共查询到20条相似文献,搜索用时 15 毫秒
1.
Photosynthetic control describes the processes that serve to modify chloroplast membrane reactions in order to co-ordinate the synthesis of ATP and NADPH with the rate at which these metabolites can be used in carbon metabolism. At low irradiance, optimisation of the use of excitation energy is required, while at high irradiance photosynthetic control serves to dissipate excess excitation energy when the potential rate of ATP and NADPH synthesis exceed demand. The balance between pH, ATP synthesis and redox state adjusts supply to demand such that the [ATP]/[ADP] and [NADPH]/[NADP +] ratios are remarkably constant in steady-state conditions and modulation of electron transport occurs without extreme fluctuations in these pools.Abbreviations FBPase
Fructose-1,6-bisphosphatase
- PS I
Photosystem I
- PS II
Photosystem II
- Pi
inorganic phosphate
- PGA
glycerate 3-phosphate
- PQ
plastoquinone
- Q A
the bound quinone electron acceptor of PS II
- q P
Photochemical quenching of chlorophyll fluorescence associated with the oxidation of Q A
- q N
non-photochemical quenching of chlorophyll fluorescence
- q E
non-photochemical quenching associated with the high energy state of the membrane
- RuBP
ribulose-1,5-bisphosphate
- TP
triose phosphate
-
intrinsic quantum yield of PS II
-
quantum yield of electron transport
-
quantum yield of CO 2 assimilation 相似文献
2.
The effects of oxalate on PS II and PS I photochemistry were studied. The results suggested that in chloride-deficient thylakoid membranes, oxalate inhibited activity of PS II as well as PS I. To our knowledge, this is the only anion so far known which inhibits both the photosystems. Measurements of fluorescence induction kinetics, YZ* decay, and S2 state multiline EPR signal suggested that oxalate inhibited PS II at the donor side most likely on the oxygen evolving complex. Measurements of re-reduction of P700+ signal in isolated PS I particles in oxalate-treated samples suggested a binding site of oxalate on the donor, as well as the acceptor side of PS I. 相似文献
3.
The reduction of P-700 by its electron donors shows two fast phases with half-times of 20 and 200 μs in isolated spinach chloroplasts. We have studied this electron transfer and the oxidation kinetics of cytochrome f. Incubation of chloroplasts with KCN or HgCl2 decreased the amplitude of the 20 μs phase. This provides evidence for a function of plastocyanin as the immediate electron donor of P-700. At low concentrations of salt and sugar the fast phases of P-700+ reduction were largely inhibited. Increasing concentrations of MgCl2, KCl and sorbitol (up to 5, 150 and 200 mM, respectively) were found to increase the relative amplitudes of the fast phases to about one-third of the total P-700 signal. Addition of both 3 mM MgCl2 and 200 mM sorbitol increased the relative amplitude of the 20 μs phase to 70%. The interaction between P-700 and plastocyanin is concluded to be favoured by a low internal volume of the thylakoids and compensation of surface charges of the membrane. The half-time of 20 μs was not changed when the amplitude of this phase was altered either by salt and sorbitol, or by inhibition of plastocyanin. This is evidence for the existence of a complex between plastocyanin and P-700 with a lifetime long compared to the measuring time. The 200 μs phase exhibited changes in its half-time that indicated the participation of a more mobile pool of plastocyanin. Cytochrome f was oxidized with a biphasic time course with half-times of 70–130 μs and 440–860 μs at different salt and sorbitol concentrations. The half-time of the faster phase and a short lag of 30–50 μs in the beginning of the kinetics indicate an oxidation of cytochrome f via the 20 μs electron transfer to P-700. An inhibition of this oxidation by MgCl2 suggests that the electron transfer from cytochrome f to complexed plastocyanin is not controlled by negative charges in contrast to that from plastocyanin to P-700. 相似文献
4.
In light-, but not in dark-grown spinach seedlings, the mRNAs for the nuclear-encoded photosystem I subunits D, F and L are associated with polyribosomes and this association is prevented by the application of 3-(3',4'-dichlorophenyl)-1,1'-dimethyl urea (DCMU), an inhibitor of the photosynthetic electron transport. To identify the cis-elements which are responsible for this regulation, we generated a series of chimeric PsaD constructs and tested them in transgenic tobacco. The spinach PsaD 5'-untranslated region is sufficient to confer light- and photosynthesis-dependent polyribosome association onto the uidA reporter gene, while the tobacco PsaD 5'-untranslated region directs constitutive polyribosome association. These results are discussed with regard to signals from photosynthetic electron flow which control processes in the cytoplasm. 相似文献
5.
The photosystem I, photosystem II, and cytochrome b
6
f complexes that are involved in electron transport of oxygenic photosynthesis consist of a number of subunits encoded by either
the chloroplast or nuclear genomes. In addition to the major subunits that carry redox components or photosynthetic pigments,
these complexes contain several to more than ten subunits with molecular masses of less than 10 kDa. Directed mutagenesis
has served as a powerful tool for investigation of the roles of these small subunits in the organization or function of the
complexes. Various chloroplast transformants of the green alga Chlamydomonas reinhardtii and mutants of cyanobacteria in which a gene encoding a small subunit was deleted or altered have been constructed. Evidence
has accumulated suggesting that these small subunits function in the assembly, stabilization, or protection from photoinhibition
of the complexes or in the modulation or regulation of electron transport. This article presents an overview of the properties
and functions of the chloroplast-encoded small subunits of the three multiprotein complexes of photosynthetic electron transport
that have been mainly analyzed with chloroplast transformants of C. reinhardtii and the corresponding cyanobacterial transformants.
Recipient of the Botanical Society Award for Young Scientists, 1995. 相似文献
6.
The effect of various chelators (orthophenanthroline, bathophen-anthroline, bathophenanthroline sulfonate and bathocuproine) on electron transport of spinach chloroplasts has been studied by means of various photosystem I and II reactions. It was found that photosystem II has at least 3 chelator-sensitive sites, photosystem I from 3–4. An uncoupler-affected site was found in each photosystem. In addition, photosystem I had a stimulator site and a soak site. The soak site was sensitive to chelators only after a period of incubation with the chelator. 相似文献
7.
Oxygen ist reduced by the electron transport chain of chloroplasts during CO 2 reduction. The rate of electron flow to oxygen is low. Since antimycin A inhibited CO 2-dependent oxygen evolution, it is concluded that cyclic photophosphorylation contributes ATP to photosynthesis in chloroplasts which cannot satisfy the ATP requirement of CO 2 reduction by electron flow to NADP and to oxygen. Inhibition of photosynthesis by antimycin A was more significant at high than at low light intensities suggesting that cyclic photophosphorylation contributes to photosynthesis particularly at high intensities. Cyclic electron flow in intact chloroplasts is under the control of electron acceptors. At low light intensities or under far-red illumination it is decreased by substrates which accept electrons from photosystem I such as oxaloacetate, nitrite or oxygen. Obviously, the cyclic electron transport pathway is sensitive to electron drainage. In the absence of electron acceptors, cyclic electron flow is supported by far-red illumination and inhibited by red light. The inhibition by light exciting photosystem II demonstrated that the cyclic electron transport pathway is accessible to electrons from photosystem II. Inhibition can be relieved by oxygen which appears to prevent over-reduction of electron carriers of the cyclic pathway and thus has an important regulatory function. The data show that cyclic electron transport is under delicate redox control. Inhibition is caused both by excessive oxidation and by over-reduction of electron carriers of the pathway. 相似文献
9.
A study by two-dimensional electrophoresis showed that the soluble, lumenal fraction of Arabidopsis thaliana thylakoids can be resolved into 300 protein spots. After subtraction of low-intensity spots and accounting for low-level stromal contamination, the number of more abundant, lumenal proteins was estimated to be between 30 and 60. Two of these proteins have been identified: a novel plastocyanin that also was the predominant component of the total plastocyanin pool, and a putative ascorbate peroxidase. Import studies showed that these proteins are routed to the thylakoid lumen by the Sec- and delta pH-dependent translocation pathways, respectively. In addition, novel isoforms of PsbO and PsbQ were identified. 相似文献
10.
Phosphorylation of chloroplast thylakoid polypeptides by the light-activated protein kinase was found to decrease the light-saturated rate of whole chain and Photosystem-II electron transport. This decrease in electron-transport capacity was reversible and was found to correlate with the phosphorylation-induced decrease in chlorophyll fluorescence. 相似文献
11.
The involvement of phospholipids in the regulation of photosynthetic electron transport activities was studied by incubating isolated pea thylakoids with phospholipase C to remove the head-group of phospholipid molecules. The treatment was effective in eliminating 40–50% of chloroplast phospholipids and resulted in a drastic decrease of photosynthetic electron transport. Measurements of whole electron transport (H 2Omethylviologen) and Photosystem II activity (H 2O p-benzoquinone) demonstrated that the decrease of electron flow was due to the inactivation of Photosystem II centers. The variable part of fluorescence induction measured in the absence of electron acceptor was decreased by the progress of phospholipase C hydrolysis and part of the signal could be restored on addition of 3-(3,4-dicholorophenyl)-1,1-dimethylurea. The B and Q bands of thermoluminescence corresponding to S 2S 3Q B
– and S 2S 3Q A
– charge recombination, respectively, was also decreased with a concomitant increase of the C band, which originated from the tyrosine D +Q A
– charge recombination. These results suggest that phospholipid molecules play an important role in maintaining the membrane organization and thus maintaining the electron transport activity of Photosystem II complexes.Abbreviations DCMU
3-(3,4-dicholorophenyl)-1,1-dimethylurea
- F var
variable fluorescence
- LHC
light-harvesting complex
- MGDG
monogalactosyldiacylglycerol
- PS
photosystem 相似文献
12.
Copper deficiency in wheat ( Triticum aestivum L. cv. Nazareno Stramppeli) markedly affects photosynthetic activity. Flag leaves of copper-deficient plants showed a 50% reduction of the photosynthetic rate expressed as mg CO 2 dm −2h −1. The activities of PSI and PSII, determined for isolated chloroplasts, as well as fluorescence measurements on intact leaves of copper-deficient plants, indicated a low activity of photosynthetic electron transport. Ribulose bisphosphate carboxylase/oxygenase (Rubisco) activity was not affected by copper deficiency but copper deficiency affected the chloroplast ultrastructure, especially at the level of grana, where a disorganization of thylakoids is evident. 相似文献
13.
PSI-G is an 11 kDa subunit of PSI in photosynthetic eukaryotes. Arabidopsis thaliana plants devoid of PSI-G have a decreased PSI content and an increased activity of NADP + photoreduction in vitro but otherwise no obvious phenotype [P.E. Jensen, L. Rosgaard, J. Knoetzel, H.V. Scheller, Photosystem I activity is increased in the absence of the PSI-G subunit. J. Biol. Chem. 277, (2002) 2798-2803.]. To investigate the biochemical basis for the increased activity, the kinetic parameters of the reaction between PSI and plastocyanin were determined. PSI-G clearly plays a role in the affinity for plastocyanin since the dissociation constant ( KD) is only 12 μM in the absence of PSI-G compared to 32 μM for the wild type. On the physiological level, plants devoid of PSI-G have a more reduced QA. This indicates that the decreased PSI content is due to unstable PSI rather than an adaptation to the increased activity. In agreement with this indication of decreased stability, plants devoid of PSI-G were found to be more photoinhibited both at low temperature and after high light treatment. The decreased PSI stability was confirmed in vitro by measuring PSI activity after illumination of a thylakoid suspension which clearly showed a faster decrease in PSI activity in the thylakoids lacking PSI-G. Light response of the P700 redox state in vivo showed that in the absence of PSI-G, P700 is more reduced at low light intensities. We conclude that PSI-G is involved in the binding dynamics of plastocyanin to PSI and that PSI-G is important for the stability of the PSI complex. 相似文献
14.
The introduction of a more efficient means of measuring leaf photosynthetic rates under field conditions may help to clarify the relationship between single leaf photosynthesis and crop growth rates of commercial maize hybrids. A large body of evidence suggests that gross photosynthesis (A G) of maize leaves can be accurately estimated from measurements of thylakoid electron transport rates (ETR) using chlorophyll fluorescence techniques. However, before this technique can be adopted, it will first be necessary to determine how the relationship between chlorophyll fluorescence and CO2 assimilation is affected by the non-steady state PPFD conditions which predominate in the field. Also, it must be determined if the relationship is stable across different maize genotypes, and across phenological stages. In the present work, the relationship between ETR and A G was examined in leaves of three maize hybrids by making simultaneous measurements of leaf gas exchange and chlorophyll fluorescence, both under controlled environment conditions and in the field. Under steady-state conditions, a linear relationship between ETR and A G was observed, although a slight deviation from linearity was apparent at low A G. This deviation may arise from an error in the assumption that respiration in illuminated leaves is equivalent to respiration in darkened leaves. The relationship between chlorophyll fluorescence and photosynthetic CO2 assimilation was not stable during fluctuations in incident PPFD. Since even minor (e.g. 20%) fluctuations in incident PPFD can produce sustained ( > 20 s) departures from the mean relationship between ETR and A G, chlorophyll fluorometry can only provide an accurate estimate of actual CO2 assimilation rates under relatively stable PPFD conditions. In the field, the mean value of ETR / A G during the early part of the season (4.70 ± 0.07) was very similar to that observed in indoor-grown plants in the vegetative stage (4.60 ± 0.09); however, ETR / A G increased significantly over the growing season, reaching 5.00 ± 0.09 by the late grain-filling stage. Differences in ETR / A G among the three genotypes examined were small (less than 1% of the mean) and not statistically significant, suggesting that chlorophyll fluorometry can be used as the basis of a fair comparison of leaf photosynthetic rates among different maize cultivars. 相似文献
15.
Cytochrome c6 is a soluble electron carrier, present in all known cyanobacteria, that has been replaced by plastocyanin in plants. Despite their high structural differences, both proteins have been reported to be isofunctional in cyanobacteria and green algae, acting as alternative electron carriers from the cytochrome b6- f complex to photosystem I or terminal oxidases. We have investigated the subcellular localization of both cytochrome c6 and plastocyanin in the heterocyst-forming cyanobacterium Anabaena sp. PCC 7120 grown in the presence of combined nitrogen and under diazotrophic conditions. Our studies conclude that cytochrome c6 is expressed at significant levels in heterocysts, even in the presence of copper, condition in which it is strongly repressed in vegetative cells. However, the copper-dependent regulation of plastocyanin is not altered in heterocysts. In addition, in heterocysts, cytochrome c6 has shown to be the main soluble electron carrier to cytochrome c oxidase-2 in respiration. A cytochrome c6 deletion mutant is unable to grow under diazotrophic conditions in the presence of copper, suggesting that cytochrome c6 plays an essential role in the physiology of heterocysts that cannot be covered by plastocyanin. 相似文献
16.
Leaflets of soybean plants which are moderately inorganic nitrogen (N)-limited exhibit either no difference in the rate of net photosynthesis or as much as a 15–23% lower net photosynthesis rate per unit area than leaflets of N-sufficient plants [Robinson JM (1996) Photosynth Res 50: 133–148; Robinson JM (1997a) Int J Plant Sci 158: 32–43]. However, mature leaflets of N-limited soybean plants have a higher CO 2photoassimilation rate per unit chlorophyll than leaflets of N-sufficient soybean plants at both moderate light intensity (500 µmol m -2s -1) and saturating light intensity (1200 µmol m -2s -1) [Robinson JM (1996) Photosynth Res 50: 133–148]. This study was undertaken to determine whether chloroplast thylakoids isolated from the leaflets of nitrogen-limited soybean plants displayed similar or higher linear electron transport rates (H 2O ferredoxin NADP) per unit chlorophyll than thylakoids isolated from leaflets of N-sufficient plants. Chlorophyll concentration in reaction mixtures containing chloroplast thylakoids prepared from leaflets of N-limited plants was manipulated so that it was similar to the chlorophyll concentration in reaction mixtures of thylakoids prepared from leaflets of N-sufficient plants. Measurements of ferredoxin dependent, NADP dependent, O 2photo-evolution in thylakoid isolates were carried out in saturating light (1500 µmol m -2s -1) and with
(an uncoupler) in the chloroplast reaction mixtures. Chloroplast thylakoids isolated from N-limited soybean plant leaflets routinely had a 1.5 to 1.7 times higher rate of uncoupled, whole chain electron transport per unit chlorophyll in saturating light than did chloroplast thylakoids isolated from leaflets of N-sufficient plants. The results suggest that the photosystems and photosynthetic electron transport chain components are more active per unit Chl in leaflet chloroplast thylakoids of N-limited soybean plants than in thylakoids of N-sufficient plants. 相似文献
17.
Chloroplasts isolated from broad bean ( Vicia faba) show major structural reorganisations on heating to temperatures above 35°C. Exposure to increasing temperatures in the range 35–45°;C for 5 min, leads to a progressive destacking of the chloroplast membranes and the replacement of the normal granal arrangement by modified thylakoid attachment sites. An analysis of the size and packing densities of the freeze-fracture particles present in different membrane fracture-faces suggests that this rearrangement reflects the dissociation of the light-harvesting units of Photosystem II. The antennae complexes of Photosystem II appear to cluster together, maintaining regions of membrane adhesion, whilst excluding the core-complexes of Photosystem II and light-harvesting units of Photosystem I from these regions. If the chloroplasts are heated to higher temperatures, 45–55°C, phase-separated aggregates of non-bilayer-forming lipids are often observed. The release of these lipids from their normal constraints within the bilayer is consistent with the idea that they play a role in the packaging of the light-harvesting complexes within the thylakoid membrane. 相似文献
18.
The afterglow (AG) band of thermoluminescence (TL) has been investigated in leaves of Arabidopsis thaliana. Excitation of dark-adapted leaves with two saturating single turn-over flashes induced the appearance of a complex TL glow curve that could be well simulated by three components: the two components, B 1 and B 2, of the usually called B-band, peaking at 18 and 26 °C, respectively, and a band with tmax at 41 °C, which we attributed to an AG emission. Illumination of dark-adapted leaves with 720 nm monochromatic and FR lights generated the emission of a sharp single band peaking also around at 41 °C, that it is usually assigned to an AG emission band. Dark-incubation of whole plants increased the intensity of AG-band in TL curves induced by two flashes and, in parallel, decreased B-bands. Selective illumination of leaves with light mostly absorbed by PS II (650 nm light) completely abolished the AG-band induced by two flashes, B-band being the only TL band observed. The single AG-band induced by 720 nm light was abolished if leaves were also illuminated with 650 nm light. On the other hand, AG-band could be restored if 650 nm illuminated leaves were afterwards illuminated with 720 nm light. The changes in the intensity of B and AG bands induced by selective illuminations seem to be related to alterations in the redox state of Q B and plastoquinone pool. 相似文献
19.
Cyanobacteria dominate the world's oceans where iron is often barely detectable. One manifestation of low iron adaptation in the oligotrophic marine environment is a decrease in levels of iron-rich photosynthetic components, including the reaction center of photosystem I and the cytochrome b 6f complex [R.F. Strzepek and P.J. Harrison, Photosynthetic architecture differs in coastal and oceanic diatoms, Nature 431 (2004) 689-692.]. These thylakoid membrane components have well characterised roles in linear and cyclic photosynthetic electron transport and their low abundance creates potential impediments to photosynthetic function. Here we show that the marine cyanobacterium Synechococcus WH8102 exhibits significant alternative electron flow to O 2, a potential adaptation to the low iron environment in oligotrophic oceans. This alternative electron flow appears to extract electrons from the intersystem electron transport chain, prior to photosystem I. Inhibitor studies demonstrate that a propyl gallate-sensitive oxidase mediates this flow of electrons to oxygen, which in turn alleviates excessive photosystem II excitation pressure that can often occur even at relatively low irradiance. These findings are also discussed in the context of satisfying the energetic requirements of the cell when photosystem I abundance is low. 相似文献
20.
The effects of extreme phosphate (Pi) deficiency during growth on the contents of adenylates and pyridine nucleotides and the in vivo photochemical activity of photosystem II (PSII) were determined in leaves of Helianthus annuus and Zea mays grown under controlled environmental conditions. Phosphate deficiency decreased the amounts of ATP and ADP per unit leaf area and the adenylate energy charge of leaves. The amounts of oxidized pyridine nucleotides per unit leaf area decreased with Pi deficiency, but not those of reduced pyridine nucleotides. This resulted in an increase in the ratio of reduced to oxidized pyridine nucleotides in Pi-deficient leaves. Analysis of chlorophyll a fluorescence at room temperature showed that Pi deficiency decreased the efficiency of excitation capture by open PSII reaction centres (φ e), the in vivo quantum yield of PSII photochemistry (φ PSII) and the photochemical quenching co-efficient (q P), and increased the non-photochemical quenching co-efficient (q N) indicating possible photoinhibitory damage to PSII. Supplying Pi to Pi-deficient sunflower leaves reversed the long-term effects of Pi-deficiency on PSII photochemistry. Feeding Pi-sufficient sunflower leaves with mannose or FCCP rapidly produced effects on chlorophyll a fluorescence similar to long-term Pi-deficiency. Our results suggest a direct role of Pi and photophosphorylation on PSII photochemistry in both long-and short-term responses of photosynthetic machinery to Pi deficiency. The relationship between φ PSII and the apparent quantum yield of CO 2 assimilation determined at varying light intensity and 21 kPa O 2 and 35 Pa CO 2 partial pressures in the ambient air was linear in Pi-sufficient and Pi-deficient leaves of sunflower and maize. Calculations show that there was relatively more PSII activity per mole of CO 2 assimilated by the Pi-deficient leaves. This indicates that in these leaves a greater proportion of photosynthetic electrons transported across PSII was used for processes other than CO 2 reduction. Therefore, we conclude that in vivo photosynthetic electron transport through PSII did not limit photosynthesis in Pi-deficient leaves of sunflower and maize and that the decreased CO 2 assimilation was a consequence of a smaller ATP content and lower energy charge which restricted production of ribulose, 1-5, bisphosphate, the acceptor for CO 2. 相似文献
|