首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Autophagy is an intracellular lysosomal degradation pathway where its primary function is to allow cells to survive under stressful conditions. Autophagy is, however, a double-edge sword that can either promote cell survival or cell death. In cancer, hypoxic regions contribute to poor prognosis due to the ability of cancer cells to adapt to hypoxia in part through autophagy. In contrast, autophagy could contribute to hypoxia induced cell death in cancer cells. In this study, we showed that autophagy increased during hypoxia. At 4 h of hypoxia, autophagy promoted cell survival whereas, after 48 h of hypoxia, autophagy increased cell death. Furthermore, we found that the tyrosine phosphorylation of EGFR (epidermal growth factor receptor) decreased after 16 h in hypoxia. Furthermore, EGFR binding to BECN1 in hypoxia was significantly higher at 4 h compared to 72 h. Knocking down or inhibiting EGFR resulted in an increase in autophagy contributing to increased cell death under hypoxia. In contrast, when EGFR was reactivated by the addition of EGF, the level of autophagy was reduced which led to decreased cell death. Hypoxia led to autophagic degradation of the lipid raft protein CAV1 (caveolin 1) that is known to bind and activate EGFR in a ligand-independent manner during hypoxia. By knocking down CAV1, the amount of EGFR phosphorylation was decreased in hypoxia and amount of autophagy and cell death increased. This indicates that the activation of EGFR plays a critical role in the switch between cell survival and cell death induced by autophagy in hypoxia.  相似文献   

2.
R. Edwards  W. J. Owen 《Planta》1986,169(2):208-215
The metabolism of the s-triazine herbicide atrazine has been compared in Zea mays seedlings and cell suspension cultures. The rapid detoxification observed in the shoots of whole plants was not seen in the cultured cells. This difference in metabolism could be accounted for by the varying substrate specificities of the isoenzymes of glutathione S-transferase (EC 2.5.1.18) present in the plant and the cells. A single form of the enzyme isolated from leaf tissue conjugated both atrazine and the chloracetanilide herbicide metolachlor. However, the two isoenzymes present in suspension-cultured cells although active against metolachlor, showed no activity toward atrazine. Following purification, the major form of transferase present in the cells was physically similar to the enzyme isolated from leaf (Mr=55000). Both proteins were dimers of subunit Mr=26300, and with isoelectric points in the range pH 4.3-4.9. The minor form of the enzyme present in culture showed a greater specificity for metolachlor than the major species. In addition the overall activity and ratio of the two isoenzymes varied over the culture growth cycle. These findings illustrate the need for characterizing enzymes involved in herbicide detoxification in plant cell cultures.Abbreviations CDNB 1-chloro-2,4-dinitrobenzene - DEAE diethylaminoethyl - GSH glutathione (reduced) - GST glutathione S-transferase - HPLC high-pressure liquid chromatography - Mr molecular weight - SDS-PAGE sodium dodecyl sulphate-polyacrylamide gel electrophoresis  相似文献   

3.
The influence of soil environmental factors such as aeration on the ecology of microorganisms involved in the mineralization and degradation of the popular soil-applied pre-emergent herbicide, metolachlor is unknown. To address this knowledge gap, we utilized DNA-based stable isotope probing (SIP) where soil microcosms were incubated aerobically or anaerobically and received herbicide treatments with unlabeled metolachlor or 13C-metolachlor. Mineralization of metolachlor was confirmed as noted from the evolution of 14CO2 from 14C-metolachlor-treated microcosms and clearly demonstrated the efficient utilization of the herbicide as a carbon source. Terminal restriction fragment length polymorphisms (T-RFLP) bacterial community profiling performed on soil DNA extracts indicated that fragment 307 bp from aerobic soil and 212 bp from anaerobic soil were detected only in the herbicide-treated (both unlabeled metolachlor and 13C-metolachlor) soils when compared to the untreated control microcosms. T-RFLP profiles from the ultracentrifugation fractions illustrated that these individual fragments experienced an increase in relative abundance at a higher buoyant density (BD) in the labeled fractions when compared to the unlabeled herbicide amendment fractions. The shift in BD of individual T-RFLP fragments in the density-resolved fractions suggested the incorporation of 13C from labeled herbicide into the bacterial DNA and enabled the identification of organisms responsible for metolachlor uptake from the soil. Subsequent cloning and 16S rRNA gene sequencing of the 13C-enriched fractions implicated the role of organisms closely related to Bacillus spp. in aerobic mineralization and members of Acidobacteria phylum in anaerobic mineralization of metolachlor in soil.  相似文献   

4.
Whether translation initiation factor 4E (eIF4E), the mRNA cap binding and rate-limiting factor required for translation, is a target for cytotoxicity and cell death induced by cadmium, a human carcinogen, was investigated. Exposure of human cell lines, HCT15, PLC/PR/5, HeLa, and Chang, to cadmium chloride resulted in cytotoxicity and cell death, and this was associated with a significant decrease in eIF4E protein levels. Similarly, specific silencing of the expression of the eIF4E gene, caused by a small interfering RNA, resulted in significant cytotoxicity and cell death. On the other hand, overexpression of the eIF4E gene was protective against the cadmium-induced cytotoxicity and cell death. Further studies revealed the absence of alterations in the eIF4E mRNA level in the cadmium-treated cells despite their decreased eIF4E protein level. In addition, exposure of cells to cadmium resulted in enhanced ubiquitination of eIF4E protein while inhibitors of proteasome activity reversed the cadmium-induced decrease of eIF4E protein. Exposure of cells to cadmium, as well as the specific silencing of eIF4E gene, also resulted in decreased cellular levels of cyclin D1, a critical cell cycle and growth regulating gene, suggesting that the observed inhibition of cyclin D1 gene expression in the cadmium-treated cells is most likely due to decreased cellular level of eIF4E. Taken together, our results demonstrate that the exposure of cells to cadmium chloride resulted in cytotoxicity and cell death due to enhanced ubiquitination and consequent proteolysis of eIF4E protein, which in turn diminished cellular levels of critical genes such as cyclin D1.  相似文献   

5.
R. Edwards  W. J. Owen 《Planta》1988,175(1):99-106
An antiserum to glutathione S-transferase (EC 2.5.1.18) from maize (Zea mays L.) responsible for herbicide detoxification has been raised in rabbit. The antiserum was specific to the Mr 26000 subunit of the enzyme from maize seedlings and suspension-cultured cells, and recognized the isoenzymes active toward both atrazine and metolachlor. When plants were treated for 24 h with the herbicide antidote N,N-diallyl-2-2-dich-loroacetamide (DDCA), enzyme activities toward metolachlor were doubled in the roots and this was associated with a 70% increase in immunodetectable protein. Translation of polysomal RNA in vitro showed that the increase in the transferase in root tissue was brought about by a ninefold increase in mRNA activity encoding the enzyme. Treatment of suspension-cultured cells with cinnamic acid, metolachlor and DDCA raised enzyme activities but did not increase synthesis of glutathione S-transferase. In cultured maize cells, enzyme synthesis was maximal in mid-logarithmic phase, coinciding with the highest levels of enzyme activity. When callus cultures were established from the shoots of a maize line known to conjugate chloro-s-triazines, enzyme activity towards atrazine was lost during primary dedifferentiation. However, levels of total immunodetectable enzyme and activity toward metolachlor were increased in cultured cells compared with the parent shoot tissue.  相似文献   

6.
We studied the effect of 2-(6-(2-thieanisyl)-3(Z)-hexen-1,5-diynyl)aniline(THDA), a newly developed anti-cancer agent, on cell proliferation, cell cycle progression, and induction of apoptosis in K562 cells. THDA was found to inhibit the growth of K562 cells in a time-and dose-dependent manner. Cell cycle analysis showed G2/M phase arrest and apoptosis in K562 cells following 24 h exposure to THDA. During the G2/M arrest, cyclin-dependent kinase inhibitors (CDKIs), p21 and p27 were increased in a time-dependent manner. Analysis of the cell cycle regulatory proteins demonstrated that THDA did not change the steady-state levels of cyclin B1, cyclin D3 and Cdc25C, but decreased the protein levels of Cdk1, Cdk2 and cyclin A. THDA also caused a marked increase in apoptosis, which was associated with activation of caspase-3 and proteolytic cleavage of poly (ADP-ribose) polymerase. These molecular alterations provide an insight into THDA-caused growth inhibition, G2/M arrest and apoptotic death of K562 cells.  相似文献   

7.
Response of adenine nucleotides (ATP, ADP, AMP) and adenylate energy charge (EC) to atrazine, a triazine herbicide, was evaluated as an indicator of metabolic state in Zostera marina L. (eelgrass), a submerged marine angiosperm. Short-term (6 h) atrazine stress reduced ATP and total adenylates (AT) at both 10 and 100 ppb, but EC remained constant. Net productivity decreased at 100, but not at 10 ppb atrazine over 6 h. Long-term (21 day) atrazine stress was evidenced by growth inhibition and 50% mortality near 100 ppb. EC was reduced at 0.1, 1.0 and 10 ppb atrazine, but ATP and EC increased with physiological response to severe stress (100 ppb) after 21 days. Apparently, ATP and AT decrease over the short-term but rebound over the long-term with severe atrazine stress, increasing beyond control levels before plant death results. Supplementing adenine nucleotide and EC results with more conventional quantitative analyses should afford greater knowledge of physiological response to environmental variation.  相似文献   

8.
In the study presented here, we first evaluated effect of CDDP on liver cancer cells SMMC-7721 apoptosis and motility capacity. Then, we evaluate inhibitory effect of CDDP on tumour growth and its possible molecular mechanism in liver cancer mice model. Results showed that the apoptosis rate of cells decreased with increasing CDDP. Analysis of the effect of the CDDP on cell cycle was performed by flow cytometry and results show a dose-dependent increase in the percentage of cells in the S-phase of the cell cycle, with a decrease in the percentage of cells in the G1 and G2/M phases. CDDP did not close the wound even after 48 h, as opposed to untreated cells (0 mg/l). Similarly, the migratory and invasion capacity of SMMC-7721 cells was also reduced after treatment with CDDP, as evaluated by a transwell assay. Animal experiment indicated that CDDP administration could increase blood WBC, total protein, albumin and A/G, decrease blood alanine aminotransferase, aspartate aminotransferase and alkaline phosphatase levels in hepatocellular carcinomas mice. Immunohistochemistry analysis showed that positive expression of Fas and Bax proteins in the medicine-treated (II, III) group was significantly higher, whereas the expression of NF-κB, P53, Bcl-2 proteins was significantly lower than those of the control group. Gene expression analysis using Real time PCR methods revealed a significant up-regulation in the expression levels of Bax mRNA in the medicne-treated (II, III) group when compared to untreated control. In contrast, CDDP-treated group showed a significant down regulation in the expression levels of Bcl-2 mRNA as compared to untreated control group. These results are in agreement with immunohistochemistry data. Our observations indicate that CDDP has damaged effects on liver tumour cells SMMC-7721 including apoptosis, motility and cell cycle under in vitro. CDDP can enhance pro-apoptosis gene Fas, Bax expression, decrease anti-apoptosis genes Bcl-2 expression, and mutant genes P53, NF-κB proteins expression.  相似文献   

9.
Silver catfish (Rhamdia quelen; Teleostei) were exposed to commercial formulation Roundup, a glyphosate herbicide: 0 (control), 0.2 or 0.4 mg/L for 96 h. Fish exposed to glyphosate showed an increase in hepatic glycogen, but a reduction in muscle glycogen at both concentrations tested. Glucose decreased in liver and increased in muscle of fish at both herbicide concentrations. Glyphosate exposure increased lactate levels in liver and white muscle at both concentrations. Protein levels increased in liver and decreased in white muscle while levels of ammonia in both tissues increased in fish at both glyphosate concentrations. Specific AChE activity was reduced in brain after treatments, no changes were observed in muscle tissue. Catalase activity in liver did not change during of exposure. Fish exposed to glyphosate demonstrated increased TBARS production in muscle tissue at both concentrations tested. For both glyphosate concentrations tested brain showed a reduction of TBARS after 96 h of exposure. The present results showed that in 96 h, glyphosate changed AChE activity, metabolic parameters and TBARS production. The parameters measured can be used as herbicide toxicity indicators considering environmentally relevant concentration.  相似文献   

10.
A selection of mouse hybridoma cell lines showed a variation of approximately two orders of magnitude in intracellular monoclonal antibody contents. The different levels directly influenced apparent specific monoclonal antibody productivity during the death phase but not during the growth phase of a batch culture. The pattern of changes in specific productivity during culture remained basically similar even though at different levels for all cell lines tested. Arresting the cells in the G1 phase using thymidine increased the specific productivity, cell volume and intracellular antibody content but at the same time led to decreased viability. In continuous culture DNA synthesis decreased with decreasing dilution rate though without an accompanying change in cell cycle and cell size distributions. The data shows both the decrease in viability and intracellular antibody content to be important factors which influence the negative association between specific antibody productivity and growth rate. In high cell density perfusion culture, when the cell cycle was prolonged by slow growth, viability was low and dead, but not lysed, cells were retained in the system, the specific antibody productivity was nearly two fold higher than that obtained in either batch or continuous cultures. The results imply that the prolongation of G1 phase and the increase in death rate of cells storing a large amount of antibody together cause an apparent increase in specific antibody productivity.  相似文献   

11.
The present study analyzed the expression level of aquaporins of plasma membrane intrinsic protein (PIP) class in response to arsenite (AsIII) exposure of 100 μM from 0.5 h to 8 days in Brassica juncea. The expression levels of most of the PIPs were down-regulated during the course of AsIII exposure. This led to decrease in total water content of plants, which in turn hampered seedling growth. The level of reactive oxygen species (superoxide radicals and hydrogen peroxide), lipid peroxidation and root oxidizability increased significantly upon exposure to AsIII as compared to that of control leading to an increase in cell death. The study proposes that the down-regulation of PIPs happened presumably to regulate AsIII levels, which, however, occurred at the cost of reduced growth, disturbed water balance and induced oxidative stress.  相似文献   

12.
13.
Hyperproliferation of vascular smooth muscle cells is a hallmark of atherosclerosis and related vascular complications. Microtubules are important for many aspects of mammalian cell responses including growth, migration and signaling. alpha-Tubulin, a component of the microtubule cytoskeleton, is unique amongst cellular proteins in that it undergoes a reversible posttranslational modification whereby the C-terminal tyrosine residue is removed (Glu-tubulin) and re-added (Tyr-tubulin). Whereas the reversible detyrosination/tyrosination cycle of alpha-tubulin has been implicated in regulating various aspects of cell biology, the precise function of this posttranslational modification has remained poorly characterized. Herein, we provide evidence suggesting that alpha-tubulin detyrosination is a required event in the proliferation of vascular smooth muscle cells. Proliferation of rat aortic smooth muscle cells in response to serum was temporally associated with the detyrosination of alpha-tubulin, but not acetylation of alpha-tubulin; Glu-tubulin reached maximal levels between 12 and 18h following cell cycle initiation. Inclusion of 3-nitro-l-tyrosine (NO(2)Tyr) in the culture medium resulted in the selective nitrotyrosination of alpha-tubulin, that was paralleled by decreased elaboration of Glu-tubulin, decreased expression of cyclins A and E, decreased association of the microtubule plus-end binding protein EB1, and inhibited cell proliferation. Nitrotyrosination of alpha-tubulin did not induce necrotic or apoptotic death of rat aortic smooth muscle cells, but instead led to cell cycle arrest at the G(1)/S boundary coincident with decreased DNA synthesis. Collectively, these results suggest that the C-terminus of alpha-tubulin and its detyrosination are functionally important as a molecular switch that regulates cell cycle progression in vascular smooth muscle cells.  相似文献   

14.
15.
Glyphosate Tolerance in Tobacco (Nicotiana tabacum L.)   总被引:2,自引:1,他引:1       下载免费PDF全文
A glyphosate-tolerant tobacco cell line, Nicotiana tabacum L. Indiana (I7), was selected from the glyphosate-sensitive Wisconsin 38 (W38) line through a single step exposure to the herbicide. Tolerance and growth characteristics of I7 cells were the same for cells maintained for more than 1 year in the presence or absence of glyphosate. Glyphosate tolerance levels were constant through the growth cycle. Tolerance is not due to reduced uptake of glyphosate. Shikimate levels in I7 and W38 cells maintained in glyphosate-free medium were similar, whereas W38 cells accumulated 46 times more shikimate than I7 cells, when cells of both lines were exposed to the herbicide. Glyphosate treatment caused increased levels of aromatic amino acids in W38 cells and slightly lower levels in I7 cells. Specific activities of dehydroquinate synthase, shikimate dehydrogenase, and shikimate kinase were similar in the two cell types, whereas DAHP synthase and EPSP synthase specific activities were elevated in I7 cells. Plants regenerated from I7 cells retained tolerance to glyphosate.  相似文献   

16.
Recent studies have indicated that Di-(2-ethylhexyl) phthalate (DEHP), the most commonly used plasticizer in daily-life products, could be dispersed in indoor air and induce human exposure via inhalation. DEHP has been reported to have effects on the respiratory system in both animal and human researches. The toxicity effects of DEHP exposure on cell proliferation, cell cycle progression, apoptosis, global DNA methylation and the expression levels of DNA methyltransferases (DNMTs) were investigated in this study, using human epithelial cell line 16HBE as an in vitro model. Cells were treated with DEHP at doses of 0, 0.125, 0.5 and 2 mmol/L for 48 h. Cell proliferation, cell cycle and apoptosis were tested by MTT assay and flow cytometer, respectively. The obtained results showed decreased living cell number and cell viability following DEHP exposure at the dose of 2 mmol/L. DEHP also inhibited the cell cycle progression of G1 phase and induced a significant increase in cell apoptosis in 16HBE cells. DEHP exposure could induce cell proliferation inhibition in 16HBE cells via the blocking of cell cycle progression and accelerated cell apoptosis. In addition, decreased global DNA methylation levels and expression levels of DNMTs were observed in DEHP-treated groups which revealed possible epigenetic effects of DEHP.  相似文献   

17.
Progression through the cell cycle and redirection of cells towards programmed cell death (apoptosis) are tightly inter-related processes. However the requirement for tissue and cell type specificity suggests that a wide variety of mechanisms are used to achieve the same purpose. To examine this issue, we investigated cell cycle (c-myc, p53, p21/WAF) and apoptosis related (bcl-2, bcl-X(L), bax-alpha) gene expression in two cell lines of very different origin under proliferating and apoptosis-inducing conditions. Transformed human osteosarcoma cells (MG63) and non-transformed human kidney embryonal fibroblasts (293-0) were kept in culture in medium containing 10% FCS and growth arrest was induced by the addition of 50 ng/ml colcemid. Colcemid treatment caused growth arrest and elevated expression of cyclin B1 protein in both cell lines. Apoptosis was significantly elevated in both cell lines after colcemid exposure for at least one cell cycle. However the pattern of expression of cell cycle and apoptosis related genes, determined by RT-PCR, was quite different between the two cell lines during exponential growth and cell cycle arrest. Colcemid treatment did not markedly influence c-myc, p53 and p21/WAF expression in MG63 cells but did suppress c-myc and increase p21/WAF in 293-0 cells. Furthermore colcemid treated MG63 cells exhibited elevated bcl-2 and bax-alpha expression while similar treatment of 293-0 cells resulted in decreased bcl-X(L) and slightly increased bax-alpha expression. While growth arrest and apoptosis were induced in both MG63 and 293 cells following colcemid treatment, the differences in gene expression suggest that the mechanism by which these cells determine cell fate is quite different and may determine the sensitivity of different cell populations to anti-neoplastic drug therapy. The distinct patterns of gene expression should be carefully defined before mechanisms of apoptotic cell death are studied.  相似文献   

18.
Close correlation between tissue transglutaminase (tTG) induction and growth regulation and/or cell death processes has been suggested in many cell lineages. In this study, the regulation of the tTG levels by various growth and differentiation factors and its relation to growth rate and cell death processes were investigated in two rat hepatoma cell lines, McA-RH7777 and McA-RH8994, using a monoclonal antibody against liver tTG. Transforming growth factor-β1 (TGF-β1) and retinoic acid (RA) each increased tTG to the level of 8- to 32-fold above that of control cultures in both cell lines after 72-h treatment. Dexamethasone (DEX) induced a 16- to 32-fold of tTG in McA-RH8994 cells while it did not change the enzyme level in McA-RH7777 cells. Simultaneous addition of DEX and RA increased the tTG level to more than 50-fold in McA-RH7777 cells as well as McA-RH8994 cells. Other factors, such as TGF-α, hepatocyte growth factor, dimethyl sulfoxide, and protein kinase C activator, did not show significant increases of the tTG levels. Although tTG induction by TGF-β1 or DEX appeared to be correlated with their growth suppressive effects, RA increased the tTG level without suppressing the growth rate of hepatoma cells. TGF-β1 was also shown to induce cell death in both cell lines. Our results demonstrate that RA and DEX are capable of modulating the TGF-β1-induced cell death processes independent of the tTG levels. We present evidence here that tTG induction by itself is not the direct cause of growth suppression and cell death in these hepatoma cells.  相似文献   

19.
20.
Cadmium is a toxic metal, and the mechanism of cadmium toxicity in living organisms has been well studied. Here, we used Saccharomyces cerevisiae as a model system to examine the detailed molecular mechanism of cell growth defects caused by cadmium. Using a plate assay of a yeast deletion mutant collection, we found that deletion of SML1, which encodes an inhibitor of Rnr1, resulted in cadmium resistance. Sml1 protein levels increased when cells were treated with cadmium, even though the mRNA levels of SML1 remained unchanged. Using northern and western blot analyses, we found that cadmium inhibited Sml1 degradation by inhibiting Sml1 phosphorylation. Sml1 protein levels increased when cells were treated with cadmium due to disruption of the dependent protein degradation pathway. Furthermore, cadmium promoted cell cycle progression into the G2 phase. The same result was obtained using cells in which SML1 was overexpressed. Deletion of SML1 delayed cell cycle progression. These results are consistent with Sml1 accumulation and with growth defects caused by cadmium stress. Interestingly, although cadmium treatment led to increase Sml1 levels, intracellular dNTP levels also increased because of Rnr3 upregulation due to cadmium stress. Taken together, these results suggest that cadmium specifically affects the phosphorylation of Sml1 and that Sml1 accumulates in cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号