首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Tachykinin receptors mediating substance P-induced secretion were examined in muscle-stripped segments of guinea-pig ileum set up in flux chambers. Changes in the short-circuit current (Isc) served as an index of active, electrogenic ion transport. Substance P evoked a transient increase in Isc which was concentration-dependent. The maximal change in Isc occurred at 1 microM concentration. [Sar9,Met(O2)11]-substance P, a neurokinin 1 (NK-1) receptor agonist, evoked a similar concentration-dependent increase in Isc. [Nle10]NKA(4-10) (1 microM) or [Pro7]NKB (1 microM), selective NK2 and NK3 agonists, respectively, had minimal effects on Isc. CP-96,345 (5 microM), a nonpeptide NK-1 antagonist, and the peptide NK-1 antagonist, GR82334 (1 microM), reduced the secretory response to substance P (50 nM) in the presence and absence of tetrodotoxin (0.2 microM). The NK2 antagonist, [Tyr5,D-Trp6,8,9,Arg10]NKA(4-10) MEN 10207 had no effect on the substance P response. Tetrodotoxin (0.2 microM) significantly reduced, but did not abolish the Isc response to substance P (1 microM) and [Sar9,Met(O2)11]substance P (1 microM). The substance P response was unaltered by 5 microM atropine and 50 microM mecamylamine. Piroxicam (10 microM) or pyrilamine (10 microM) or a combination of both had no effect on the tetrodotoxin-resistant substance P response. Electrical field stimulation evoked a biphasic increase in Isc which was significantly reduced by 0.2 microM tetrodotoxin. Atropine (5 microM) reduced the first peak of the biphasic response and mecamylamine (50 microM) had no effect. Similarly, 5 microM CP-96,345 and 1 microM GR82334 did not alter the EFS-induced change Isc. The results suggest that substance P-evoked secretory responses are independent of histamine or prostaglandins. Substance P responses are mediated by an NK-1 receptor type on enteric neurons and possibly epithelial cells.  相似文献   

2.
Using an in vitro microsuperfusion procedure, the NMDA-evoked release of [3H]ACh was studied after suppression of dopamine (DA) transmission (alpha-methyl-p-tyrosine) in striatal compartments of the rat. The effects of tachykinin neurokinin 1 (NK1) receptor antagonists and the ability of appropriate agonists to counteract the antagonist responses were investigated to determine whether tachykinin NK1 classic, septide-sensitive and/or new NK1-sensitive receptors mediate these regulations. The NK1 antagonists, SR140333, SSR240600, GR205171 but not GR82334 and RP67580 (0.1 and 1 microM) markedly reduced the NMDA (1 mm + D-serine 10 microM)-evoked release of [3H]ACh only in the matrix. These responses unchanged by coapplication with NMDA of NK2 or NK3 agonists, [Lys5,MeLeu9,Nle10]NKA(4-10) or senktide, respectively, were completely counteracted by the selective NK1 agonist, [Pro9]substance P but also by neurokinin A and neuropeptide K (1 nM each). According to the rank order of potency of agonists for counteracting the antagonist responses ([Pro9]substance P, 0.013 nM > neurokinin A, 0.15 nM > substance P(6-11) 7.7 nM = septide 8.7 nM), the new NK1-sensitive receptors mediate the facilitation by endogenous tachykinins of the NMDA-evoked release of ACh in the matrix, after suppression of DA transmission. Solely the NK1 antagonists having a high affinity for these receptors could be used as indirect anti-cholinergic agents.  相似文献   

3.
Present investigations were undertaken to study the influence of peptide NK-1 and NK-2 receptor agonists and antagonists as well as substance P and neurokinin A (the natural ligands for these tachykinin receptors) on oxytocin (OT) release from isolated rat hypothalamo-neurohypophysial (H-N) system as well as to determine whether the tachykinin NK-1 and/or NK-2 receptors contribute to the response of oxytocinergic neurons to melatonin. The results show, for the first time, that highly selective NK-1 receptor agonist, i.e., [Sar(9),Met(O(2))(11)]-Substance P, enhances while the NK-1 receptor antagonist (Tyr(6),D-Phe(7),D-His(9))-Substance P (6-11) - sendide - diminishes significantly OT secretion; the latter peptide was also found to antagonize the substance P-induced hormone release from isolated rat H-N system, when used at the concentration of 10(-7) M/L. Melatonin significantly inhibited basal and substance P-stimulated OT secretion. Neurokinin A and the NK-2 receptor selective agonist (beta-Ala(8))-Neurokinin A (4-10) as well as the NK-2 receptor antagonist (Tyr(5),D-Trp(6,8,9),Lys-NH(2)(10))-Neurokinin A (4-10) were essentially inactive in modifying OT release from the rat H-N system in vitro. The present data indicate a distinct role for tachykinin NK-1 (rather than NK-2) receptor in tachykinin-mediated regulation of OT secretion from the rat H-N system. Under present experimental conditions, however, a role of respective tachykinin receptors in the response of oxytocinergic neurons to melatonin has not been found.  相似文献   

4.
The effects of activation and blockade of the neurokinin 1 (NK1) receptor in the rostral ventrolateral medulla (RVLM) on arterial blood pressure (ABP), splanchnic sympathetic nerve activity (sSNA), phrenic nerve activity, the somato-sympathetic reflex, baroreflex, and chemoreflex were studied in urethane-anesthetized and artificially ventilated Sprague-Dawley rats. Bilateral microinjection of either the stable substance P analog (pGlu5, MePhe8, Sar9)SP(5-11) (DiMe-SP) or the highly selective NK1 agonist [Sar9, Met (O(2))11]SP into the RVLM resulted in an increase in ABP, sSNA, and heart rate and an abolition of phrenic nerve activity. The effects of [Sar9, Met (O(2))11]SP were blocked by the selective nonpeptide NK1 receptor antagonist WIN 51708. NK1 receptor activation also dramatically attenuated the somato-sympathetic reflex elicited by tibial nerve stimulation, while leaving the baroreflex and chemoreflex unaffected. This effect was again blocked by WIN 51708. NK1 receptor antagonism in the RVLM, with WIN 51708 significantly attenuated the sympathoexcitatory response to hypoxia but had no effect on baseline respiratory function. Our findings suggest that substance P and the NK1 receptor play a significant role in the cardiorespiratory reflexes integrated within the RVLM.  相似文献   

5.
The tachykinins, substance P (SP) and neurokinin A (NKA), are agonists for the NK1 and NK2 receptors, respectively. Tachykinins have various respiratory effects, including bronchoconstriction. This study characterizes tachykinin binding sites in the rabbit lung. We hypothesize that (2-[125I]iodohistidyl1)Neurokinin A ([125I]NKA) interacts with NK1 and NK2 binding sites in the rabbit lung. The Kd determined from saturation isotherms was 0.69 X/÷1.14 nM (geometic mean X/÷ SEM) and the Bmax was 4.15±0.22 femtomole/mg protein (arithmetic mean±SEM). Competitive inhibition studies with NKA, SP and various selective tachykinin agonists showed the rank order of potency: [β-Ala8]-Neurokinin A 4–10=SP ≫ NKA ≫ [Sar9,Met(O2)11]-Substance P. [β-Ala8]-Neurokinin A 4–10, a selective NK2 agonist, and SP inhibition of [125I]NKA binding were best described using a two-site model. Competitive inhibition studies using the selective nonpeptide NK2 antagonist (SR 48968) and the selective nonpeptide NK1 antagonist (CP 96,345) revealed Ki's of 5.5 nM and 8.1 nM, respectively. Our data therefore suggest that [125I]NKA binds to both the NK1 and NK2 receptors in the lung. Special issue dedicated to Dr. Kinya Kuriyama.  相似文献   

6.
An extract of the whole brain of the frog Rana ridibunda contained high concentrations of substance P-like immunoreactivity, measured with an antiserum directed against the COOH-terminal region of mammalian substance P and neurokinin B-like immunoreactivity, measured with an antiserum directed against the NH2-terminus of neurokinin B. The primary structure of the substance P-related peptide (ranakinin) was established as: Lys-Pro-Asn-Pro-Glu-Arg-Phe-Tyr-Gly-Leu-Met-NH2. Mammalian substance P was not present in the extract. The primary structure of the neurokinin B-related peptide was established as: Asp-Met-His-Asp-Phe-Phe-Val-Gly-Leu-Met-NH2. This amino acid sequence is the same as that of mammalian neurokinin B. Ranakinin was equipotent with substance P and [Sar9,Met(O2)11]substance P in inhibiting the binding of 125I-Bolton-Hunter-[Sar9,Met(O2)11]substance P, a selective radioligand for the NK1 receptor, to binding sites in rat submandibular gland membranes (IC50 1.6 +/- 0.3 nM; n = 5). It is concluded that ranakinin is a preferred agonist for the mammalian NK1 tachykinin receptor subtype.  相似文献   

7.
In the rat parotid gland, substance P has been shown to induce a phosphatidylinositol bisphosphate breakdown resulting in an inositol trisphosphate production. These data suggested that substance P activated a phospholipase C and thus mediated its effects through the calcium-phospholipid pathway. To determine which neurokinin (NK) receptor was involved in the substance P response, we have used selective agonists of the different NK receptors and examined their effects on both inositol trisphosphate production and calcium movements. A selective NK-1 receptor agonist, [Sar9Met(O2)11]-substance P, evoked an [3H]inositol trisphosphate production and a rapid and transient 45Ca2+ efflux. On the other hand, selective NK-2 and NK-3 receptor agonists, [beta-Ala8]-NKA(4-10) and [MePhe7]-NKB, respectively, were without effect. We conclude that, in the rat parotid glands, only the NK-1 receptors are coupled to the calcium-phospholipid pathway. The C-terminal part of substance P appeared to be sufficient to stimulate this route because the C-terminal octapeptide, substance P(4-11), mimicked substance P effects on both inositol trisphosphate production and calcium movements. The NK-2 and NK-3 receptors, if present in the rat parotid glands, are not associated with the calcium-phospholipid pathway.  相似文献   

8.
Improta G  Broccardo M 《Peptides》2000,21(11):1611-1616
We investigated and compared the effects of two amphibian tachykinins, the NK1 receptor agonist PG-SPI and the NK3 receptor agonist PG-KII, and the mammalian tachykinins substance P, neurokinin A and neurokinin B on the reaction time to a painful radiant heat stimulus (tail-flick test in rats) after intracerebroventricular injection. PG-SPI (1, 10 and 20 microg) and PG-KII (1, 5 and 10 microg) significantly increased the reaction time. Substance P (10 microg) injected intracerebroventricularly induced antinociception, whereas neurokinin A and neurokinin B did not. Like analgesia evoked by exogenous substance P, PG-SPI-evoked analgesia was blocked by pretreatment with naloxone. Naloxone left PG-KII antinociception unchanged, but the NK3 receptor selective antagonist markedly reduced it. These findings suggest NK1 and NK3 tachykinin receptor system involvement in supraspinal analgesia in rats.  相似文献   

9.
The effects of neurokinins (NK) and related peptides on the secretion of 6-keto-prostaglandin F1 alpha, a stable metabolite of prostacyclin, were measured. These peptides enhanced three- to five-fold the basal secretion rate with the following rank order of potency (based on threshold concentrations for a significant output): substance P (SP) greater than or equal to NKA greater than SP 4-11 greater than or equal to [pGlu6]SP 6-11 = SP 7-11.NKB and SP 1-9 were inactive. Ac[Arg6, Sar9, Met(O2)11]SP, a NK1 receptor selective agonist, was more potent than other selective agonists for the NK2 and NK3 receptor subtypes. These results suggest that the NK receptors, which mediate the release of prostacyclin from human endothelial cells, belong to the NK1 subtype.  相似文献   

10.
A biologically active 125I-substance P derivative (I125-BH-substance P), prepared by conjugation of substance P with [125I]Bolton-Hunter reagent, binds specifically to isolated rat parotid cells. The Kd is 4 nM for I-BH-substance P, 5 nM for substance P, 0.18 μM for substance P octa(4–11)peptide, and 1.6 μM for substance P [pyroglutamyl6]hexa(6–11)peptide. Substance P free acid and substance P penta(7–11)peptide are much weaker competitors and the C-terminal tri(9–11)peptide has no effect at 30 μM. The binding is also inhibited by 1 μM physalaemin, eledoisin and substance P methyl ester, but not by unrelated peptides. The selective inhibition of the binding by the biologically active analogs and fragments of substance P indicates that the 125I-labeled N(1)acylated substance P derivative may interact with a substance P receptor on parotid cells.  相似文献   

11.
It has recently been shown that the adrenal gland of the frog Rana ridibunda is densely innervated by a network of fibers containing two novel tachykinins, i.e. ranakinin (the counterpart of substance P) and [Leu3, Ile7]neurokinin A. Both ranakinin and [Leu3, Ile7]neurokinin A stimulate corticosteroid secretion from frog adrenal glands in vitro. In the present study, we have investigated the pharmacological profile of the receptors involved in the stimulatory action of ranakinin on perifused frog adrenal slices. The selective NK-1 receptor antagonists [ -Pro4, -Trp7,9]substance P 4–11 and CP-96,345, did not affect the stimulatory action of ranakinin. The selective NK-1 agonist substance P 6–11 had no effect on corticosteroid secretion. The non-peptidic NK-1 receptor antagonist RP 67580 significantly reduced the stimulatory effect of ranakinin on corticosterone and aldosterone secretion by 57 and 55%, respectively. In addition, the dual NK-1/NK-2 receptor antagonist FK-224 significantly inhibited the effect of ranakinin on corticosterone (−80%) and aldosterone secretion (−95%). Finally, the amphiphilic analogue of substance P, [ -Pro2, -Phe7, -Trp9]substance P, had no effect on corticosteroid secretion. These data suggest that in the frog adrenal gland the stimulatory action of ranakinin on steroid secretion is mediated by a novel type of receptor which differs substantially from the mammalian NK-1 receptor subtype.  相似文献   

12.
We have used a novel technology (NovoStar from BMG Labtechnologies) for the study of the Ca2+ signalling of the human tackykinin NK1 (hNK-I receptor). The NovoStar is a microplate reader based on fluorescence and luminescence. The instrument implements a robotic pipettor arm and two microplate carriers, typically one for samples and one for cells. The robotic pipettor arm can transfer sample (agonist or antagonist) from the sample plate or other liquid containers to the cell plate, facilitating the study of Ca2+ signalling to such a degree that the instrument can be used for Medium Throughput Screening (MTS). Using the NovoStar we have found the molecular pharmacology of the NK1 receptor to be comparable to that observed in classical signal transduction assays. Thus, we have observed an EC50 value of 3 nM for substance P induced Ca2+ response. This value corresponds well with previously published values for substance P induced IP and cAMP turnover. [1] Using the NovoStar technology we have studied the pharmacological profile of the well known non-peptide NKI receptor antagonists CP96,345 and SR140,333 [2,3] in respect of inhibition of the Ca2+ response induced by substance P. Interestingly, the antagonistic potency of the antagonists depended greatly on the experimental design, e.g., a dependency of timing in the addition of antagonists vs. agonist was noted. Also, metal-ion site engineered NK1 receptors [2] were tested for the ability of metal-ions to inhibit signalling. It is concluded that the NovoStar is a reliable tool for the study of receptor Ca2+ signalling, both as a research tool and as a MTS system.  相似文献   

13.
Böckmann S 《Peptides》2002,23(10):1783-1791
  相似文献   

14.
Pomolic acid (PA), triterpenoid isolated from Licania pittieri, has previously shown a potent ability to inhibit adenosine diphosphate (ADP)- and epinephrine-induced human platelet aggregation. To investigate whether PA could be an antagonist of ADP-activated receptors of human platelets (P2Y(1) and P2Y(12)), pharmacological studies were conducted to examining its ability to modulate the platelet shape change induced by a selective P2Y(1) receptor agonist MRS2365 and also the nature of its possible interaction with ADP receptors by analyzing the characteristics of log concentration-response curves of ADP constructed in the absence and in the presence of fixed concentrations of PA, using in vitro platelet aggregation assays. PA did not interfere with the activation of P2Y(1) receptor by MRS2365 to induce platelet shape change and displayed a competitive antagonism of ADP-induced platelet aggregation, which most probably involves competition for a single binding site in platelets. The estimated equilibrium dissociate constant (K(b)) of PA as ADP receptor antagonist was 15.4±0.06nM. Together, these findings give indirect evidence for the idea that PA could be a potent competitive antagonist of P2Y(12) receptor, and open the possibility to consider it as new member of the non-nucleotide generation of antiplatelet drugs.  相似文献   

15.
The inter-relationships between receptor occupancy, inositol phospholipid metabolism and elevation of cytosolic free Ca2+ in thromboxane A2-induced human platelet activation were investigated by using the stable thromboxane A2 mimetic, 9,11-epoxymethanoprostaglandin H2, and the thromboxane A2 receptor antagonist, EPO45. 9,11-Epoxymethanoprostaglandin H2 stimulated platelet phosphatidylinositol metabolism as indicated by the rapid accumulation of [32P]phosphatidate and later accumulation of [32P]phosphatidylinositol in platelets pre-labelled with [32P]Pi. These effects of 9,11-epoxymethanoprostaglandin H2 were concentration-dependent and half-maximal [32P]phosphatidate formation occurred at an agonist concentration of 54 +/- 8 nM. With platelets labelled with the fluorescent Ca2+ indicator quin 2, resting cytosolic free Ca2+ was 86 +/- 12 nM. 9,11-Epoxymethanoprostaglandin H2 induced a rapid, concentration-dependent elevation of cytosolic free Ca2+ to a maximum of 300-700 nM. Half-maximal stimulation was observed at an agonist concentration of 80 +/- 23 nM. The thromboxane A2 receptor antagonist EPO45 selectively inhibited 9,11-epoxymethanoprostaglandin H2-induced [32P]phosphatidate formation and elevation of cytosolic free Ca2+, indicating that both events are sequelae of receptor occupancy. Human platelets contain a single class of stereospecific, saturable, high affinity (KD = 70 +/- 13 nM) binding sites for 9,11-epoxymethano[3H]prostaglandin H2. The concentration-response curve for receptor occupancy (9,11-epoxymethano-[3H]prostaglandin H2 binding) is similar to that for 9,11-epoxymethanoprostaglandin H2-induced [32P]phosphatidate formation and for elevation of cytosolic free Ca2+. These observations indicate that human platelet thromboxane A2 receptor occupation is closely linked to inositol phospholipid metabolism and to elevation of cytosolic free Ca2+. Both such events may be necessary for thromboxane A2-induced human platelet activation.  相似文献   

16.
The precise nature of neurokin receptor involvement in human immune cell chemotaxis is unclear. This study therefore sought to directly compare the chemotactic effects of neurokinins on human T lymphocytes and monocytes. Substance P was found to have a similar dose-dependent chemotactic action on T lymphocyte and monocyte populations. In contrast, T lymphocytes were found to be more responsive than monocytes both to the highly selective NK-1 agonist, [Sar(9)Met O(2)(11)]-substance P, and also to the NK-2 selective agonist, beta-alanine neurokinin A((4-10)). Consistent with these findings, substance P-induced chemotaxis of both T lymphocyte and monocytes was attenuated by the selective NK-1 antagonist LY303870. However, the selective NK-2 antagonist MEN 10,376 was only effective in inhibiting the T lymphocyte response. The study confirms that neurokinins have chemotactic actions on immune cells and indicates important functional differences between human T lymphocyte and monocyte responses. This provides a potential mechanism by which the nervous system can selectively influence cellular recruitment in inflammatory disease.  相似文献   

17.
DuP 753 is a potent, selective angiotensin II type 1 (AT1) receptor antagonist. The possibility was investigated that DuP 753 may crossreact with thromboxane A2/prostaglandin H2 (TP) receptors. DuP 753 inhibited the specific binding of the TP receptor antagonist [3H]SQ 29,548 (5 nM) in human platelets with kd/slope factor values of 9.6 +/- 1.4 microM/1.1 +/- 0.02. The AT2-selective angiotensin receptor ligand, PD 123,177 was a very weak inhibitor of specific [3H]SQ 29,548 binding in platelets (Kd/slope factor:200 microM/0.86). [3H]SQ 29,548 saturation binding in the absence and presence of DuP 753 resulted in an increase in equilibrium affinity constant (Kd: 9.3, 22, 33 nM, respectively) without a concentration-dependent reduction in binding site maxima (Bmax: 3597, 4597, 3109 fmol/mg protein, respectively). Platelet aggregation induced by the TP receptor agonist U 46,619 was concentration-dependently inhibited by DuP 753 (IC50 = 46 microM). These data indicate for the first time that DuP 753 is a weak but competitive antagonist at human platelet TP receptors.  相似文献   

18.
An analogue of substance P with broad receptor antagonist activity   总被引:1,自引:0,他引:1  
[DPro4,DTrp7,9,10]Substance P-4-11 functions as a substance P receptor antagonist in several different systems. Because some analogues of substance P can function as receptor antagonists for bombesin as well as substance P, we tested [DPro4,DTrp7,9,10]substance P-4-11 for its ability to modify the interaction of various pancreatic secretagogues with their receptors in dispersed acini from guinea pig pancreas. [DPro4,DTrp7,9,19]Substance P-4-11 did not stimulate amylase secretion and did not alter the stimulation of amylase secretion caused by secretin, vasoactive intestinal peptide, calcitonin gene-related peptide or carbachol, but did inhibit the stimulation of amylase secretion caused by substance P, bombesin or cholecystokinin. With substance P, bombesin and cholecystokinin, [DPro4,DTrp7,9,10]substance P-4-11 caused a parallel rightward shift in the dose-response curve for stimulation of amylase secretion with no change in the maximal response. Schild plots of these results gave straight lines with slopes that were not significantly different from unity. [DPro4,DTrp7,9,10]Substance P-4-11 inhibited binding of 125I-labeled substance P, 125I-[Tyr4]bombesin and 125I-cholecystokinin octapeptide over the same range of concentrations as that in which it inhibited biologic activity of each of these peptides. Half-maximal inhibition of binding of 125I-substance P occurred with 4 microM, of 125I-[Tyr4]bombesin with 17 microM and of 125I-cholecystokinin octapeptide with 5 microM. With each radiolabeled peptide the value of Ki for inhibition of binding by [DPro4,DTrp7,9,10]substance P-4-11 was not significantly different from the corresponding value of Ki calculated from the appropriate Schild plot. The present results indicate that [DPro4,DTrp7,9,10]substance P-4-11 is a competitive antagonist at receptors for substance P, for bombesin and for cholecystokinin. Thus, these receptors must share a common peptide recognition mechanism even though they interact with agonists that have no obvious structural similarity.  相似文献   

19.
The initial goal of this study was to analyze, using photolabeling, the interactions between Substance P and its tachykinin NK-1 receptor. Therefore, the photoreactive amino acid para-benzoyl-phenylalanine (pBzl)Phe was incorporated into the Substance P sequence from position 4 to 11 leading to Bapa0[(pBzl)Phex]SP analogs. Biotinyl sulfone-5-aminopentanoic acid (Bapa) was introduced in order to purify the covalent complex. These photoreactive SP analogs were first assayed for their affinity for the two binding sites associated with the NK-1 receptor, as well as for their potency in activating the phospholipase C and adenylate cyclase pathways. All analogs photoreactive from position 4 to 11 have moderate to high affinity for the two NK-1 receptor-binding sites, except for the analog modified at position 7. This affinity could be correlated to their potency to activate the phospholipase C and adenylate cyclase pathways, except for the analog photoreactive at position 11. Bapa0[(pBzl)Phe11]SP was found to be an agonist in the phospholipase C pathway and an antagonist in the adenylate cyclase pathway, other analogs modified at position 11 were therefore analyzed. Among these, Bapa0[Pro9, (pBzl)Hcy(O2)11]SP is a partial agonist, whereas Bapa0[Hcy(ethylaminodansyl)11]SP is a full agonist in the phospholipase C pathway, the two analogs being antagonist in the adenylate cyclase pathway. These results show that analogs of SP can be simultaneously agonist at one binding site and antagonist at the other binding site associated with the NK-1 receptor.  相似文献   

20.
O Laneuville  J Dorais  R Couture 《Life sciences》1988,42(13):1295-1305
In the awake restrained rat the intrathecal (i.th.) administration of 6.5 pmol-40 nmol of substance P (SP), neurokinin A (NKA) or one of two selective NK-1 receptor agonists [Pro9, Met(O2)11]SP, denoted ana1 and [beta-Ala4, Sar9, Met(O2)11]SP , denoted ana2 decreased reaction time (RT) to a noxious radiant heat stimulus in a dose-related manner. The following rank order of potency was observed in relation to this response: ana1 = ana2 greater than SP much greater than NKA. The decrement of tail-flick latency was greatest at 1 min and RT returned to the basal level within 6-11 min post-administration. However, in some rats SP produced a small increase in RT (anti-nociception) at 6-11 min post-administration. The i.th. administration of neurokinin B (NKB) or a selective NK-3 receptor agonist [beta-Asp4, MePhe7]NKB), denoted ana3 induced an antinociceptive effect which was greatest at 1 min and lasted less than 11 min after NKB or more than 30 min after ana3 administration. The magnitude of the increase in RT produced by 65 pmol-40 nmol doses of these peptides is ana3 much greater than NKB much greater than SP. The effect of NKB (8.0 nmol) was significantly blocked (P less than 0.005) by prior i.th. administration of naloxone (opioid antagonist) but not by idazoxan (alpha 2-adrenoceptor antagonist), [Thi5,8, D-Phe7]BK (kinin antagonist), or following bilateral adrenalectomy. From these results, we conclude that NKB-induced antinociception is mediated by the spinal release of an opioid and not through a BK or NA mechanism. The results also suggest that the nociceptive and antinociceptive effects of neuro-kinins are mediated by the activation of NK-1 and NK-3 receptor subtypes respectively, in the rat spinal cord.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号