pp) with high infectivity. Combinations of HA1918 + NA2009 and HA2009 + NA1918 also formed infectious H1N1pps, among which the HA2009 + NA1918 combination resulted in the most highly infectious pp. Our study demonstrated that some reassortments of H1N1 viruses may hold the potential to produce higher infectivity than do their ancestors.  相似文献   

20.
The ribosomal RNA (rRNA) of Escherichia coli contains 24 methylated residues. A set of 22 methyltransferases responsible for modification of 23 residues has been described previously. Herein we report the identification of the yhiR gene as encoding the enzyme that modifies the 23S rRNA nucleotide A2030, the last methylated rRNA nucleotide whose modification enzyme was not known. YhiR prefers protein-free 23S rRNA to ribonucleoprotein particles containing only part of the 50S subunit proteins and does not methylate the assembled 50S subunit. We suggest renaming the yhiR gene to rlmJ according to the rRNA methyltransferase nomenclature. The phenotype of yhiR knockout gene is very mild under various growth conditions and at the stationary phase, except for a small growth advantage at anaerobic conditions. Only minor changes in the total E. coli proteome could be observed in a cell devoid of the 23S rRNA nucleotide A2030 methylation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号