首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
An investigation was made to determine the effect of anthocyaninin red-colored evergreen leaves during the mid-winter on waterproton NMR relaxation times (T1). Water contents, anthocyanincontentsand histologic localization of red-coloration in mesophyllswere determined by using both red-colored and green leaves fromthe same branches of Rhododendron, Viburnum and Mahonia, respectively.Although the decrease of water contents in the red-colored leavesin Mahonia was insignificant, decreases in the former two specieswere clearly observable. T1 differences between red-coloredand green leaves for the three species were insignificant. Increasesof anthocyanin contents and histologic localization of red colorationin mesophylls for the red-colored leaves were more pronouncedin Rhododendron and Viburnum than in Mahonia. These observationssuggest that the pronounced increases of histologic localizationof red-colored mesophyll cells and anthocyanin contents in red-coloredleaves for the former two species contribute to maintenanceof T1 relaxation times in spite of the marked decrease of watercontents in leaves. It is assumed that the increase of localizationareas of red-colored parenchymatous cells in mesophylls is moreeffective than the total contents of anthocyanins in leavestowards the maintenance of the T1 level in red-colored leaves,and this appears to be dependent on the vacuolar compartmentationof anthocyanin in mesophyll cells. (Received August 3, 1991; Accepted December 12, 1991)  相似文献   

2.
The relationship between high temperature stress injury andtemperature dependence of the transverse relaxation time (T2)of leaf water was examined using NMR in four cultivars of wheatdiffering in their sensitivity to high temperature stress. TheT2declined with increasing temperature between 25 and 35 °C.A comparison of relative injury based on electrolyte leakageand T2, between 40 and 50 °C, indicated that while membranepermeability increased with increasing temperature there wasan increase in T2until 44 and 48 °C in susceptible and tolerantcultivars respectively, followed by a sharp decline. This patternof change in T2with increasing temperature was consistent whetherthe same or different samples were used for each treatment temperature.Loss of temperature dependence of T2after heat killing indicatedirreversible changes in T2, probably due to the loss of membraneintegrity. Heat tolerant varieties, which suffered less membraneinjury, had a higher T2compared to susceptible varieties. Tolerantvarieties also maintained the T2of leaf water protons to highertemperatures than did sensitive varieties. This NMR-based, non-invasive,rapid technique could be used to efficiently detect heat injuryin leaf tissues. Copyright 1999 Annals of Botany Company Membrane integrity, transverse relaxation time, high temperature stress, Triticum aestivum L.  相似文献   

3.
Thermally stimulated depolarization current (TSDC) measurementson plant leaves and stems of six different species in the temperaturerange of 77–300 K revealed the existence of three differentdispersions. The first dispersion at low temperatures, whichis attributed to the relaxation of loosely bound water moleculeswas studied in detail in an attempt to obtain information onthe possible structures of water in plant tissue. Its characteristicsdiffer for various plant tissues, indicating a different organizationof water in those plant tissues. The dispersion can be describedby a continuous distribution of relaxation times t with boththe activation energy W and the pre-exponential factor To inthe Arrhenius equation being distributed parameters. The spectrumof W and To was determined for E. globulus and O. europaea leafsamples. The mean values of T and W are larger and that of Tosmaller than the corresponding values for free (bulk) water.The results favour a model of the organization of water in clustersrather than in multilayers and indicate a stronger binding ofwater in living systems. Key words: Dielectric relaxation, distribution of relaxation times, free and bound water  相似文献   

4.
The influence of a water stress or foliar ABA spraying pretreatmenton stomatal responses to water loss, exogenous ABA, IAA, Ca2+,and CO2 were studied using excised leaves of Solanum melongena.Both pretreatments increased stomatal sensitivity of water loss,in the presence and absence of CO2, but decreased stomatal sensitivityto exogenous ABA. CO2 greatly reduced the effect of exogenouslyapplied ABA. IAA decreased leaf diffusion resistance for controland ABA sprayed leaves, but did not influence the LDR of previouslywater-stressed leaves. CA2+ did not influence LDR of any leavesof any treatments. Key words: Water stress, stomatal response, pretreatments  相似文献   

5.
Responses of the leaves of five species of azalea to environmentalstresses, such as freezing, dehydration, high temperature andsalt spray, were measured in terms of water proton NMR relaxationtimes (T1), supercooling ability, and water content. Three subtropicalspecies (R. scabrum cv. Shounoshin, R. eriocarpum and R. tashiroivar. lasiophyllum) and two northern species (R. indicum cv.Kumano-satsuki and R. yedoense f. poukhanense), which originatedin different ecological habitats, showed characteristic behaviorsin terms of T1 relaxation times. In general, a species witha large change in T1 is more stress-sensitive than a speciesshowing the opposite tendency. The relative sensitivity to variousstresses of each species appears to be related to the severityof conditions in its natural habitat. It seems possible thatthose species of azalea with higher sensitivity to a particularsingle stress may also exhibit higher sensitivity to severalor even most stresses, and vice versa. (Received August 27, 1992; Accepted February 26, 1993)  相似文献   

6.
This paper reports the contents of foliar metabolites of Tibouchina pulchra (Melastomataceae) in (a) galls induced by a lepidopteran, (b) remaining parts of the galled leaf after gall removal, (c) leaves opposite to the galled leaf, and (d) leaves of non-infested stem branches (control). The parameters assayed were soluble phenols, flavonoids, tannins, lignins, fibers, soluble carbohydrates, lipids and organic nitrogen. Differences in the parameters assayed were evaluated using Principle Components Analysis. Compared to other tissues, galls showed significantly higher contents of soluble phenols, tannins, lignins, fibers, soluble carbohydrates and lipids, and significantly lower contents of flavonoids and organic nitrogen. Apart from gall tissues, in most cases no significant differences were detected in the quantitative analyses among the leaf tissues assayed. Flavonols and flavones were not detected in galls. Other tissues revealed a similar flavonoid pattern, characterized by 3-O-monoglycosides of kaempferol, myricetin and quercetin. A luteolin glycoside was obtained exclusively from control leaves. Carbohydrate amounts are lower in the foliar tissues closer to the galls than in non-galled tissues. Palmitic acid was essentially the sole fatty acid found in all tissues analysed. The high lipid content of the galls suggests that such substances represent the main energy source for the insect, and suggests that the studied galls could be classified as cynipid galls. The observed metabolic changes taking place in the galls strengthen the hypotheses that galls behave as new organs, operating a metabolic machinery of their own.  相似文献   

7.
The longitudinal relaxation time (T1) of water protons in floretsof R. ? akebono flower buds was measured with a pulse NMR spectrometerto determine the relationship of T1 to water content and coldhardiness (supercooling ability). Seasonal changes of T1 inflorets were closely correlated with water content and supercoolingability of florets. T1 of florets was short for acclimated budshaving a low water content and long for non-acclimated budshaving a high water content. Flower buds collected in Novemberand stored at 0 and 5?C for 4 weeks had shorter T1 values thanbuds stored at 10?C even though the floret water content andsupercooling ability were similar. Thus, the short T1 of coldacclimated buds hardened naturally or by storage at low temperaturesis due to a combination of both reduced water content and temperature. (Received August 27, 1983; Accepted May 26, 1984)  相似文献   

8.
Agrostis capillaris L.5, Festuca vivipara L. and Poaalpina L.were grown in outdoor open-top chambers at either ambient (340 3µmol mol–1) or elevated (6804µmol mol–1)concentrations of atmospheric carbon dioxide (CO2) for periodsfrom 79–189 d. Photosynthetic capacity of source leaves of plants grown atboth ambient and elevated CO2 concentrations was measured atsaturating light and 5% CO2. Dark respiration of leaves wasmeasured using a liquid phase oxygen electrode with the buffersolution in equilibrium with air (21% O2, 0.034% CO2). Photo-syntheticcapacity of P. alpina was reduced by growth at 680 µmolmol–1 CO2 by 105 d, and that of F. vivipara was reducedat 65 d and 189 d after CO2 enrichment began, suggesting down-regulationor acclimation. Dark respiration of successive leaf blades ofall three species was unaltered by growth at 680 relative to340 µmol mol–1 CO2. In F. vivipara, leaf respirationrate was markedly lower at 189 d than at either 0 d or 65 d,irrespective of growth CO2 concentration. There was a significantlylower total non-structural carbohydrate (TNC) concentrationin the leaf blades and leaf sheaths of A. capillaris grown at680µmol mol–1 CO2. TNC of roots of A. capillariswas unaltered by CO2 treatment. TNC concentration was increasedin both leaves and sheaths of P. alpina and F. vivipara after105 d and 65 d growth, respectively. A 4-fold increase in thewater-soluble fraction (fructan) in P. alpina and in all carbohydratefractions in F. vivipara accounted for the increased TNC content. In F. vivipara the relationship between leaf photosyn-theticcapacity and leaf carbohydrate concentration was such that therewas a strong positive correlation between photosynthetic capacityand total leaf N concentration (expressed on a per unit structuraldry weight basis), and total nitrogen concentration of successivemature leaves reduced with time. Multiple regression of leafphotosynthetic capacity upon leaf nitrogen and carbohydrateconcentrations further confirmed that leaf photosynthetic capacitywas mainly determined by leaf N concentration. In P. alpina,leaf photosynthetic capacity was mainly determined by leaf CHOconcentration. Thus there is evidence for down-regulation ofphotosynthetic capacity in P. alpina resulting from increasedcarbohydrate accumulation in source leaves. Leaf dark respiration and total N concentration were positivelycorrelated in P. alpina and F. vivipara. Leaf dark respirationand soluble carbohydrate concentration of source leaves werepositively correlated in A. capillaris. Changes in source leafphotosynthetic capacity and carbohydrate concentration of plantsgrown at ambient or elevated CO2 are discussed in relation toplant growth, nutrient relations and availability of sinks forcarbon. Key words: Elevated CO2, Climate change, grasses, carbohydrate partitioning, photosynthesis, respiration  相似文献   

9.
Water protons in hypocotyl tissues from etiolated seedlingsof Vigna radiata that were exposed to temperature stress showedcharacteristic relaxation behaviors for 1H-NMR. Cold stresstreatment (0C) caused gradual prolongation of NMR relaxationtimes (T1). After exposure of tissues to cold stress for 24h, T1 returned to the initial value as a result of subsequentincubation at normal temperature (20C). By contrast, heat stresstreatment (40C) induced a time-dependent decrease in T1, whichdid not return completely to the initial value upon subsequentincubation at 20C after exposure to heat stress for 4 h. Weexamined changes in various physical factors that influencethe response of T1 to temperature stress, namely, water contentand the concentrations of protein, diamagnetic (K+, Na+, Ca2+and Mg2+) and paramagnetic (Mn2+ and Fe2+) ions in the tissues.From the relationships between T1 and these factors in vitro,we could not interpret the responses of T1 to the temperaturestress only in terms of a change in water content. A synergisticeffect of an Mn2+ -protein complex and pH might be essentialfor the mechanism of changes in T1 that are due to cold stress.The influence of heat stress on structural water in tissuesis discussed in terms of water-protein interactions. (Received December 28, 1992; Accepted May 6, 1993)  相似文献   

10.
MARSHALL  B.; VOS  J. 《Annals of botany》1991,68(1):33-39
Measurements of the rate of light-saturated photosynthesis (Pmax)were made on terminal leaflets of potato plants growing in cropssupplied with 0, 3, 6, 12, 24 and 36 g N m–2. Measurementswere made between 100 and 154 d after planting. Two types ofleaf were selected—the fourth leaf on the second-levelbranch (L4, B1) and the youngest terminal leaflet that was measurable(LYM). Later, the total nitrogen concentration of each leaflet(NL) was measured. A linear regression between Pmax and NL,common to both leaf positions, explained 68.5% of the totalvariation. With L4, B1 leaves there was a significant improvementin the proportion of variation explained when regressions withseparate intercepts and a common slope were fitted to individualfertilizer treatments. These results suggest that an increasingproportion of leaf nitrogen was not associated with the performanceof the photosynthetic system with increasing nitrogen supply.This separation between nitrogen treatments was not as clearfor LYM leaves. Stomatal conductance to transfer of water vapourwas neither influenced by leaf position nor directly by nitrogensupply. Rather conductance declined in parallel with the declinein photosynthetic capacity. Solanum tuberosum, potato, nitrogen, photosynthesis, stomatal conductance, leaf  相似文献   

11.
Temperature dependence of longitudinal relaxation times (T1)of water protons in flower buds of six azalea species differingin cold hardiness and ecological distribution was investigatedby pulse nuclear magnetic resonance spectroscopy. Thermal hysteresiswas observed for T1 following a slow freeze-thaw cycle. TheT1 ratio (the ratio obtained from the difference between theoriginal T1 value in an unfrozen sample and the final T1 aftera freeze-thaw treatment, both at 20C, divided by the originalT1) was closely correlated with the viability of florets innon-acclimated buds of R. kiusianum. If the buds were frozento a lethal temperature and then thawed to 20C, the T1 ratioincreased. The T1 ratios of acclimated winter buds for the sixspecies used were correlated with the level of cold hardiness(supercooling ability of florets determined by differentialthermal analysis). The T1 ratio of deacclimated spring buds,especially those from hardier species, markedly increased uponcooling to a lethal temperature. Species differences observedin acclimated winter buds disappeared upon deacclimation. TheT1 ratio appears to be related to the viability of florets andthe degree of freezing damage (membrane disruption) in florets. (Received December 28, 1984; Accepted May 24, 1985)  相似文献   

12.
The Effect of Temperature on Leaf Appearance in Rice   总被引:10,自引:3,他引:10  
Temperature is the principal environmental determinant of cropleaf appearance. The objective of this study is to analyse whetherthere are different effects of day temperature (TD) and nighttemperature (TN) on main-stem leaf appearance in rice (OryzasativaL.). Plants of 12 rice cultivars were grown at five constant temperatures(22, 24, 26, 28 and 32 °C) and four diurnally fluctuatingtemperatures (TD/TN: 26 /22, 30 /22, 22 /26 and 22 /30 °C)with a constant photoperiod of 12hd-1. The leaf appearance onthe main stem was measured. A constant change in leaf appearance rate was observed duringontogeny. The relation between the number of emerged leavesand days from seedling emergence was described by a power-lawequation with only one cultivar-specific parameter. Values forthis parameter were estimated for the five constant temperaturetreatments, and the relation between this parameter and temperaturewas quantified by a nonlinear model. Leaf appearance for thefour fluctuating temperature treatments could be accuratelypredicted on the basis of these relations in each cultivar.This indicated that there were no specific effects ofTDandTNonleaf appearance in rice, in contrast with phenological developmentto flowering. The optimum temperature for leaf development wasfound to be substantially higher than for development to flowering. The final main-stem leaf number differed with diurnal temperatureconditions. When a diurnal temperature delayed flowering, itincreased the leaf number as well. This might explain whyTDandTNhada different effect on development to flowering but not on leafdevelopment. Oryza sativa; rice; leaf appearance; leaf number; day and night temperature  相似文献   

13.
Plant canopies can be considered as assemblages of leaves, stemsand fruits growing in zones of differing irradiance demarcatedby contours of mean irradiance as measured on a horizontal surface. The following general equations have been derived to calculatethe leaf area (LI) and the canopy volume (CVI) in zones externalto any chosen contour of mean irradiance: (1) LI = ((1nl)/(–K)(I–Tf) or leaf area index (LAI) if this is less (2) CVI = LI/(leaf area density m2 m–2), where I is the specified value of irradiance (horizontal surface)expressed as a decimal fraction of that above the canopy, Kis the appropriate extinction coefficient and Tf is the proportionof the total of available radiation which, if the canopy isdiscontinuous, would reach the ground by passing through gapsbetween the discrete canopy units. Where the canopy is continuousTf is zero so expression (1) simplifies to L1 = 1n I/–K(or LAI if this is less). For a range of model hedgerow orchards of varying dimensions,spacings and LAIs, it has been shown that the use of these equationsgives very similar results to those obtained by detailed calculationof light penetration. They therefore seem to be of potentialuse in calculating both potential dry-matter production by discontinuouscanopies of any type and, in the case of orchard fruit crops,the potential effect of changes in tree size, leaf area density,spacing etc. on the canopy volume in which irradiation is adequatefor fruit bud initiation and fruit colour development. light distribution, discontinuous canopy, irradiance contours, leaf area index, orchards  相似文献   

14.
Dwarf french beans (Phaseolus vulgaris var. Canadian Wonder)were grown in chambers at 25?C with the roots aerated at 20per cent oxygen and tops variously maintained at: T1 O2 0.21;CO2 270?10–6: T2; O2 0.05, CO2, CO2 270?10–6: T3;O2 0.21; CO2 550?10–6. Experiment 1 (T1 and T2) lasted2 weeks: Experiment 2 (T1 T2 and T3) only one week. Hourly estimatesof CO2 uptake were made by gas analysis and weekly estimatesof fresh weight, dry matter in tops and roots, and leaf area,by sampling. Light intensity was 80 W m–2 of photosyntheticallyactive radiation. An attempt was made to explain the results in terms of a simplelight absorption model such that where dV/dt is the rate of CO2 uptake per plant, ßis the photosynthetic efficiency, I0 is the incident light intensity,f is the fraction of incident light absorbed by unit leaf layerand L is the leaf area index. The analysis showed that ß(T2)was at least double ß(T1), whilst f(T2) was smallerthan f(T1) at a given leaf area. The results also required thatthroughout the period of the experiment, fL(T1)=fL(T2) at anygiven time, i.e. the treatment with the larger leaf area (T2)has the smaller value of f, and therefore intercepts less lightper unit leaf area. This could be advantageous for plant growth,but requires further experiments. The photosynthetic rates per unit leaf are about 40 per centgreater in T2 than T1. Over the relatively short period of the experiment the resultsare adequately described by U=btn, where U is the accumulatedcarbon dioxide uptake, b is related to the photosynthetic efficiency(different for the differing treatments), and n is a constant(similar for all treatments). This relationship with time isbelieved to be a relationship with accumulated radiation, forthe light was constant throughout the experiments. Comparisons of carbon fixed (measured gas uptake) and dry matteraccumulation (sampling) show great scatter with an average valueof 0.43. The first week's results were generally smaller thanthis value and the second week's greater. Energy fixation as a fraction of photosynthetically active radiationon the ground area covered by the plants ranged from 3.5 to10 per cent. The results from treatment T3 were similar to T2 suggestingthat increasing CO2 concentration decreases the growth inhibitionat 21 per cent O2.  相似文献   

15.
The effects of nitrogen (N) availability on cell number andcell size, and the contribution of these determinants to thefinal area of fully expanded leaves of sunflower (Helianthusannuus L.) were investigated in glasshouse experiments. Plantswere given a high (N =315 ppm) or low (N=21 ppm) N supply andwere transferred between N levels at different developmentalstages (5 to 60% of final size) of target leaves. The dynamicsof cell number in unemerged (< 0.01 m in length) leaves ofplants growing at high and low levels of N supply were alsofollowed. Maximum leaf area (LAmax) was strongly (up to two-fold)and significantly modified by N availability and the timingof transfer between N supplies, through effects on leaf expansionrate. Rate of cell production was significantly (P<0.05)reduced in unemerged target leaves under N stress, but therewas no evidence of a change in primordium size or in the durationof the leaf differentiation–emergence phase. In fullyexpanded leaves, number of cells per leaf (Ncell), leaf areaper cell (LAcell) and cell area (Acell) were significantly reducedby N stress. WhileLAcell and Acellresponded to changeover treatmentsirrespective of leaf size, significant (P<0.05) changes inNcellonly occurred when the changeover occurred before the leafreached approx. 10% of LAmax. There were no differential effectsof N on numbers of epidermal vs. mesophyll cells. The resultsshow that the effects of N on leaf size are largely due to effectson cell production in the unemerged leaf and on both cell productionand expansion during the first phase of expansion of the emergedleaf. During the rest of the expansion period N mainly affectsthe expansion of existing cells. Cell area plasticity permitteda response to changes in N supply even at advanced stages ofleaf expansion. Increased cell expansion can compensate forlow Ncellif N stress is relieved early in the expansion of emergedleaves, but in later phases Ncellsets a limit to this response.Copyright 1999 Annals of Botany Company Helianthus annuus, leaf expansion, leaf cell number, leaf cell size, nitrogen, leaf growth, sunflower.  相似文献   

16.
The rate parameters R1, R2, I/LI and I/t0.5, which characterizethe growth in area of successive main-stem leaves, probablyall have the same temperature response. Temperature thereforeonly operates on the time scale. Water stress reduces both therelative growth rate and the advance of developmental age, thelatter however to a lesser extent than the former. The effectof root restriction is explained as resulting from mineral shortage. Gossypium hirsutum L., cotton, leaf growth, leaf initiation, relative growth rate, temperature, light, water stress, root restriction  相似文献   

17.
Distribution of Endogenous Gibberellins in Vegetative Shoots of Rice   总被引:5,自引:0,他引:5  
Levels of endogenous gibberellins in rice seedlings (Oryza sativaL., cv. Nipponbare) were compared between young and old leavesat the 4- and 5-leaf stages. The levels of GA1, GA19 and GA53were higher in the youngest leaf than in older leaves at the5-leaf stage, but they did not differ significantly betweenthe leaf sheath and the leaf blade. At the 4-leaf stage, thelevel of GA1, was highest in the third leaf sheaths which containedyoung elongating tissues. These results indicate that gibberellinsare synthesized in young vegetative tissues to promote theirelongation growth. The levels of GA1 in the youngest leaf sheathsof two cultivars of dwarf rice, Tan-ginbozu and Waito-C, wereapproximately 10% of that in the normal rice at the 5-leaf stage.This result could explain the retardation of shoot elongationin these dwarf cultivars. (Received February 15, 1995; Accepted June 1, 1995)  相似文献   

18.
Leaf temperatures (T1) of the parasitic plant Striga hermonthicaare substantially below those of the air (Ta), [TaT1]reaching 7 ?C at Ta = 40 ?C. This results from high rates oftranspiration and the consequent evaporative cooling of theleaf. Application of an antitranspirant, which mechanicallyimpedes foliar loss of water vapour, reduced transpiration andstomatal conductance by 40% and 57%, respectively, and reduced[TaT1] to 2 ?C at Ta = 40 ?C. The temperature sensitivityof photosynthesis in the host-parasite association differed,the optima (Topt) being 37.2 and 40.1 ?C for S. hermonthicaand sorghum, respectively. Once Topt had been exceeded in S.hermonthica net photosynthesis declined rapidly, reaching thelethal limit (Tmax) at 42.6 ?C. S. hermonthica is particularlysensitive to high temperatures and antitranspirant-induced overheatingleads to blackening and shrivelling of the leaf after as littleas 4 h at Ta = 40 ?C. Application of an antitranspirant underfield conditions in the Sudan at Ta = 40 ?C resulted in 28%and 67% reductions in transpiration and stomatal conductance,together with a 5 ?C increase in T1, and subsequent leaf death.In addition to these short-term physiological responses, antitranspirantspraying of the arasite increased the grain and straw yieldof the crop by factors of 3.4 and 2.6, respectively. Antitranspirantsmay have potential use as a method of controlling Striga inthe field. Key words: Striga hermonthica, sorghum, photosynthesis, transpiration, high temperature stress, anti-transpirant  相似文献   

19.
Wheat seedlings {Triticum aestivum L.) were grown on soils withcontrasted resistances to root penetration (measured as penetrometerresistance, Rs. High Rs reduced the rates of leaf appearanceand expansion. Although the duration of expansion was increased,mature leaves were smaller. Underlying changes in leaf anatomywere investigated on cleared mature leaves, focusing on theepidermes. Three leaves were analysed: leaves 1 and 3 whichstarted their development in the embryo, and leaf 5 which wasinitiated on the seedling, after imposition of contrasted soilconditions. In all leaves, high Rs, caused a reduction in maturecell sizes, lengths and widths, and a shift in the relativeproportions of functionally different cell types, with a decreasein the relative proportions of stomata and associated cell types(interstomatal and sister cells) and an increase in the proportionsof unspecialized elongated epidermal cells and of trichomes.In leaves 3 and 5 the number of cellular files across the bladewas also reduced, while in leaf 1 it was similar at the twoRs. These differences between leaves are attributed to differencesin their developmental stage when root stress was first perceived.Remarkably, Rs had no effect (leaf 1) or relatively small effects(leaves 3 and 5) on the total number of cells per file, suggestingthat this parameter is either largely insensitive to variationin root environment, or is programmed at the outset before stresswas perceived at the apex. Key words: Wheat, anatomy, mature epidermis, root impedance  相似文献   

20.
《Journal of Asia》2014,17(2):151-154
Previous studies of the impacts of galls on host leaf photosynthesis do not suggest any general trends, with a reported range of effects from negative to positive. In this study, photosynthetic characteristics such as chlorophyll fluorescence (Fv/Fm), photosynthetic capacity, and stomata conductance were determined in two types of fruit-like galls (red ovoid and green obovate galls) induced by Daphnephila taiwanensis and Daphnephila sueyenae, respectively, in order to investigate whether the number of galls affects the photosynthesis of galled leaves of Machilus thunbergii. In 2008, chlorophyll fluorescence and photosynthetic capacity were negatively correlated with gall numbers, non-significantly and significantly, respectively, whereas stomata conductance was positively but non-significantly correlated with gall numbers. In 2009, photosynthesis capacity and stomata conductance were negatively, but non-significantly, correlated with gall numbers. Results imply that photosynthesis in M. thunbergii leaves is slightly affected by the number of cecidomyiid insect galls, and that the higher the gall number, the greater the negative effect that galls have on host leaf photosynthesis and subsequent infection.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号