首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
(1,4/2)-cyclohex-5-ene-triol was synthesized starting from cyclohexa-1,4-diene with two different approaches. Photooxygenation of cyclohexa-1,4-diene and epoxy-cyclohexene afforded anti-2,3-dioxabicyclo[2.2.2]oct-7-en-5-yl hydroperoxide and anti-7-oxabicyclo[4.1.0]hept-4-en-3-yl hydroperoxide, respectively. Hydroperoxy endoperoxide was reduced with aqueous sodium bisulfite; hydroperoxy-epoxide with dimethylsulfide-titanium tetraisopropoxide to give 7-oxabicyclo[4.1.0]hept-4-en-3-ol. Acidic hydrolysis of the epoxy-alcohol gave the (1,4/2)-cyclohex-3-ene-triol. Oxidation of the double bond with KMnO4 resulted in the formation of (+/-)-proto-quercitol.  相似文献   

2.
Choi G  Ha NC  Kim SW  Kim DH  Park S  Oh BH  Choi KY 《Biochemistry》2000,39(5):903-909
Delta 5-3-ketosteroid isomerase (KSI) catalyzes the allylic isomerization of Delta 5-3-ketosteroids at a rate approaching the diffusion limit by an intramolecular transfer of a proton. Despite the extensive studies on the catalytic mechanism, it still remains controversial whether the catalytic residue Asp-99 donates a hydrogen bond to the steroid or to Tyr-14. To clarify the role of Asp-99 in the catalysis, two single mutants of D99E and D99L and three double mutants of Y14F/D99E, Y14F/D99N, and Y14F/D99L have been prepared by site-directed mutagenesis. The D99E mutant whose side chain at position 99 is longer by an additional methylene group exhibits nearly the same kcat as the wild-type while the D99L mutant exhibits ca. 125-fold lower kcat than that of the wild-type. The mutations made at positions 14 and 99 exert synergistic or partially additive effect on kcat in the double mutants, which is inconsistent with the mechanism based on the hydrogen-bonded catalytic dyad, Asp-99 COOH...Tyr-14 OH...C3-O of the steroid. The crystal structure of D99E/D38N complexed with equilenin, an intermediate analogue, at 1.9 A resolution reveals that the distance between Tyr-14 O eta and Glu-99 O epsilon is ca. 4.2 A, which is beyond the range for a hydrogen bond, and that the distance between Glu-99 O epsilon and C3-O of the steroid is maintained to be ca. 2.4 A, short enough for a hydrogen bond to be formed. Taken together, these results strongly support the idea that Asp-99 contributes to the catalysis by donating a hydrogen bond directly to the intermediate.  相似文献   

3.
The synthetic putrescine analogue (E)-1,4-diaminobut-2-ene is known to possess antifungal and fungicidal properties. Although it perturbs fungal polyamine metabolism, this is not thought to be its primary mode of action. This paper reports that (E)-1,4-diaminobut-2-ene reduces DNA methylation in the plant pathogenic fungus Pyrenophora avenae. These reductions in DNA methylation were accompanied by greatly reduced methionine uptake by the fungus, although it is not known whether this was responsible for the altered DNA methylation. Reduced DNA methylation may result in the expression of specific genes, although which genes are affected and whether such changes are linked to reduced fungal growth awaits further investigation.  相似文献   

4.
Polyamine vectors are attractive for tumor targeting. We envisaged (Z)-1,4-diamino-2-butene (Z-DAB), an unsaturated analogue of putrescine as vector of (10)B, (18)F and (131)I for boron neutron capture therapy (BNCT), and tumor imaging by positron emission tomography or scintigraphy respectively. In the present work, the synthesis and characterization of new derivatives of Z-DAB were reported. Z-DAB was actively transported in cells via the polyamine transport system and converted into the spermidine analogue.(E)-2-iodo-1,4-diamino-2-butene (E-I-DAB) was not taken up by the polyamine transport system and may not be suitable for tumor imaging. In contrast, (Z)-2-[4-(5,5-dimethyl-dioxaborinan-2-yl)phenyl]methyl-1,4-diamino-2-butene (Z-4-Bbz-DAB) was a substrate of the transport system and allowed significant boron accumulation in 3LL cells. Its potential in BNCT will be evaluated.  相似文献   

5.
In this paper, we present the first detailed analysis of the modes of action of three purified, thermostable endo-beta-D-glucanases (EG V-VII) against a range of soluble beta-linked glucans. Studies indicated that EG V-VII, purified to homogeneity from a new source, the thermophilic fungus Talaromyces emersonii, are strict beta-glucanases that exhibit maximum activity against mixed-link 1,3;1,4-beta-D-glucans. Time-course hydrolysis studies of 1,4-beta-D-glucan (carboxymethylcellulose; CMC), 1,3;1,4-beta-D-glucan from barley (BBG) and lichenan confirmed the endo-acting nature of EG V-VII and verified preference for 1,3;1,4-beta-D-glucan substrates. The results suggest that EG VI and EG VII belong to EC 3.2.1.6, as both enzymes also exhibit activity against 1,3-beta-glucan (laminaran), in contrast to EG V. Although cellobiose, cellotriose and glucose were the main glucooligosaccharide products released, the range and relative amount of each product was dependent on the particular enzyme, substrate and reaction time. Kinetic constants (Km, Vmax, kcat and kcat/Km) determined for EG V-VII with BBG as substrate yielded similar Km and Vmax values for EG V and EG VI. EG VII exhibited highest affinity for BBG (Km value of 9.1 mg ml(-1)) and the highest catalytic efficiency (kcat/Km of 12.63 s(-1) mg(-1) ml).  相似文献   

6.
A series of 2-(3-aryl-2-propenoyl)-3-methylquinoxaline-1,4-dioxides 3a–l were prepared by condensation of various aryl aldehydes with 2-acetyl-3-methylquinoxaline-1,4-dioxide 2. These compounds inhibit the growth of human Molt 4/C8 and CEM T-lymphocytes and the IC50 values are mainly in the 5–30 μM range. The quinoxaline 1,4-dioxide 3j inhibited the growth of 58 human tumor cell lines, particularly leukemic and breast cancer neoplasms. All of the compounds 3a–l reversed the multidrug resistance (MDR) properties of murine L-5178Y leukemic cells which were transfected with the human MDR1 gene. The MDR-reversing effect may be due to the conjugated π-electron system forming a weak electron charge transfer complex with the P-glycoprotein-mediated efflux pump. The compounds in series 2 and 3 were assessed against HL-60, HSC-2, HSC-3 and HSC-4 malignant cells as well as HGF, HPC and HPLF normal cell lines which revealed that the majority of the compounds displayed a greater toxicity to neoplastic than normal cells. Various ways in which the project may be expanded are presented.  相似文献   

7.
The minimal catalytic domain of alpha-(1,3/1,4)-fucosyltransferases (FucTs) from Helicobacter pylori strains NCTC11639 and UA948 was mapped by N- and C-terminal truncations. Only the C terminus could be truncated without significant loss of activity. 11639FucT and UA948FucT contain 10 and 8 heptad repeats, respectively, which connect the catalytic domain with the C-terminal putative amphipathic alpha-helices. Deletion of all heptad repeats almost completely abolished enzyme activity. Nevertheless, with only one heptad repeat 11639FucT is fully active, whereas UA948FucT is partially active. Removal of the two putative amphipathic alpha-helices dramatically increased protein expression and solubility, enabling purification with yields of milligrams/liter. Steady-state kinetic analysis of the purified FucTs showed that 11639FucTs possessed slightly tighter binding affinity for both Type II acceptor and GDP-fucose donor than UA948FucT, and its kcat of 2.3 s(-1) was double that of UA948FucT, which had a kcat value of 1.1 s(-1) for both Type II and Type I acceptors. UA948FucT strongly favors Type II over the Type I acceptor with a 20-fold difference in acceptor Km. Sixteen modified Type I and Type II series acceptors were employed to map the molecular determinants of acceptors required for recognition by H. pylori alpha-(1,3/1,4)-FucTs. Deoxygenation at 6-C of the galactose in Type II acceptor caused a 5000-fold decrease in alpha1,3 activity, whereas in Type I acceptor this completely abolished alpha1,4 activity, indicating that this hydroxyl group is a key polar group.  相似文献   

8.
Chagas' disease is endemic in Central and South American countries. Specific chemotherapy with nifurtimox or benznidazole has been recommended for treatment of recent infection but they have limited efficacy. The natural products veraguensin (1) and grandisin (2) have shown potent in vitro activity against trypomastigote parasite (Y strain) with IC(50) 2.3 microM (1) and 3.7 microM (2). We report herein the synthesis and in vitro trypanocidal evaluation of symmetrical and unsymmetrical 1,4-diaryl-1,4-diol derivatives as potential trypanocidal analogs of natural compounds 1 and 2. Among the synthesized products, compounds 1,4-bis-(3,4,5-trimethoxyphenyl)-1,4-butanediol (6a) and 1,4-bis-(3,4-dimethoxyphenyl)-1,4-butanediol (6b) showed better activity against Trypanosoma cruzi trypomastigotes with IC(50) 100 and 105 microM (Y strain), respectively, and 110 microM (Bolivia strain) for both compounds. However, the most active compound of this series was 1,4-bis-(3,4-dimethoxyphenyl)butane-1,4-dione (7b) with IC(50) 10 and 200 microM against Y and Bolivia strains, respectively.  相似文献   

9.
The synthesis of 5-alkylamino- and 2,5-bis(alkylamino)-[1,4]-benzoquinones, showing structural similarity to natural mitomycins, was performed through coupling of 2-methoxy-3-methylhydroquinone with primary amines such as n-octylamine, geranylamine and cyclooctylamine using laccases from Myceliophthora thermophila (MtL) and Pycnoporus cinnabarinus SBUG-M 1044 (PcL). Product spectra of laccase reactions differ due to reaction systems pH values (pH 7.0 for MtL and pH 5.0 for PcL) applied to assure enzymes optimal catalytic efficiency. The MtL- and PcL-mediated formation of monoaminated products was achieved at equimolar reactant concentrations with amine coupling at the meta-position to benzoquinones methyl group. Increased formation of diaminated products occurred in PcL-mediated reactions and generally when the amine was supplied in excess. Diamination entailed elimination of the benzoquinone methoxy group (amination in para-position to the first amine substituent). Six products were synthesised and characterised by NMR and HR-MS analysis. The laccase-mediated amine coupling to 2-methoxy-3-methylhydroquinone confers two of the essential pharmaceutical active motifs from mitomycins: (i) a stable 1,4-benzoquinoic parent structure and (ii) a biological active alkylation function (NH).  相似文献   

10.
A family GH5 (family 5 glycoside hydrolase) (1,4)-beta-D-mannan endohydrolase or beta-D-mannanase (EC 3.2.1.78), designated HvMAN1, has been purified 300-fold from extracts of 10-day-old barley (Hordeum vulgare L.) seedlings using ammonium sulfate fractional precipitation, followed by ion exchange, hydrophobic interaction and size-exclusion chromatography. The purified HvMAN1 is a relatively unstable enzyme with an apparent molecular mass of 43 kDa, a pI of 7.8 and a pH optimum of 4.75. The HvMAN1 releases Man (mannose or D-mannopyranose)-containing oligosaccharides of degree of polymerization 2-6 from mannans, galactomannans and glucomannans. With locust-bean galactomannan and mannopentaitol as substrates, the enzyme has K(m) constants of 0.16 mg x ml(-1) and 5.3 mM and kcat constants of 12.9 and 3.9 s(-1) respectively. Product analyses indicate that transglycosylation reactions occur during hydrolysis of (1,4)-beta-D-manno-oligosaccharides. The complete sequence of 374 amino acid residues of the mature enzyme has been deduced from the nucleotide sequence of a near full-length cDNA, and has allowed a three-dimensional model of the HvMAN1 to be constructed. The barley HvMAN1 gene is a member of a small (1,4)-beta-D-mannan endohydrolase family of at least six genes, and is transcribed at low levels in a number of organs, including the developing endosperm, but also in the basal region of young roots and in leaf tips. A second barley enzyme that participates in mannan depolymerization through its ability to hydrolyse (1,4)-beta-D-manno-oligosaccharides to Man is a family GH1 beta-D-mannosidase, now designated HvbetaMANNOS1, but previously identified as a beta-D-glucosidase [Hrmova, MacGregor, Biely, Stewart and Fincher (1998) J. Biol. Chem. 273, 11134-11143], which hydrolyses 4NP (4-nitrophenyl) beta-D-mannoside three times faster than 4NP beta-D-glucoside, and has an action pattern typical of a (1,4)-beta-D-mannan exohydrolase.  相似文献   

11.
9-(3-Phosphonomethoxyprop-1-en-yl)adenine (Z)- and (E)-isomers were synthesized. The stereoselectivity of double bond formation was studied by variation of sulfonyl groups. The resulting phosphonates exhibited a moderate antiherpetic activity in a culture of Vero cells infected with herpes simplex type 1 virus. The Z-isomer was shown to be more effective inhibitor of virus reproduction in the case of both wild and acyclovir-resistant strain.  相似文献   

12.
For the purpose of developing highly sensitive and convenient determination of plasmalogens, the high-performance liquid chromatography (HPLC) method using radioactive iodine ((125)I) was investigated. Radioactive triiodide (1-) ion ((125)I(3)(-)), which is an actual iodine form capable of reacting with vinyl ether bond ([bond]CH(2)[bond]O[bond]CH[double bond]CH[bond]) of plasmalogens, could be safely and efficiently produced by oxidizing a commercial radioactive sodium iodine (Na(125)I) with hydrogen peroxide (H(2)O(2)) under acid condition (pH 5.5-6.0), which is called iodine-125 reagent. I(3)(-) specifically reacted with plasmalogens at the molar ratio of 1:1 in methanol, and 1 or 2 mol of plasmalogens was involved in the binding with iodine per iodine atom, resulting in the formation of stable iodine-binding phospholipids. The HPLC system with Diol column and acetonitrile/water as a mobile phase was available for separating iodine-binding phospholipids from nonbinding free iodine and for separately eluting iodine-binding phospholipids derived from choline and ethanolamine plasmalogens. Using iodine-125 reagent (1.85 MBq/ml), plasmalogens were detectable at high sensitivity of 10,000-15,000 cpm/nmol, which is more than 1000-fold higher sensitivity than the classical determination with nonradioactive iodine. Plasmalogen concentrations in human plasma were measured with the HPLC system and determined as, on average, 129.1+/-31.3 microM (n=8) in a 1.2 content ratio of choline to ethanolamine plasmalogens, a concentration that nearly agrees with the value reported previously.  相似文献   

13.
Indole and its derivatives undergo smooth conjugate addition onto en-1,4-dione derived from isatin and acetophenone, in the presence of a catalytic amount of molecular iodine in acetonitrile under mild conditions to afford a novel class of 3-(1-(1H-indol-3-yl)-2-oxo-2-phenylethyl)indolin-2-one derivatives in good yields with high degree of 1,4-selectivity. Some of these compounds are found to exhibit modest antibacterial and antifungal properties.  相似文献   

14.
The copolymer which has both ligand sites (4-vinylpyridine) and redox sites (N-(p-vinylbenzyl)-3-carbamoyl-1,4-dihydropyridine) was synthesized by the dithionite reduction of the copoly(4-vinylpyridine-N-(p-vinylbenzyl)-3-carbamoylpyridinium chloride) and the reduction of a central ferric-iron of ferriprotoporphyrin IX by the above-described copolymer was studied spectrophotometrically in dimethyl sulfoxide. The rate of the reduction by the copolymer was much faster than by N-benzyl-3-carbamoyl-1,4-dihydropyridine. This acceleration by the copolymer could be explained by the intramolecular reduction of ferriprotoporphyrin IX which was coordinated by the pyridine residue of the copolymer.  相似文献   

15.
The mechanism by which the fatty acid (1,4)-desaturase of Calendula officinalis produces calendic acid from linoleic acid has been probed through the use of kinetic isotope effect (KIE) measurements. This was accomplished by incubating appropriate mixtures of linoleate and regiospecifically dideuterated isotopomers with a strain of Saccharomyces cerevisiae expressing a functional (1,4)-desaturase. GC-MS analysis of methyl calendate obtained in these experiments showed that the oxidation of linoleate occurs in two discrete steps since the cleavage of the C11-H bond is very sensitive to isotopic substitution (kH/kD = 5.7 +/- 1.0) while no isotope effect (kH/kD = 1.0 +/- 0.1) was observed for the C8-H bond breaking step. These data indicate that calendic acid is produced via initial H-atom abstraction at C11 of a linoleoyl substrate and supports the hypothesis that this transformation represents a regiochemical variation of the more common C12-initiated Delta12 desaturation process.  相似文献   

16.
CenA and Cex are beta-1,4-glycanases produced by the cellulolytic bacterium Cellulomonas fimi. Both enzymes are composed of two domains and contain six Cys residues. Two disulfide bonds were assigned in both enzymes by peptide analysis of the isolated catalytic domains. A further disulfide bond was deduced in both cellulose-binding domains from the absence of free thiols under denaturing conditions. Corresponding Cys residues are conserved in eight of nine other known C. fimi-type cellulose-binding domains. CenA and Cex belong to families B and F, respectively, in the classification of beta-1,4-glucanases and beta-1,4-xylanases based on similarities in catalytic domain primary structure. Disulfide bonds in the CenA catalytic domain correspond to the two disulfide bonds in the catalytic domain of Trichoderma reesei cellobiohydrolase II (family B) which stabilize loops forming the active-site tunnel. Sequence alignment indicates the probable occurrence of disulfides at equivalent positions in the two other family B enzymes. Partial resequencing of the gene encoding Streptomyces KSM-9 beta-1,4-glucanase CasA (family B) revealed five errors in the original nucleotide sequence analysis. The corrected amino acid sequence contains an Asp residue corresponding to the proposed proton donor in hydrolysis catalysed by cellobiohydrolase II. Cys residues which form disulfide bonds in the Cex catalytic domain are conserved in XynZ of Clostridium thermocellum and Xyn of Cryptococcus albidus but not in the other eight known family F enzymes. Like other members of its family, Cex catalyses xylan hydrolysis. The catalytic efficiency (kcat/Km) for hydrolysis of the heterosidic bond of p-nitrophenyl-beta-D-xylobioside is 14,385 min-1.mM-1 at 25 degrees C; the corresponding kcat/Km for p-nitrophenyl-beta-D-cellobioside hydrolysis is 296 min-1.mM-1.  相似文献   

17.
Yenil N  Yüceer L 《Carbohydrate research》2003,338(19):2013-2016
The preparation of 3,5-(E)-dieno-3,5,6,8-tetradeoxy-(S)-1,2-O-trichloroethylidene-alpha-D-glycero-octo-1,4-furano-7-ulose starting from either 1,2-O-(S)-trichloroethylidene-alpha-D-glucofuranose (beta-chloralose) or 1,2-O-(S)-trichloroethylidene-alpha-D-galactofuranose (galactochloralose) and the preparation of methyl 3,5-(E)-dieno-3,5,6-trideoxy-(S)-1,2-O-trichloroethylidene-alpha-D-glycero-hepta-1,4-furano-uronate starting from beta-chloralose are described. Endocyclic double bond formations were realised by the elimination of 3-acetoxy groups using DMF-sodium bicarbonate. This elimination was not successful when the starting compound was 1,2-O-(R)-trichloroethylidene-alpha-D-glucofuranose (alpha-chloralose), where the trichloromethyl group occupies the endo position.  相似文献   

18.
In the present study, we have tested the cytotoxic and DNA damage activity of two novel bis-1,2,4 triazole derivatives, namely 1,4-bis[5-(5-mercapto-1,3,4-oxadiazol-2-yl-methyl)-thio-4-(p-tolyl)-1,2,4-triazol-3-yl]-butane (MNP-14) and 1,4-bis[5-(carbethoxy-methyl)-thio-4-(p-ethoxy phenyl) -1,2,4-triazol-3-yl]-butane (MNP-16). The effect of these molecules on cellular apoptosis was also determined. The in-vitro cytotoxicity was evaluated by a 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide (MTT) assay as well as Trypan blue dye exclusion methods against human acute lymphoblastic leukemia (MOLT4) and lung cancer cells (A549). Our results showed that MNP-16 induced significant cytotoxicity (IC(50) of 3-5 μM) compared with MNP-14. The cytotoxicity induced by MNP-16 was time and concentration dependent. The cell cycle analysis by flow cytometry (fluorescence-activated cell sorting [FACS]) revealed that though there was a significant increase in the apoptotic population (sub-G(1) phase) with an increased concentration of MNP-14 and 16, there was no cell cycle arrest. Further, the comet assay results indicated considerable DNA strand breaks upon exposure to these compounds, thereby suggesting the possible mechanism of cytotoxicity induced by MNP-16. Hence, we have identified a novel molecule (MNP-16) which could be of great clinical relevance in cancer therapeutics.  相似文献   

19.
2-(3-(Naphthalen-2-yl)propanamido)cyclohex-1-enecarboxylic acid and its 6-hydroxynaphthalen-2-yl analogue are well-known hydroxyl-carboxylic acid (HCA) receptor HCA2 agonists. A series of novel aryl derivatives of 2-amidocyclohex-1-ene carboxylic acid that contained rigidity elements, such as an E-double bond, triple bond, and trans or cis-substituted cyclopropane rings, instead of the saturated ethane linker in the amide part of the molecules were designed and synthesized, and the derivatives’ potency for the activation of HCA1, HCA2, and HCA3 receptors by 3′–5′-cyclic adenosine monophosphate (cAMP) assay were evaluated. The SAR studies revealed that the rigidifying of appropriate molecules enabled modulation of the potency and selectivity of the HCA2 receptor activation.  相似文献   

20.
The arylazide 1,4-dihydropyridine (-)-[3H]azidopine binds to a saturable population of sites in guinea-pig heart membranes with a dissociation constant (KD) of 30 +/- 7 pM and a density (Bmax.) of 670 +/- 97 fmol/mg of protein. This high-affinity binding site is assumed to reside on voltage-operated calcium channels because reversible binding is blocked stereoselectively by 1,4-dihydropyridine channel blockers and by the enantiomers of Bay K 8644. A low-affinity (KD 25 +/- 7 nM) high-capacity (Bmax. 21.6 +/- 9 pmol/mg of protein) site does not bind (-)- or (+)-Bay K 8644, but is blocked by high concentrations (greater than 500 nM) of dihydro-2,6-dimethyl-4-(2-isothiocyanatophenyl)-3,5-pyridinedicarboxy lic acid dimethyl ester (1,4-DHP-isothiocyanate) or, e.g., (+/-)-nicardipine. (-)-[3H]Azidopine was photoincorporated covalently into bands of 165 +/- 8, 39 +/- 2 and 35 +/- 3 kDa, as determined by SDS/polyacrylamide-gel electrophoresis. Labelling of the 165 kDa band is protected stereoselectively by 1,4-dihydropyridine enantiomers at low (nM) concentrations and by (-)- and (+)-Bay K 8644, whereas the lower-Mr bands are not. Thus, only the 165 kDa band is the calcium-channel-linked 1,4-dihydropyridine receptor. Photolabelling of the 39 or 35 kDa bands was only blocked by 10 microM-1,4-DHP-isothiocyanate or 50 microM-(+/-)-nicardipine but not by 10 microM-(-)-Bay K 8644. [3H]-1,4-DHP-isothiocyanate binds to guinea-pig heart membranes with a KD of 0.35 nM and dissociates with a k-1 of 0.2 min-1 at 30 degrees C. [3H]-1,4 DHP-isothiocyanate irreversibly labels bands of 39 and 35 kDa which are protected by greater than 10 microM-(+/-)-nicardipine or unlabelled ligand but not by 10 microM-(-)-Bay K 8644. Thus, [3H]-1,4-DHP-isothiocyanate is not an affinity probe for the calcium channel.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号