首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Chlorate Toxicity and Nitrate Reductase Activity in Tomato Plants   总被引:3,自引:0,他引:3  
Chlorate damage was studied in tomato plants ( Lycopersicum esculentum cv. Moneymaker) that were supplied with a nitrogen-free nutrient solution or with a nutrient solution, containing either nitrate or ammonium as a nitrogen source. Damage was low in ammonium-fed plants and high in nitrate-fed plants and in nitrogen-less plants. Nitrate reductase activity could be detected in all treatments, although the activity was highest in the nitrate-fed plants.
The hypothesis that chlorate can be used as a substrate by the enzyme nitrate reductase in higher plants, was studied and proved to be true for the tomato plants, as was found earlier for Escherichia and Chlorella . The affinity of the enzyme for chlorate was lower than for nitrate, the K m being 4 m M and 0.15 m M respectively. Induction of the enzyme by chlorate could not be detected. The enzyme activity was lowered in leaf discs after a 7 h treatment with chlorate and the inhibition was proportional to the chlorate concentration of the medium.
The results were discussed in terms of competition between nitrate and chlorate at the uptake and the enzyme site and with regard to a possible influence of chlorate on synthesis and breakdown of the enzyme.  相似文献   

2.
Regulation of Nitrate Reductase in Chlorella vulgaris   总被引:3,自引:1,他引:3       下载免费PDF全文
When excised barley roots (Hordeum distichum L.) are appropriately pretreated, the level of nitrate reductase in the roots increases upon exposure to nitrate. Relatively low levels of nitrate (10 μm) gave maximum induction of nitrate reductase. This increase was inhibited by inhibitors of protein and RNA synthesis, indicating that de novo protein synthesis is probably involved. Induction of nitrate reductase by nitrate is partially prevented by the inclusion of ammonium, an eventual product of nitrate reduction, in the incubation medium. Under the experimental conditions used, ammonium did not inhibit the uptake of nitrate by excised barley roots. It is concluded, therefore, that ammonium, or a product of ammonium metabolism, has a direct effect on the synthesis of nitrate reductase in this tissue.  相似文献   

3.
The activities of 2-oxoaldehyde-metabolizing enzymes (glyoxalase I, glyoxalase II, methyl- glyoxal reductase, methylglyoxal dehydrogenase and lactaldehyde dehydrogenase) were found to be widely distributed among microorganisms. One of the enzymes, methylglyoxal reductase, which catalyzes the reductive conversion of methylglyoxal into lactaldehyde, was purified from Escherichia coli cells. The enzyme was judged to be homogeneous on polyacrylamide gel electrophoresis and was a monomer with a molecular weight of 43000. The enzyme was most active at pH 6.5 and 45°C. The enzyme utilized both NADPH and NADH for the reduction of 2- oxoaldehydes (glyoxal, methylglyoxal, phenylglyoxal and 4,5-dioxovalerate) and some aldehydes (glycolaldehyde, D,l-glyceraldehyde, propionaldehyde and acetaldehyde). The Km values of the enzyme for methylglyoxal, NADPH and NADH were 4.0 mm, 1.7 fiM and 2.8 /¿m, respectively. The product of methylglyoxal reduction was identified as lactaldehyde. The enzyme from E. coli cells was different from the yeast and goat liver enzymes in both molecular structure and substrate specificity.  相似文献   

4.
The thermal dependence of two of the reactions catalyzed bythe nitrate reductase from Chlorella vulgaris was determined.The activation energies for NADH:nitrate oxidoreductase (EC1.6.6.1 [EC] ) and NADH:Cytochrome c oxidoreductase (EC 1.6.99.3 [EC] )are 42.1 kJ?mol–1 and 21.5 kJ?mol–1, respectively.Since the thermal dependency of the two enzymes is different,ratios of the activities will vary with temperature. The importanceof both rigorous thermal control during nitrate reductase assaysas well as the need to specify the temperature at which theratio of activities for the enzyme are clearly established. 1Present Address: Cropping Systems Research Laboratory, USDA-ARS,Route 3, Box 215, Lubbock, TX 79401, U.S.A. (Received November 25, 1987; Accepted March 2, 1988)  相似文献   

5.
When nitrate reductase (NR) purified from Chlorella was incubated with NR-inactivating proteins purified from corn roots and rice cell suspension cultures or with trypsin there was a loss in NADH-NR and NADH cytochrome c reductase (NADH-CR) activities with time whereas the reduced methylviologen NR (MV-NR) remained active. When NADH-NR and NADH-CR activities were inactivated completely by the incubation with corn protein, the major protein band obtained by polyacrylamide gel electrophoresis shifted from an RF value of 0.12 to an RF of 0.25 and reduced MV-NR activity moved to the new position on the gel. When NADH-NR and NADH-CR activities were partially inactivated by the corn protein, NADH-NR activity was detected in an intermediate position (RF value of 0.18). Incubation with trypsin also caused a change in the NR protein migration pattern (RF value of 0.20). This protein band also had reduced MV-NR activity. Thus, the corn inactivator degrades NR in a fashion similar to but not identical with trypsin. The incubation of NR with rice inactivating protein resulted in a loss of NADH-NR but had no effect on the migration of NR protein or on the reduced MV-NR activity or mobility suggesting that the rice protein binds to Chlorella NR.  相似文献   

6.
7.
8.
The mechanism underlying the sharp increase in activity of nitrate reductase (EC 1.6.6.1) in Chlorella vulgaris forma tertia (strain 211 8k) during the first hour of the 7 hours/5 hours light/dark cycle was investigated. Using the method of density labeling and isopycnic centrifugation, it could be demonstrated that this rapid increase in activity is based on light-mediated activation rather than de novo synthesis of the enzyme. The problematic nature of cycloheximide specificity and models of nitrate reductase activation are discussed.  相似文献   

9.
During induction of nitrate reductase in Chlorella vulgaris,synthesis of the precursor, demolybdo cytochrome c reductase,exceeds the synthesis of active enzyme. Evidence is also presentedwhich shows that the purification procedure of Funkhouser etal. [(1980) Plant Physiol. 65: 939] separates demolybdo cytochromec reductase from active nitrate reductase. 1Supported in part by a grant to B. V. from the Deutsche Forschungsgemeinschaftand a contribution of the Texas Agricultural Experiment Station. (Received July 27, 1983; Accepted September 13, 1983)  相似文献   

10.
The herbicide chlorate has been used extensively to isolate mutants that are defective in nitrate reduction. Chlorate is a substrate for the enzyme nitrate reductase (NR), which reduces chlorate to the toxic chlorite. Because NR is a substrate (NO3)-inducible enzyme, we investigated the possibility that chlorate may also act as an inducer. Irrigation of ammonia-grown Arabidopsis plants with chlorate leads to an increase in NR mRNA in the leaves. No such increase was observed for nitrite reductase mRNA following chlorate treatment; thus, the effect seems to be specific to NR. The increase in NR mRNA did not depend on the presence of wild-type levels of NR activity or molybdenum-cofactor, as a molybdenum-cofactor mutant with low levels of NR activity displayed the same increase in NR mRNA following chlorate treatment. Even though NR mRNA levels were found to increase after chlorate treatment, no increase in NR protein was detected and the level of NR activity dropped. The lack of increase in NR protein was not due to inactivation of the cells' translational machinery, as pulse labeling experiments demonstrated that total protein synthesis was unaffected by the chlorate treatment during the time course of the experiment. Chlorate-treated plants still retain the capacity to make functional NR because NR activity could be restored by irrigating the chlorate-treated plants with nitrate. The low levels of NR protein and activity may be due to inactivation of NR by chlorite, leading to rapid degradation of the enzyme. Thus, chlorate treatment stimulates NR gene expression in Arabidopsis that is manifested only at the mRNA level and not at the protein or activity level.  相似文献   

11.
The inability of the Emerson strain of Chlorella vulgaris togrow and divide actively in a glucose medium in the dark hasbeen confirmed. It has been shown that although glucose doesnot enhance the rate of cell-division when added to culturesgrowing under saturating photosynthetic conditions, it neverthelessmarkedly increases the growth-rate when supplied to culturesin which photosynthesis is limited by an inadequate CO2 supply. Transfer of actively growing cultures from light to darknessis followed by a limited period of active cell-division if glucoseis added to the medium; this has been interpreted as indicatingglucose utilization and the synthesis in light only, of somesubstance(s) essential for cell-division. Further evidence forthis view has been obtained from studies of the effect of alight pretreatment on subsequent growth in the dark. With cultures aerated with CO2-free air, re-exposure to lightafter a period in the dark has been shown to bring about a resumptionof active cell-division accompanied by a decrease in the percentageof ‘giant’ cells in the population. This also suggeststhe participation of some photo-reaction, other than photosynthesis,in the control of active cell-division in this strain of C.vulgaris.  相似文献   

12.
13.
This study was conducted to investigate the influence of salicylic acid (SA) on the growth and changes of nucleic acids, protein, photosynthetic pigments, sugar content and photosynthesis levels in the green alga Chlorella vulgaris Beijerinck (Chlorophyceae). The most significant changes in the content of nucleic acids and proteins was observed at the concentration 10−4 M SA between 8 and 12 day of cultivation. This concentration of SA increased the number of cells (about 40 %) and content of proteins (about 60 %) and its secretion to the medium. The slight stimulation of protein secretion occurred on the 12th day of cultivation at concentration 10−4 M, while in the range of 10−5 M to 10−6 M the protein secretion was inhibited. SA also stimulated the content of nucleic acids, especially RNA by 20–60 %, compared with the control. The most stimulating influence upon the contents of chlorophylls a and b (50–70 %), total carotenoids (25–57 %), sugar (27–41 %) and intensity of net photosynthesis (18–33 %) was found at 10−4 M of SA. At the concentration of 10−6 M SA the slight inhibition of growth and biochemical activity of the algae was recorded at the first days of cultivation.  相似文献   

14.
After x-ray irradiation, 13 mutants of Chlorella sorokiniana incapable of using NO3 as N source were isolated using a pinpoint method. Using immunoprecipitation and Western blot assays, no nitrate reductase was found in five strains while in eight mutants the enzyme was detected. The latter strains contained different patterns of nitrate reductase partial reactions. All isolates were of the nia-type as indicated by the inducibility of purine hydroxylase I and by complementation of nitrate reductase activity in the Neurospora crassa mutant Nit-1. A restoration of NADP-nitrate reductase in Nit-1 was also obtained with NH4+-grown cells indicating that Mo-cofactor is constitutive in Chlorella. Complementation experiments among the Chlorella mutants resulted in restoration of NADH-nitrate reductase activity. The characteristics of some of the Chlorella mutants are discussed in view of an improper orientation of Mo-cofactor in the residual nitrate reductase protein.  相似文献   

15.
Summary A critical evaluation of a method for recovering HCN from cell extracts is presented. Since crude extracts often bind or metabolize HCN extensively, the HCN recovered by distillation at room temperature represents only the difference between production and consumption. Sonication leads to HCN release from the alga, Chlorella vulgaris Beijerinck. Illumination of extracts at high light intensity in oxygen, with added Mn2+ and peroxidase, also stimulates HCN production. In both processes, the HCN is probably formed by oxidation of nitrogenous precursors. Chlorella extracts cause formation of HCN from added amygdalin. No evidence was found, however, for the presence of cyanogenic glycosides in the algae.  相似文献   

16.
Brassinolide, as a plant hormone, promotes growth of a number of plant species. Similar effects are induced by its epimer 24-epibrassinolide. In this paper we discuss the effects of brassinosteroids on the growth and proton extrusion in the green alga Chlorella vulgaris (Chlorophyceae). At concentrations between 10–15 and 10–8 m, brassinolide and 24-epibrassinolide induce a significant stimulation of growth and H+ extrusion. The growth was associated with an increase in the capability of algal cells to acidify the medium, where brassinolide is biologically more active than 24-epibrassinolide.Abbreviations BL brassinolide - BR(s) brassinosteroid(s) - epiBL 24-epibrassinolide - DW dry weight - IAA indole-3-acetic acid  相似文献   

17.
GRIFFITHS  D. J. 《Annals of botany》1963,27(3):493-504
Cell division in cultures of the Emerson strain of Chlorellavulgaris is markedly inhibited following inoculation into aglucose medium under conditions which are sub-optimal for autotrophicgrowth. Dry-weight accumulation is not inhibited and the resultis the production of cells considerably larger than those occurringin a glucose-free medium. The more closely the conditions ofculture approach those which are saturating for autotrophicgrowth, the less pronounced is the glucose effect. Evidenceis presented which suggests that the heterotrophic utilizationof glucose may be the dominant form of nutrition during theglucose-induced inhibition of cell division. It is suggestedthat the difference in response to glucose recorded under variousconditions of culture may be a reflection of the extent of glucosesuppression of photosynthesis under the various conditions.The possibility is discussed that the light requirement forcell division shown by this strain may be linked with photosynthesis.  相似文献   

18.
The patterns of nitrate reductase activity (NRA) in the leaves (in vivo assay) and root nodule nitrogenase activity (C2H2 reduction) were investigated throughout the season in field-grown Phaseolus vulgaris plants.  相似文献   

19.
20.
Studies on the diurnal variations of nitrate reductase (NR) activity during the life cycle of synchronized Chlorella sorokiniana cells grown with a 7:5 light-dark cycle showed that the NADH:NR activity, as well as the NR partial activities NADH:cytochrome c reductase and reduced methyl viologen:NR, closely paralleled the appearance and disappearance of NR protein as shown by sodium dodecyl sulfate gel electrophoresis and immunoblots. Results of pulse-labeling experiments with [35S]methionine further confirmed that diurnal variations of the enzyme activities can be entirely accounted for by the concomitant synthesis and degradation of the NR protein.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号