首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 218 毫秒
1.
Aims: To evaluate the suitability of commercially available Petrifilm? EC plates for enumeration of Escherichia coli from soil. Methods and Results: A confirmed E. coli strain isolated from liquid swine manure was inoculated into sterilized sandy clay loam and loam soils at the concentrations of 102, 103, 105 CFU g?1 of soil. The efficiency of recovery on Petrifilm? EC plates for soils spiked with E. coli was compared with standard membrane filtration techniques on m‐FC basal medium supplemented with 3‐bromo‐4‐chloro‐5‐indoyl‐β‐d ‐glucopyranoside (BCIG) and most probable numbers (MPN) techniques in E. coli medium with 4‐methylumbelliferyl‐β‐d ‐glucuronide (EC‐MUG) broth. Petrifilm? EC and m‐FC (BCIG) methods were then assessed for the ability to recover E. coli from field soils applied with swine manure. No significant differences (P > 0·05) were observed between Petrifilm? EC, m‐FC (BCIG) and MPN methods for the recovery of E. coli from spiked samples, irrespective of soil type. However, recovery of E. coli from manure‐applied field soil samples showed a significant difference (P < 0·05) between the Petrifilm? EC method and the m‐FC method in enumerating E. coli possibly as a result of false positives on m‐FC. Conclusion: The Petrifilm? EC method is suitable for the enumeration of E. coli from soil with a detection limit of 10 CFU g?1 soil. Significance and Impact of the Study: The commercially available Petrifilm? EC method is comparatively low cost, easy to use method for the enumeration of E. coli from soil without the need for further confirmation tests.  相似文献   

2.
Aims: Testing for β‐d ‐glucuronidase activity has become the basis of many methods for the detection of Escherichia coli in both food and water. Used in combination with tests for the presence of β‐d ‐glucuronidase, these tests offer a simple method for simultaneously detecting coliforms and E. coli. The purpose of this study was to determine the effectiveness of several different procedures in detecting β‐d ‐glucuronidase activity and hence in detecting E. coli. Methods and Results: The ability of membrane lactose glucuronide agar (MLGA), Colilert‐18®, MI agar, Colitag® and Chromocult agar to detect β‐d ‐glucuronidase activity was tested with over 1000 isolates of E. coli recovered from naturally contaminated water samples. Four of the media gave very similar results but MLGA failed to detect glucuronidase activity in 15·6% of the cultures tested. Conclusions: MLGA had very poor sensitivity for the detection of β‐d ‐glucuronidase activity in strains of E. coli isolated from naturally contaminated water. This is probably because of the fact that β‐d ‐glucuronidase activity is pH‐sensitive and that acid is formed by E. coli during fermentation of lactose in MLGA. Significance and Impact of the Study: The detection of E. coli in drinking water is the primary test used to establish faecal contamination. The poor sensitivity of MLGA in detecting β‐d ‐glucuronidase activity suggests that this medium and others containing high concentrations of fermentable carbohydrate should not be used for the detection of E. coli.  相似文献   

3.
Aims: A public beach was frequently cited for health advisories because of high Escherichia coli levels, the source suspected to be a paper mill located upstream. This investigation sought to confirm whether or not the paper mill was the pollution source, and to characterize the risk to recreational bathers imposed by the source. Methods and Results: Quantification of E. coli in river water collected at incremental distances showed that paper mill effluent caused elevated E. coli levels in beach samples. Samples collected throughout the mill were variably positive for heterotrophic bacteria, total coliforms and E. coli, but negative for pathogenic E. coli O157 and Salmonella. Escherichia coli O157 or Salmonella spiked into mill samples (4·2 log10 or 5·6 log10 CFU per 100 ml, respectively) fell below detection levels within 14–24 h in raw (unaltered) samples, while in heat‐sterilized replicates, the counts remained at initial levels or increased over 36 h. Conclusions: Pathogenic E. coli O157 and Salmonella were not isolated from paper mill samples. The absence of native bacteria allowed the survival of pathogens, while their presence accelerated pathogen decline. Significance and Impact of the Study: The co‐existence of paper mill and swimming beach may be reasonable for now in spite of the limitations of an E. coli‐based assay for beach water.  相似文献   

4.
Summary The taxonomy of the species belonging to Enterobacteriaceae has undergone a series of revisions. As a consequence, the new classification has caused the analytical detection methods to be updated. According to the European Drinking Water Directive 98/83/CE coliforms/Escherichia coli have to be determined with the ISO 9308-1 reference method. Many technical drawbacks of the procedure as well as limitations regarding the recent taxonomy of coliforms have been pointed out by laboratories working in water quality control. In our investigation, water was analyzed in parallel with the reference method and the rapid Colilert 18/Quanti-Tray™ system. Phenotypic characteristics of isolates were recorded for the verification of the response of the two methods to the new taxonomic approach. Results obtained with the ISO standard confirmed the limitations of the test. In fact, in addition to difficulties linked to the readability of results, it failed to detect a significant proportion of coliforms and E. coli in water. Furthermore, it allowed the growth of microorganisms belonging to other groups. The Colilert 18/Quanti-Tray™ system detected a qualitatively and quantitatively higher number of target microorganisms. It also provided results in a shorter time, allowing the simultaneous detection of E. coli and coliforms with no further confirmation steps.  相似文献   

5.
Aims:  Zero‐valent iron (ZVI) filters may provide an efficient method to mitigate the contamination of produce crops through irrigation water. Methods:  A field‐scale system was utilized to evaluate the effectiveness of a biosand filter (S), a biosand filter with ZVI incorporated (ZVI) and a control (C, no treatment) in decontaminating irrigation water. An inoculum of c. 8·5 log CFU 100 ml?1 of Escherichia coli O157:H12 was introduced to all three column treatments in 20‐l doses. Filtered waters were subsequently overhead irrigated to ‘Tyee’ spinach plants. Water, spinach plant and soil samples were obtained on days 0, 1, 4, 6, 8, 10, 13 and 15 and analysed for E. coli O157:H12 populations. Results:  ZVI filters inactivated c. 6 log CFU 100 ml?1E. coli O157:H12 during filtration on day 0, significantly (P < 0·05) more than S filter (0·49 CFU 100 ml?1) when compared to control on day 0 (8·3 log CFU 100 ml?1). On day 0, spinach plants irrigated with ZVI‐filtered water had significantly lower E. coli O157 counts (0·13 log CFU g?1) than spinach irrigated with either S‐filtered (4·37 log CFU g?1) or control (5·23 log CFU g?1) water. Soils irrigated with ZVI‐filtered water contained E. coli O157:H12 populations below the detection limit (2 log CFU g?1), while those irrigated with S‐filtered water (3·56 log CFU g?1) were significantly lower than those irrigated with control (4·64 log CFU g?1). Conclusions:  ZVI biosand filters were more effective in reducing E. coli O157:H12 populations in irrigation water than sand filters. Significance and Impact of the Study:  Zero‐valent ion treatment may be a cost‐effective mitigation step to help small farmers reduce risk of foodborne E. coli infections associated with contamination of leafy greens.  相似文献   

6.
The presence of coliform bacteria, faecal coliforms, Escherichia coli, diarrhoeagenic E. coli pathotypes (DEP) and Salmonella were determined in ready‐to‐eat cooked vegetable salads (RECS) from restaurants in Pachuca city, Mexico. The RECS were purchased from three types of restaurants: national chain restaurants (A), local restaurants (B) and small restaurants (C). Two restaurants for each A and B, and three for C, were included. Forty RECS samples were purchased at each A and B restaurant and 20 at each C restaurant. Of the overall total of 220 analysed samples, 100, 98·2, 72·3, 4·1 and 4·1% had coliform bacteria, faecal coliforms, E. coli, DEP and Salmonella, respectively. Identified DEP included enteropathogenic E. coli (EPEC), enterotoxigenic E. coli (ETEC) and Shiga toxin‐producing E. coli (STEC). The EPEC, ETEC and STEC were isolated each from 1·4% of samples. No E. coli O157:H7 were detected in any STEC‐positive samples. The analysis of Kruskal–Wallis anova and median test of microbiological data showed that the microbiological quality of RECS did not differ between the different restaurants (P > 0·05).

Significance and Impact of the Study

This is the first report regarding microbiological quality and Salmonella, enteropathogenic E. coli (EPEC), enterotoxigenic E. coli (ETEC) and Shiga toxin‐producing E. coli (STEC) isolation from ready‐to‐eat cooked vegetable salads from Mexican restaurants. Ready‐to‐eat cooked vegetable salads could be an important factor contributing to the endemicity of EPEC, ETEC and STEC, and Salmonella caused gastroenteritis in Mexico.  相似文献   

7.
Colilert® (Colilert), Readycult® Coliforms 100 (Readycult), Chromocult® Coliform agar ES (Chromocult), and MI agar (MI) are β-galactosidase and β-glucuronidase-based commercial culture methods used to assess water quality. Their analytical performance, in terms of their respective ability to detect different strains of Escherichia coli and total coliforms, had never been systematically compared with pure cultures. Here, their ability to detect β-glucuronidase production from E. coli isolates was evaluated by using 74 E. coli strains of different geographic origins and serotypes encountered in fecal and environmental settings. Their ability to detect β-galactosidase production was studied by testing the 74 E. coli strains as well as 33 reference and environmental non-E. coli total coliform strains. Chromocult, MI, Readycult, and Colilert detected β-glucuronidase production from respectively 79.9, 79.9, 81.1, and 51.4% of the 74 E. coli strains tested. These 4 methods detected β-galactosidase production from respectively 85.1, 73.8, 84.1, and 84.1% of the total coliform strains tested. The results of the present study suggest that Colilert is the weakest method tested to detect β-glucuronidase production and MI the weakest to detect β-galactosidase production. Furthermore, the high level of false-negative results for E. coli recognition obtained by all four methods suggests that they may not be appropriate for identification of presumptive E. coli strains.  相似文献   

8.
Aims:  To explain the basis for false negative β‐glucuronidase reactions seen with culture media containing lactose as a carbon and energy source. Methods and Results:  Escherichia coli strains were assessed for their reactions in culture media containing a β‐d ‐glucuronidase substrate either with or without lactose. An assay was developed to test for the expression of β‐d ‐glucuronidase at pH 5·0 and pH 7·2. Strains of E. coli that gave false negative glucuronidase reactions on media containing lactose generally expressed lower concentrations of the enzyme β‐d ‐glucuronidase than strains that gave positive results, although the difference was by no means consistent. Most strains that were negative on lactose‐containing media expressed virtually no β‐d ‐glucuronidase activity at pH 5·0. Examination of colonies on Membrane lactose glucuronide agar (MLGA) from lightly polluted water showed that c. 10% of the E. coli present failed to yield green colonies on MLGA. Conclusions:  E. coli that failed to produce green colonies on MLGA produced lower levels of β‐d ‐glucuronidase than did strains that formed green colonies, the difference being greater at pH 5·0 than pH 7·2. The false negative rate for E. coli 10% which is similar to that experienced in the study that originally described MLGA. Significance and Impact of the Study:  Strains of E. coli that fail to produce typical colonies on MLGA might produce lower concentrations of the enzyme β‐d ‐glucuronidase. Whilst the enzyme activity is sufficient to be detected at pH 7·2, fermentation of lactose significantly lowers the pH of the medium and can result in reduced enzyme activity and therefore lack of detection. The false negative rate of c. 10% would be difficult to detect in routine laboratories as it would represent 1% or less of yellow colonies being identified as E. coli (assuming E. coli accounts for 10% of the total coliform population in drinking water).  相似文献   

9.
Aims: To better understand and manage the fate and transport of Salmonella in agricultural watersheds, we developed a culture‐based, five tube–four dilution most probable number (MPN) method for enumerating dilute densities of Salmonella in environmental waters. Methods and Results: The MPN method was a combination of a filtration technique for large sample volumes of environmental water, standard selective media for Salmonella and a TaqMan confirmation step. This method has determined the density of Salmonella in 20‐l samples of pond inflow and outflow streams as low as 0·1 MPN l?1 and a low 95% confidence level 0·015 MPN l?1. Salmonella densities ranged from not detectable to 0·55 MPN l?1 for pond inflow samples and from not detectable to 3·4 MPN l?1 for pond outflow samples. Salmonella densities of pond inflow samples were associated with densities of Escherichia coli and faecal enterococci that indicated stream contamination with faeces and with nondetectable pond outflow densities of the faecal indicator bacteria. The MPN methodology was extended to flux determinations by integrating with volumetric measurements of pond inflow (mean flux of 2·5 l s?1) and outflow (mean flux of 5·6 l s?1). Fluxes of Salmonella ranged from 100 to greater than 104 MPN h?1. Conclusions: This is a culture‐based method that can detect small numbers of Salmonella in environmental waters of watersheds containing animal husbandry and wildlife. Significance and Impact of the Study: Applying this method to environmental waters will improve our understanding of the transport and fate of Salmonella in agricultural watersheds, and can be the basis of valuable collections of environmental Salmonella.  相似文献   

10.
Jagals  P.  Grabow  W. O. K.  Griesel  M.  Jagals  C. 《Quantitative Microbiology》2000,2(2):129-140
Selected methods recommended in national and international water quality guidelines were compared in tests on environmental waters with different levels of faecal pollution. The following methods yielded no statistically significant differences in counts of faecal coliforms and Escherichia coli in raw sewage, semi-treated effluent, polluted urban run-off and stored potable water: Membrane filtration (MF) using MFc Agar or Chromocult Coliform Agar containing X-glucuronide, or a miniaturised microtitre-plate Most Probable Number (MPN) assay using a liquid growth medium containing chromogenic 4-methyl-umbelliferyl--D-glucuronide. Significant differences were, however, found between the Chromocult and the other methods for unpolluted river water. Counts of faecal enterococci in raw sewage, semi-treated effluent and polluted urban run-off, obtained by the following methods did not differ significantly: MF using M-Enterococcus Agar, Bile-Esculin Agar or Enterococcus Selective Agar, or a microtitre-plate MPN method with a liquid growth medium containing chromogenic 4-methyl-umbelliferyl--D-glucoside. Significant differences were, however, found between the MPN and the other methods for unpolluted river water and stored potable water. MF using Chromocult Coliform Agar had useful benefits for the simultaneous enumeration of coliforms and E coli. However, in view of cost and practical considerations, MF using MFc Agar or M-Enterococcus Agar proved the methods of choice for respectively enumerating faecal coliforms and E coli, or faecal enterococci, in analyses for general water quality surveillance purposes.  相似文献   

11.
Aim: The automated TEMPO system (bioMerieux) is based on the most probable number (MPN) method for the enumeration of micro‐organisms in foods. In this study, we evaluated the performance of the TEMPO system as a diagnostic tool in comparison with the standard method in processed soy products. Methods and Results: A verification study was conducted using artificially contaminated soy product samples such as soy protein isolate, water‐soluble soy polysaccharides, soy milk and processed soy food. Five types of micro‐organisms were analysed using the automated MPN method (total aerobic bacteria, total coliforms, Enterobacteriaceae, yeast and mould and Staphylococcus aureus) vs the standard plate method. The results from each of the methods were highly correlated (r > 0·95). Naturally contaminated processed soy products on the market were also studied. There were no discrepancies observed between the respective methods. Conclusions: TEMPO methods were equivalent to the corresponding standard plate methods with very good rates of agreement. Significance and Impact of the Study: The automated MPN method is more practical and reliable for in‐house microbiological testing in processed soy products.  相似文献   

12.
Aims:  The focus of this work was to compare the survival of Escherichia coli introduced into streambed sediments from goose, deer and bovine faeces vs indigenous E. coli. Methods and Results:  The survival experiments were conducted in flow‐through chambers for 32 days using two sediments (mineral and organic) obtained from a first‐order creek in Maryland. Bovine, goose and deer faeces were collected fresh and diluted or enriched so that added E. coli and indigenous populations were equivalent. Escherichia coli and total coliforms were enumerated using the Colilert‐18 Quanti‐Tray system. Patterns of E. coli survival and inactivation rates were virtually identical for indigenous strains in both mineral and organic sediments. The addition of E. coli strains from bovine, goose or deer faeces had relatively little impact on final E. coli concentrations, with the exception of deer‐borne E. coli populations in the organic sediment. Conclusion:  These results indicate that indigenous sediment‐borne E. coli strains are generally, or more, persistent than those deposited into sediments, including wildlife. Significance and Impact of the Study:  This is the first study on the survival of E. coli originating from wildlife faeces, in sediments, as opposed to bovine faeces or laboratory‐cultured strains. As wildlife are likely to be the primary source of E. coli in most non agricultural watersheds, an understanding of the persistence of these strains is important to understanding microbial water quality.  相似文献   

13.
Aims: Our main objective was to optimize the enrichment of Escherichia coli O26 in raw milk cheeses for their subsequent detection with a new automated immunological method. Methods and Results: Ten enrichment broths were tested for the detection of E. coli O26. Two categories of experimentally inoculated raw milk cheeses, semi‐hard uncooked cheese and ‘Camembert’ type cheese, were initially used to investigate the relative efficacy of the different enrichments. The enrichments that were considered optimal for the growth of E. coli O26 in these cheeses were then challenged with other types of raw milk cheeses. Buffered peptone water supplemented with cefixim–tellurite and acriflavin was shown to optimize the growth of E. coli O26 artificially inoculated in the cheeses tested. Despite the low inoculum level (1–10 CFU per 25 g) in the cheeses, E. coli O26 counts reached at least 5·104 CFU ml?1 after 24‐h incubation at 41·5°C in this medium. Conclusions: All the experimentally inoculated cheeses were found positive by the immunological method in the enrichment broth selected. Significance and Impact of the Study: Optimized E. coli O26 enrichment and rapid detection constitute the first steps of a complete procedure that could be used in routine to detect E. coli O26 in raw milk cheeses.  相似文献   

14.
15.
Aims: Developing a rapid method for detection of faecal pollution is among the critical goals set forth by the Environmental Protection Agency in its revision of water quality criteria. The purpose of this study is to devise and test covalently linked antibody–bead complexes for faecal indicator bacteria (FIB), specifically Escherichia coli or Enterococcus spp., in measuring water quality in freshwater and marine systems. Methods and Results: Covalently linked complexes were 58–89% more robust than antibody–bead complexes used in previous studies. Freshwater and marine water samples analysed using covalently linked immunomagnetic separation/adenosine triphosphate quantification technique (Cov‐IMS/ATP) and culture‐based methods yielded good correlations for E. coli (R = 0·87) and Enterococcus spp. (R = 0·94), with method detection limits below EPA recreational water quality health standards for single standard exceedances (E. coli– 38 cells per 100 ml; Enterococcus spp. – 25 cells per 100 ml). Cov‐IMS/ATP correctly classified 87% of E. coli and 94% of Enterococcus spp. samples based on these water quality standards. Cov‐IMS/ATP was also used as a field method to rapidly distinguish differential loading of E. coli between two stream channels to their confluence. Conclusions: Cov‐IMS/ATP is a robust, in‐field detection method for determining water quality of both fresh and marine water systems as well as differential loading of FIB from two converging channels. Significance and Impact of the Study: To our knowledge, this is the first work to present a viable rapid, in‐field assay for measuring FIB concentrations in marine water environments. Cov‐IMS/ATP is a potential alternative detection method, particularly in areas with limited laboratory support and resources, because of its increased economy and portability.  相似文献   

16.
Aims: The specificity of a method for the enumeration of Escherichia coli (chromocult agar, CC) was tested using freshwater samples from a tropical area (Cuba Island) by isolating colonies and identifying them with API (Appareillage et procédé d’identification) strips. Enumerations of E. coli by the most probable number (MPN) microplate method were compared with counts on chromogenic and fluorogenic agar media [CC, rapid E. coli (REC), fluorocult] in tropical and temperate freshwater samples. Methods and Results: A high percentage of specificity (95·7%) for the CC agar enumeration of E. coli was observed. High regression coefficients (log‐log linear regressions) were found between E. coli counts on agar media and by the MPN method. In the tropical environment, counts with REC medium were significantly different from those obtained with the other methods. MPN counts were found to be significantly higher than those obtained using the plate counts methods in the temperate environment. Conclusions: Escherichia coli enumeration methods based on glucuronidase activity appear to be suitable for the evaluation of microbiological quality in the tropical environment featured in this study. Significance and Impact of the Study: The methods for the enumeration of E. coli tested in this study should help improve the evaluation of microbiological contamination of Cuban freshwaters.  相似文献   

17.
Propidium monoazide is a DNA‐intercalating dye. PMA‐qPCR has been reported as a novel method to detect live bacteria in complex samples. In this study, this method was used to monitor the sterilization effects of UHP, ultrasound and high PEF on Escherichia coli O157:H7. Our results showed that all three sterilization techniques are successful to kill viable E. coli O157:H7 cells under their appropriate conditions. PMA‐qPCR can effectively monitor the amount of DNA released from viable E. coli O157:H7 cells, and the results from PMA‐qPCR were highly consistent with those from plate counting after treatment with UHP, ultrasound and high PEF. The maximal ΔCt between PMA‐qPCR and qPCR obtained in this study was 10·39 for UHP, 5·76 for ultrasound and 2·30 for high PEF. The maximal sterilization rates monitored by PMA‐qPCR were 99·92% for UHP, 99·99% for ultrasound and 100% for high PEF. Thus, PMA‐qPCR can be used to detect the sterilization effect on food and water supplies after treatment with UHP, ultrasound and high PEF.

Significance and Impact of the Study

The reliable detection of viable foodborne pathogenic bacteria in water and food is of great importance in our daily life. However, the traditional bacteria cultivation‐based methods are time‐consuming and difficult to monitor all viable bacteria because of the limitation of cultivation conditions. This study demonstrated that PMA‐qPCR technique is very effective to monitor viable E. coli O157:H7 after sterilization and will help to monitor the viable bacteria in food and water.  相似文献   

18.
The new United States Drinking Water Regulations state that water systems must analyze for Escherichia coli or fecal coliforms on any routine or repeat sample that is positive for total coliforms. The proposed methods for the detection of E. coli are based on beta-glucuronidase activity, using the fluorogenic substrate 4-methylumbelliferyl beta-D-glucuronide (MUG). This study was conducted to determine whether beta-glucuronidase negative E. coli were present in significant numbers in environmental waters. Two hundred and forty E. coli cultures were isolated from 12 water samples collected from different environmental sources. beta-glucuronidase activity was determined using lauryl tryptose broth with MUG, EC broth with MUG, and the Autoanalysis Colilert (AC) procedure. The isolates were also evaluated by the standard EC broth gas fermentation method for fecal coliforms. The results confirm that assaying for the enzyme beta-glucuronidase utilizing the MUG substrate is an accurate method for the detection of E. coli in environmental waters.  相似文献   

19.
Aims: Survival of Escherichia coli O157:H7 and nonpathogenic E. coli on spinach leaves and in organic soil while growing spinach in a growth chamber was investigated. Methods and Results: Spinach plants were maintained in the growth chamber at 20°C (14 h) and 18°C (10 h) settings at 60% relative humidity. Five separate inocula, each containing one strain of E. coli O157:H7 and one nonpathogenic E. coli isolate were applied to individual 4‐week‐old spinach plants (cultivar ‘Whale’) grown in sandy soil. Leaf and soil inocula consisted of 100 μl, in 5 μl droplets, on the upper side of leaves resulting in 6·5 log CFU plant?1 and 1 ml in soil, resulting in 6·5 log CFU 200 g?1 soil per plant. Four replicates of each plant shoot and soil sample per inoculum were analysed on day 1 and every 7 days for 28 days for E. coli O157:H7 and nonpathogenic E. coli (by MPN) and for heterotrophic plate counts (HPC). Escherichia coli O157:H7 was not detected on plant shoots after 7 days but did survive in soil for up to 28 days. Nonpathogenic E. coli survived up to 14 days on shoots and was detected at low concentrations for up to 28 days. In contrast, there were no significant differences in HPC from days 0 to 28 on plants, except one treatment on day 7. Conclusions: Escherichia coli O157:H7 persisted in soil for at least 28 days. Escherichia coli O157:H7 on spinach leaves survived for less than 14 days when co‐inoculated with nonpathogenic E. coli. There was no correlation between HPC and E. coli O157:H7 or nonpathogenic E. coli. Significance and Impact of the Study: The persistence of nonpathogenic E. coli isolates makes them possible candidates as surrogates for E. coli O157:H7 on spinach leaves in field trials.  相似文献   

20.
Aims: Greenhouse and field trials were conducted under different agronomic practices and inoculum doses of environmental Escherichia coli and attenuated E. coli O157:H7, to comparatively determine whether these factors influence their survival on leaves and within the rhizosphere. Methods and Results: Hydroponic conditions: E. coli spray‐inoculated at log 4 CFU ml?1 was recovered from leaf surfaces at a mean population of 1·6 log CFU g?1 at 15 days. E. coli O157:H7 sprayed at log 2 or 4 CFU ml?1 levelled off on spinach leaf surfaces at a mean average population of 1·4 log CFU g?1 after 14 days, regardless of initial dose. Quantitative recovery was inconsistent across leaf developmental age. Field conditions: Average populations of E. coli O157:H7 spray‐inoculated at log 1·45 or 3·4 CFU m?2 levelled off at log 1·2 CFU g?1 over a 14‐day period. Pathogen recovery from leaves was inconsistent when compared to regularly positive detection on basal shoot tissue. Pathogen recovery from soil was inconsistent among sampling locations. Moisture content varied up to 40% DW and was associated with 50% (P < 0·05) decrease in positive locations for E. coli O157:H7 but not for E. coli. Conclusions: Overall, similar populations of environmental E. coli and E. coli O157:H7 were recovered from plants despite differences in inoculum dose and agronomic conditions. Strain source had a significant impact on the quantitative level and duration of survival on leaves and in soil. Water availability appeared to be the determinant factor in survival of E. coli and E. coli O157:H7; however, E. coli showed greater environmental fitness. Significance and Impact of the Study: Persistence of surrogate, indicator E. coli and E. coli O157:H7, irrespective of variable growing conditions in spinach is predominantly limited by water availability, strain source and localization within the plant. These findings are anticipated to ultimately be adopted into routine and investigative pathogen testing protocols and mechanical harvest practices of spinach.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号