首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Myelopoietins (MPOs) are a family of engineered dual interleukin-3 (IL-3) and granulocyte colony-stimulating factor (G-CSF) receptor agonists that are superior in comparison to the single agonists in their ability to promote the growth and maturation of hematopoietic cells of the myeloid lineage. A series of MPO molecules were created which incorporated circularly permuted G-CSF (cpG-CSF) sequences with an IL-3 receptor (IL-3R) agonist moiety attached at locations that correspond to the loops that connect the helices of the G-CSF four-helix bundle structure. The cpG-CSF linkage sites (using the original sequence numbering) were residue 39, which is at the beginning of the first loop connecting helices 1 and 2; residue 97, which is in the turn connecting helices 2 and 3; and residues 126, 133, and 142, which are at the beginning, middle, and end, respectively, of the loop connecting helices 3 and 4. The N- and C-terminal helices of each cpG-CSF domain were constrained, either by direct linkage of the termini (L0) or by replacement of the amino-terminal 10-residue segment with a seven-residue linker composed of SGGSGGS (L1). All of the MPO molecules stimulated the proliferation of both IL-3-dependent (EC50 = 13-95 pM) and G-CSF-dependent (EC50 = 35-710 pM) cell lines. MPOs with the IL-3R agonist domain linked to cpG-CSFs in the first (residue 39) or second (residue 133) long overhand loops were found by CD spectroscopy to have helical contents similar to that expected for a protein comprised of two linked four-helix bundles. The MPOs retained the ability to bind to the IL-3R with affinities similar to that of the parental MPO. Using both a cell surface competitive binding assay and surface plasmon resonance detection of binding kinetics, the MPOs were found to bind to the G-CSF receptor with low nanomolar affinities, similar to that of G-CSF(S17). In a study of isolated cpG-CSF domains [Feng, Y., et al. (1999) Biochemistry 38, 4553-4563], domains with the L1 linker had lower G-CSF receptor-mediated proliferative activities and conformational stabilities than those which had the L0 linker. A similar trend was found for the MPOs in which the G-CSFR agonist activity is mostly a property of the cpG-CSF domain. Important exceptions were found in which the linkage to the IL-3R agonist domain either restored (e.g., attachment at residue 142) or further decreased (linkage at residue 39) the G-CSFR-mediated proliferative activity. MPO in which the IL-3R agonist domain is attached to the cpG-CSF(L1)[133/132] domain was shown to be more potent than the coaddition of the IL-3R agonist and G-CSF in stimulating the production of CFU-GM colonies in a human bone marrow-derived CD34+ colony-forming unit assay. Several MPOs also had decreased proinflammatory activity in a leukotriene C4 release assay using N-formyl-Met-Leu-Phe-primed human monocytes. It was found that circular permutation of the G-CSF domain can alter the ratio of G-CSFR:IL-3R agonist activities, demonstrating that it is a useful tool in engineering chimeric proteins with therapeutic potential.  相似文献   

2.
Two distinct circularly permuted forms of chicken avidin were designed with the aim of constructing a fusion avidin containing two biotin-binding sites in one polypeptide. The old N and C termini of wild-type avidin were connected to each other via a glycine/serine-rich linker, and the new termini were introduced into two different loops. This enabled the creation of the desired fusion construct using a short linker peptide between the two different circularly permuted subunits. The circularly permuted avidins (circularly permuted avidin 5 --> 4 and circularly permuted avidin 6 --> 5) and their fusion, pseudotetrameric dual chain avidin, were biologically active, i.e. showed biotin binding, and also displayed structural characteristics similar to those of wild-type avidin. Dual chain avidin facilitates the development of dual affinity avidins by allowing adjustment of the ligand-binding properties in half of the binding sites independent of the other half. In addition, the subunit fusion strategy described in this study can be used, where applicable, to modify oligomeric proteins in general.  相似文献   

3.
Are turns required for the folding of ribonuclease T1?   总被引:6,自引:5,他引:1       下载免费PDF全文
Ribonuclease T1 (RNase T1) is a small, globular protein of 104 amino acids for which extensive thermodynamic and structural information is known. To assess the specific influence of variations in amino acid sequence on the mechanism for protein folding, circularly permuted variants of RNase T1 were constructed and characterized in terms of catalytic activity and thermodynamic stability. The disulfide bond connecting Cys-2 and Cys-10 was removed by mutation of these residues to alanine (C2, 10A) to avoid potential steric problems imposed by the circular permutations. The original amino-terminus and carboxyl-terminus of the mutant (C2, 10A) were subsequently joined with a tripeptide linker to accommodate a reverse turn and new termini were introduced throughout the primary sequence in regions of solvent-exposed loops at Ser-35 (cp35S1), Asp-49 (cp49D1), Gly-70 (cp70G1), and Ser-96 (cp96S1). These circularly permuted RNase T1 mutants retained 35-100% of the original catalytic activity for the hydrolysis of guanylyl(3'-->5')cytidine, suggesting that the overall tertiary fold of these mutants is very similar to that of wild-type protein. Chemical denaturation curves indicated thermodynamic stabilities at pH 5.0 of 5.7, 2.9, 2.6, and 4.6 kcal/mol for cp35S1, cp49D1, cp70G1, and cp96S1, respectively, compared to a value of 10.1 kcal/mol for wild-type RNase T1 and 6.4 kcal/mol for (C2, 10A) T1. A fifth set of circularly permuted variants was attempted with new termini positioned in a tight beta-turn between Glu-82 and Gln-85. New termini were inserted at Asn-83 (cp83N1), Asn-84 (cp84N1), and Gln-85 (cp85Q1). No detectable amount of protein was ever produced for any of the mutations in this region, suggesting that this turn may be critical for the proper folding and/or thermodynamic stability of RNase T1.  相似文献   

4.
Previous studies on Escherichia coli aspartate transcarbamoylase (ATCase) demonstrated that active, stable enzyme was formed in vivo from complementing polypeptides of the catalytic (c) chain encoded by gene fragments derived from the pyrBI operon. However, the enzyme lacked the allosteric properties characteristic of wild-type ATCase. In order to determine whether the loss of homotropic and heterotropic properties was attributable to the location of the interruption in the polypeptide chain rather than to the lack of continuity, we constructed a series of fragmented genes so that the breaks in the polypeptide chains would be dispersed in different domains and diverse regions of the structure. Also, analogous molecules containing circularly permuted c chains with altered termini were constructed for comparison with the ATCase molecules containing fragmented c chains. Studies were performed on four sets of ATCase molecules containing cleaved c chains at positions between residues 98 and 99, 121 and 122, 180 and 181, and 221 and 222; the corresponding circularly permuted chains had N termini at positions 99, 122, 181, and 222. All of the ATCase molecules containing fragmented or circularly permuted c chains exhibited the homotropic and heterotropic properties characteristic of the wild-type enzyme. Hill coefficients (n(H:)) and changes in them upon the addition of ATP and CTP were similar to those observed with wild-type ATCase. In addition, the conformational changes revealed by the decrease in sedimentation coefficient upon the addition of a bisubstrate analog were virtually identical to that for the wild-type enzyme. Differential scanning calorimetry showed that neither the breakage of the polypeptide chains nor the newly formed covalent bond between the termini in the wild-type enzyme had a significant impact on the thermal stability of the assembled dodecamers. The studies demonstrate that continuity of the polypeptide chain within structural domains is not essential for the assembly, activity, and allosteric properties of ATCase.  相似文献   

5.
The progenipoietins (ProGPs) are a family of genetically engineered chimeric proteins that contain receptor agonist activity for both fetal liver tyrosine kinase-3 and the granulocyte colony-stimulating factor receptor. These unique proteins have previously been shown to induce the proliferation of multiple cell lineages. The characterization of two progenipoietins, ProGP-1 and ProGP-4, refolded and purified from an Escherichia coli expression system is described. These ProGP molecules differ in the orientation of the two receptor agonists and, in addition, ProGP-4 contains a fetal liver tyrosine kinase-3 receptor agonist that has been circularly permuted to modulate its activity. Static light scattering analyses demonstrated that both ProGP molecules exist as dimers, most likely through non-covalent interaction of the fetal liver tyrosine kinase-3 receptor agonist domains. ProGP-1 and ProGP-4 have comparable secondary structures, as analyzed by circular dichroism; however, their tertiary structures, as measured by intrinsic fluorescence, were demonstrated to be different. Differential scanning calorimetry demonstrated that the thermal stability of these two proteins was indistinguishable. Interestingly, these dual agonist proteins yielded only a single melting temperature value that was intermediate between that of their individual receptor agonist components, indicating that these chimeric molecules behave as a single domain protein during thermal denaturation. This study describes the purification and physico-chemical properties of this class of proteins generated using an E. coli expression system.  相似文献   

6.
The amino acid sequence of mouse dihydrofolate reductase was permuted circularly at the level of the gene. By transposing the 3'-terminal half of the coding sequence to its 5' terminus, the naturally adjacent amino and carboxyl termini of the native protein were fused, and one of the flexible peptide loops at the protein surface was cleaved. The steady-state kinetic constants, the dissociation constants of folate analogues, and the degree of activation by both mercurials and salt as well as the resistance toward digestion by trypsin were almost indistinguishable from those of a recombinant wild-type protein. Judged by these criteria, the circularly permuted variant has the same active site and overall structure as the wild-type enzyme. The only significant difference was the lower stability toward guanidinium chloride and the lower solubility of the circularly permuted variant. This behavior may be due to moving a mononucleotide binding fold from the interior of the sequence to the carboxyl terminus. Thus, dihydrofolate reductase requires neither the natural termini nor the cleaved loop for stability, for the conformational changes that accompany catalysis as well as the binding of inhibitors, and for the folding process.  相似文献   

7.
One of the key questions in protein folding is whether polypeptide chains require unique nucleation sites to fold to the native state. In order to identify possible essential polypeptide segments for folding, we have performed a complete circular permutation analysis of a protein in which the natural termini are in close proximity. As a model system, we used the disulfide oxidoreductase DsbA from Escherichia coli, a monomeric protein of 189 amino acid residues. To introduce new termini at all possible positions in its polypeptide chain, we generated a library of randomly circularly permuted dsbA genes and screened for active circularly permuted variants in vivo. A total of 51 different active variants were identified. The new termini were distributed over about 70 % of the polypeptide chain, with the majority of them occurring within regular secondary structures. New termini were not found in approximately 30 % of the DsbA sequence which essentially correspond to four alpha-helices of DsbA. Introduction of new termini into these "forbidden segments" by directed mutagenesis yielded proteins with altered overall folds and strongly reduced catalytic activities. In contrast, all active variants analysed so far show structural and catalytic properties comparable with those of DsbA wild-type. We suggest that random circular permutation allows identification of contiguous structural elements in a protein that are essential for folding and stability.  相似文献   

8.
A circular permuted variant of the potent human immunodeficiency virus (HIV)-inactivating protein cyanovirin-N (CV-N) was constructed. New N- and C-termini were introduced into an exposed helical loop, and the original termini were linked using residues of the original loop. Since the three-dimensional structure of wild-type cyanovirin-N is a pseudodimer, the mutant essentially exhibits a swap between the two pseudo-symmetrically related halves. The expressed protein, which accumulates in the insoluble fraction, was purified, and conditions for in vitro refolding were established. During refolding, a transient dimeric species is also formed that converts to a monomer. Similar to the wild-type CV-N, the monomeric circular permuted protein exhibits reversible thermal unfolding and urea denaturation. The mutant is moderately less stable than the wild-type protein, but it displays significantly reduced anti-HIV activity. Using nuclear magnetic resonance spectroscopy, we demonstrate that this circular permuted monomeric molecule adopts the same fold as the wild-type protein. Characterization of these two architecturally very similar molecules allows us to embark, for the first time, on a structure guided focused mutational study, aimed at delineating crucial features for the extraordinary difference in the activity of these molecules.  相似文献   

9.
Circularly permuted fluorescent proteins (FPs) have a growing number of uses in live cell fluorescence biosensing applications. Most notably, they enable the construction of single fluorescent protein‐based biosensors for Ca2+ and other analytes of interest. Circularly permuted FPs are also of great utility in the optimization of fluorescence resonance energy transfer (FRET)‐based biosensors by providing a means for varying the critical dipole–dipole orientation. We have previously reported on our efforts to create circularly permuted variants of a monomeric red FP (RFP) known as mCherry. In our previous work, we had identified six distinct locations within mCherry that tolerated the insertion of a short peptide sequence. Creation of circularly permuted variants with new termini at the locations corresponding to the sites of insertion led to the discovery of three permuted variants that retained no more than 18% of the brightness of mCherry. We now report the extensive directed evolution of the variant with new termini at position 193 of the protein sequence for improved fluorescent brightness. The resulting variant, known as cp193g7, has 61% of the intrinsic brightness of mCherry and was found to be highly tolerant of circular permutation at other locations within the sequence. We have exploited this property to engineer an expanded series of circularly permuted variants with new termini located along the length of the 10th β‐strand of mCherry. These new variants may ultimately prove useful for the creation of single FP‐based Ca2+ biosensors.  相似文献   

10.
Designing small molecules that mimic the receptor-binding local surface structure of large proteins such as cytokines or growth factors is fascinating and challenging. In this study, we designed cyclic peptides that reproduce the receptor-binding loop structures of G-CSF. We found it is important to select a suitable linker to join two or more discontinuous sequences and both termini of the peptide corresponding to the receptor-binding loop. Structural simulations based on the crystallographic structure of KW-2228, a stable and potent analog of human G-CSF, led us to choose 4-aminobenzoic acid (Abz) as a part of the linker. A combination of 4-Abz with beta-alanine or glycine, and disulfide bridges between cysteins or homocysteins, gave a structure suitable for receptor binding. In this structure, the side-chains of several amino acids important for the interactions with the receptor are protruding from one side of the peptide ring. This artificial peptide showed G-CSF antagonistic activity in a cell proliferation assay.  相似文献   

11.
Schierling B  Wende W  Pingoud A 《FEBS letters》2012,586(12):1736-1741
The restriction endonuclease PvuII has been introduced as a sequence-specific cleavage module in highly-specific nucleases for gene targeting. Here, a structural reorganization of the single-chain variant of PvuII (scPvuII) was performed by circular permutation as a proof-of-concept in order to find out whether the relocated, new termini next to structural elements important for DNA recognition and catalysis could be used for the fusion with other regulatory protein domains. Three circularly permuted variants of scPvuII were obtained that all maintain the specific endonucleolytic activity of scPvuII.  相似文献   

12.
A collection of circularly permuted catalytic chains of aspartate transcarbamoylase (ATCase) has been generated by random circular permutation of the pyrB gene. From the library of ATCases containing permuted polypeptide chains, we have chosen for further investigation nine ATCase variants whose catalytic chains have termini located within or close to an alpha helix. All of the variants fold and assemble into dodecameric holoenzymes with similar sedimentation coefficients and slightly reduced thermal stabilities. Those variants disrupted within three different helical regions in the wild-type structure show no detectable enzyme activity and no apparent binding of the bisubstrate analog N:-phosphonacetyl-L-aspartate. In contrast, two variants whose termini are just within or adjacent to other alpha helices are catalytically active and allosteric. As expected, helical disruptions are more destabilizing than loop disruptions. Nonetheless, some catalytic chains lacking continuity within helical regions can assemble into stable holoenzymes comprising six catalytic and six regulatory chains. For seven of the variants, continuity within the helices in the catalytic chains is important for enzyme activity but not necessary for proper folding, assembly, and stability of the holoenzyme.  相似文献   

13.
The availability of a detailed restriction map of SPP1 DNA allowed defined manipulations of such molecules. These were performed to investigate structural requirements for SPP1 transfection. (i) The transfection activity of SPP1 DNA was destroyed by degradation with restriction enzymes. Biological activity could be regenerated when transfection was performed with a combination of two different restriction endonuclease digests, provided that such digests generated widely overlapping DNA fragments. (ii) Unique DNA molecules were constructed from the natural population of circularly permuted SPP1 DNA molecules by using genetic engineering techniques. Such molecules had the same specific transfection activity as did the circularly permuted SPP1 DNA. These results are discussed in the context of current models of DNA processing in transfection.  相似文献   

14.
The natural N- and C-termini, i.e., the given order of secondary structure segments, are critical for protein folding and stability, as shown by several studies using circularly permuted proteins, mutants that have their N- and C-termini linked and are then digested at another site to create new termini. A previous work showed that circularly permuted mutants of sperm whale myoglobin (Mb) are functional, have native-like folding and bind heme, but are less stable than the wild-type protein and aggregate. The ability of wild-type myoglobin to form amyloid fibrils has been established recently, and because circularly permuted mutations are destabilizing, we asked whether these permutations would also affect the rate of amyloid fibril formation. Our investigations revealed that, indeed, the circularly permuted mutants formed cytotoxic fibrils at a rate higher than that of the wild-type. To further investigate the role of the C-terminus in the overall stability of the protein, we investigated two C-terminally deleted mutant, Mb(1-123) and Mb(1-99), and found that Mb(1-123) formed cytotoxic fibrils at a higher rate than that of the wild-type while Mb(1-99) formed cytotoxic fibrils at a similar rate than that of the wild-type. Collectively, our findings show that the native position of both the N-and C-termini is important for the precise structural architecture of myoglobin.  相似文献   

15.
Folding of the green fluorescent protein (GFP) from Aequorea victoria is characterized by autocatalytic formation of its p-hydroxybenzylideneimidazolidone chromophore, which is located in the center of an 11-stranded beta-barrel. We have analyzed the in vivo folding of 20 circularly permuted variants of GFP and find a relatively low tolerance towards disruption of the polypeptide chain by introduction of new termini. All permuted variants with termini in strands of the beta-barrel and about half of the variants with termini in loops lost the ability to form the chromophore. The thermal stability of the permuted GFPs with intact chromophore is very similar to that of the wild-type, indicating that chromophore-side chain interactions strongly contribute to the extraordinary stability of GFP.  相似文献   

16.
Myelopoietins (MPOs) are a family of recombinant chimeric proteins that are both interleukin-3 (IL-3) receptor and granulocyte colony-stimulating factor (G-CSF) receptor agonists. In this study, MPO molecules containing one of three different IL-3 receptor agonists linked with a common G-CSF receptor agonist have been examined for their IL-3 receptor binding characteristics. Binding to the alpha-subunit of the IL-3 receptor revealed that the affinity of the MPO molecules was 1.7-3.4-fold less potent than those of their individual cognate IL-3 receptor agonists. The affinity decrease was reflected in the MPO chimeras having approximately 2-fold slower dissociation rates and 2.7-5.5-fold slower association rates than the corresponding specific IL-3 receptor agonists alone. The affinity of binding of the MPO molecules to the heteromultimeric alphabeta IL-3 receptor expressed on TF-1 cells was either 3-, 10-, or 42-fold less potent than that of the individual cognate IL-3 receptor agonist. Biophysical data from nuclear magnetic resonance, near-UV circular dichroism, dynamic light scattering, analytical ultracentrifugation, and size exclusion chromatography experiments determined that there were significant tertiary structural differences between the MPO molecules. These structural differences suggested that the IL-3 and G-CSF receptor agonist domains within the MPO chimera may perturb one another to varying degrees. Thus, the differential modulation of affinity observed in IL-3 receptor binding may be a direct result of the magnitude of these interdomain interactions.  相似文献   

17.
The thermodynamics and folding kinetics of a circularly permuted construct of the ribozyme from Bacillus subtilis RNase P are analyzed and compared with the folding properties of the wild-type ribozyme using optical spectroscopy and catalytic activity. The folding of the wild-type ribozyme is slow due to the rearrangement of kinetically trapped species containing misfolded structures. To test whether any misfolded structure arises from interactions between the two independently folding domains of the RNase P RNA, a circular permuted form was created where one of the two phosphodiester bonds connecting these domains is broken. This construct folds approximately 15-fold faster (t1/2 approximately nine seconds) than the wild-type ribozyme at 37 degreesC. While the complete folding of both domains is kinetically indistinguishable in the wild-type ribozyme, one domain folds much faster than the other domain in the circularly permuted construct. Hence, the major kinetic trap in the folding of the wild-type RNase P RNA involves interdomain interactions. This kinetic trap is avoidable at 37 degreesC in the circularly permuted RNA. However, at temperatures below 30 degreesC or when refolding begins from an equilibrium intermediate stabilized by submillimolar concentrations of Mg2+, a subpopulation containing an interdomain misfold still forms. These results indicate that the folding pathway of this large RNA is highly malleable and can be under kinetic control.  相似文献   

18.
Some proteins are homologous to others after their sequence is circularly permuted. A few such proteins have been recognized, mainly by sequence comparison, but also by comparing their three-dimensional structures. Here we report the result of a systematic search for all protein pairs in the SCOP 90% id domain database that become structurally superimposable when the sequence of one of the pairs is circularly permuted. Using a reasonable set of criteria, we find that 47% of all protein domains are superimposable to at least one other protein domain in the database after their sequence is circularly permuted. Many of these are symmetric proteins, which superimpose to another protein both with and without a circular permutation of the sequence. However, 412 of the total 3035 domains are nonsymmetric, and these become structurally superimposable to another protein only after a circular permutation of the sequence. These include most known and many previously undetected circularly permuted proteins with remote homology.  相似文献   

19.
Engineering novel allostery into existing proteins is a challenging endeavor to obtain novel sensors, therapeutic proteins, or modulate metabolic and cellular processes. The RG13 protein achieves such allostery by inserting a circularly permuted TEM-1 β-lactamase gene into the maltose binding protein (MBP). RG13 is positively regulated by maltose yet is, serendipitously, inhibited by Zn(2+) at low μM concentration. To probe the structure and allostery of RG13, we crystallized RG13 in the presence of mM Zn(2+) concentration and determined its structure. The structure reveals that the MBP and TEM-1 domains are in close proximity connected via two linkers and a zinc ion bridging both domains. By bridging both TEM-1 and MBP, Zn(2+) acts to "twist tie" the linkers thereby partially dislodging a linker between the two domains from its original catalytically productive position in TEM-1. This linker 1 contains residues normally part of the TEM-1 active site including the critical β3 and β4 strands important for activity. Mutagenesis of residues comprising the crystallographically observed Zn(2+) site only slightly affected Zn(2+) inhibition 2- to 4-fold. Combined with previous mutagenesis results we therefore hypothesize the presence of two or more inter-domain mutually exclusive inhibitory Zn(2+) sites. Mutagenesis and molecular modeling of an intact TEM-1 domain near MBP within the RG13 framework indicated a close surface proximity of the two domains with maltose switching being critically dependent on MBP linker anchoring residues and linker length. Structural analysis indicated that the linker attachment sites on MBP are at a site that, upon maltose binding, harbors both the largest local Cα distance changes and displays surface curvature changes, from concave to relatively flat becoming thus less sterically intrusive. Maltose activation and zinc inhibition of RG13 are hypothesized to have opposite effects on productive relaxation of the TEM-1 β3 linker region via steric and/or linker juxtapositioning mechanisms.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号