首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The structural gene (hsd) of the Pseudomonas testosteroni encoding the 17 beta-hydroxysteroid dehydrogenase has been cloned using the cosmid vector pVK102. Escherichia coli carrying recombinant clones of hsd, isolated by immunological screening, were able to express the biologically active enzyme, as measured by the conversion of testosterone into androstenedione. Subcloning experiments, restriction and deletion analysis, and site-directed insertion mutagenesis showed that the hsd gene is located within a 1.3-kb HindIII-PstI restriction fragment. A 26.5-kDa protein encoded by a recombinant plasmid containing this Ps. testosteroni DNA restriction fragment was detected by SDS-PAGE analysis of in vitro [35S]methionine-labeled polypeptides.  相似文献   

2.
3.
4.
17beta-hydroxysteroid dehydrogenase (17beta-HSD) controls the last step in the formation of all androgens and all estrogens. At least six 17beta-HSD isoenzymes have been identified. The recently cloned Type 5 17beta-HSD transforms 4-dione into testosterone. To gain a better understanding of the role of this enzyme in reproductive tissues, we immunocytochemically localized the enzyme in human male and female reproductive organs. In the ovary of adult premenopausal women (25-40 years of age), immunostaining was found in corpus luteum cells. In the uterus, staining was detected only in the epithelial cells of the endometrium. Immunolabeling was also detected in the mammary gland, a positive reaction being detected in epithelial cells of acini and intralobular ducts as well as in the surrounding stromal cells. In the testis, strong staining was seen in the Leydig cells, and a weak but specific reaction was occasionally detected in Sertoli and germ cells. In the prostate, specific labeling was observed in alveoli and stromal fibroblasts. In alveoli, all the basal cells were generally labeled, whereas the luminal cells exhibited variations in immunoreactivity. In all the reproductive organs examined, specific staining was routinely detected in the walls of blood vessels, including the endothelial cells. These results indicate a cell-specific localization of Type 5 17beta-HSD in the different human reproductive organs, thus suggesting new mechanisms of local androgen and estrogen formation that may play an important physiological role.  相似文献   

5.
A novel 17beta-hydroxysteroid dehydrogenase (17beta-HSD) chronologically named type 12 17beta-HSD (17beta-HSD12), that transforms estrone (E1) into estradiol (E2) was identified by sequence similarity with type 3 17beta-HSD (17beta-HSD3) that catalyzes the formation of testosterone from androstenedione in the testis. Both are encoded by large genes spanning 11 exons, most of them showing identical size. Using human embryonic kidney-293 cells stably expressing 17beta-HSD12, we have found that the enzyme catalyzes selectively and efficiently the transformation of E1 into E2, thus identifying its role in estrogen formation, in contrast with 17beta-HSD3, the enzyme involved in the biosynthesis of the androgen testosterone in the testis. Using real-time PCR to quantify mRNA in a series of human tissues, the expression levels of 17beta-HSD12 as well as two other enzymes that perform the same transformation of E1 into E2, namely type 1 17beta-HSD and type 7 17beta-HSD, it was found that 17beta-HSD12 mRNA is the most highly expressed in the ovary and mammary gland. To obtain a better understanding of the structural basis of the difference in substrate specificity between 17beta-HSD3 and 17beta-HSD12, we have performed tridimensional structure modelization using the coordinates of type 1 17beta-HSD and site-directed mutagenesis. The results show the potential role of bulky amino acid F234 in 17beta-HSD12 that blocks the entrance of androstenedione. Overall, our results strongly suggest that 17beta-HSD12 is the major estrogenic 17beta-HSD responsible for the conversion of E1 to E2 in women, especially in the ovary, the predominant source of estrogens before menopause.  相似文献   

6.
The cytoplasmic 17 beta-hydroxysteroid dehydrogenase of human placenta, purified more than 2500-fold, was activated by small amounts of human albumin and globulin. This activation was dependent on substrate concentration. At 20 microM estradiol (10 X KM) and two different concentrations of enzyme (0.01 and 2 micrograms/ml), the activation was greatest at albumin or globulin concentrations between 0 and 30 micrograms/ml. At "low" concentrations of estradiol (20 nM = 10(-2) X KM) and enzyme (0.01 microgram/ml), maximal activity occurred at approximately 10 micrograms/ml. Higher concentrations of albumin and globulin led to a decline in activity.  相似文献   

7.
8.
9.
In vitro enzyme assays have demonstrated that human type 10 17beta-hydroxysteroid dehydrogenase (17beta-HSD10) catalyzes the oxidation of 5alpha-androstane-3alpha,17beta-diol (adiol), an almost inactive androgen, to dihydrotestosterone (DHT) rather than androsterone or androstanedione. To further investigate the role of this steroid-metabolizing enzyme in intact cells, we produced stable transfectants expressing 17beta-HSD10 or its catalytically inactive Y168F mutant in human embryonic kidney (HEK) 293 cells. It was found that DHT levels in HEK 293 cells expressing 17beta-HSD10, but not its catalytically inactive mutant, will dramatically increase if adiol is added to culture media. Moreover, certain malignant prostatic epithelial cells have more 17beta-HSD10 than normal controls, and can generate DHT, the most potent androgen, from adiol. This event might promote prostate cancer growth. Analysis of the 17beta-HSD10 sequence shows that this enzyme does not have any ER retention signal or transmembrane segments and has not originated by divergence from a retinol dehydrogenase. The data suggest that the unique mitochondrial location of this HSD [Eur. J. Biochem. 268 (2001) 4899] does not prevent it from oxidizing the 3alpha-hydroxyl group of a C19 sterol in living cells. The experimental results lead to the conclusion that mitochondrial 17beta-HSD10 plays a significant part in a non-classical androgen synthesis pathway along with microsomal retinol dehydrogenases.  相似文献   

10.
Reduction of 17-ketosteroids is a biocatalytic process of economic significance for the production of steroid drugs. This reaction can be catalyzed by different microbial 17beta-hydroxysteroid dehydrogenases (17beta-HSD), like the 17beta-HSD activity of Saccharomyces cerevisiae, Pichia faranosa and Mycobacterium sp., and by purified 3beta,17beta-HSD from Pseudomonas testosteroni. In addition to the bacterial 3beta,17beta-HSD the 17beta-HSD of the filamentous fungus Cochliobolus lunatus is the only microbial 17beta-HSD that has been expressed as a recombinant protein and fully characterized. On the basis of its modeled 3D structure, we selected several positions for the replacement of amino acids by site-directed mutagenesis to change substrate specificity, alter coenzyme requirements, and improve overall catalytic activity. Replacement of Val161 and Tyr212 in the substrate-binding region by Gly and Ala, respectively, increased the initial rates for the conversion of androstenedione to testosterone. Replacement of Tyr49 within the coenzyme binding site by Asp changed the coenzyme specificity of the enzyme. This latter mutant can convert the steroids not only in the presence of NADP(+) and NADPH, but also in the presence of NADH and NAD(+). The replacement of His164, located in the non-flexible part of the 'lid' covering the active center resulted in a conformation of the enzyme that possessed a higher catalytic activity.  相似文献   

11.
S K Dey  Z Dickmann 《Steroids》1974,24(1):57-62
In previous studies (1–3), we have shown that Δ5 -3β-hydroxysteroid dehydrogenase (3β-HSD) activity in rat embryos begins on Day 4 of pregnancy (Day 1 = day of finding spermatozoa in the vagina), it peaks on Day 5, and sharply declines on Day 6. The present study investigated the presence of estradiol-17β-hydroxysteroid dehydrogenase (17β-HSD) in rat embryos recovered on Days 4, 5 and 6. The pattern of the 17β-HSD activity was similar to that of 3β-HSD. Thus, the present results strengthen our previous contention that rat morulae and blastocysts synthesize steroid hormones; moreover, the results suggest that one of the hormones synthesized is estrogen.  相似文献   

12.
Preimplantation golden hamster (Mesocricetus auratus) embryos were recovered on days 1 (= day of finding spermatozoa in the vagina) through 4 of pregnancy. Postimplantation embryos were studied in sectioned gestation sacs excised on days 5 and 6. Δ5-3β-Hydroxysteroid dehydrogenase (3β-HSD) activity in embryos was determined histochemically. There was no enzyme activity on days 1 and 2. Weak activity was first observed at 08:00–09:00 hr on day 3, the activity then increased, peaked at 01:00–03:00 hr on day 4, considerably declined by 08:00–09:00 hr (day 4), and was absent on days 5 and 6. These results suggest that the preimplantation embryos synthesize steroid hormones. It was previously hypothesized (Dickmann and Dey, 1973, Dickmann and Dey, 1974) that, hormones synthesized by the preimplantation rat embryo participate in the regulation of morula to blastocyst transformation and implantation of the blastocyst. This hypothesis is applicable to the hamster.In addition to 3βHSD, estradiol-17β-hydroxysteroid dehydrogenase activity was observed in day 3 embryos, suggesting that the embryo synthesizes estrogen.  相似文献   

13.
14.
15.
The enzyme 17beta-hydroxysteroid dehydrogenase is required for the synthesis and 11beta-hydroxysteroid dehydrogenase for the regulation of androgens in rat Leydig cells. This histochemical study describes ontogenetic changes in distribution and intensity of these enzymes in Leydig cells from postnatal day (pnd) 1-90. Using NAD or NADP as the cofactor, 17beta-hydroxysteroid dehydrogenase (substrate: 5-androstene-3beta,17beta-diol) peaks were observed on pnd 16 for fetal Leydig cells and on pnd 19 and 37 for adult Leydig cells. Between pnd 13 and 25 the fetal cells showed a higher intensity for the 17beta-enzyme than the adult cells; more fetal Leydig cells were stained with NADP, whereas more adult cells were positive with NAD on pnd 13 and 16. A nearly identical distribution of 11beta-hydroxysteroid dehydrogenase (substrate: corticosterone) was observed with NAD or NADP as the cofactor; the reaction was present from pnd 31 onwards, first in a few adult Leydig cells and later in almost all these cells homogeneously. The ontogenetic curves of the two enzymes show an inverse relationship. To conclude: (1) Generally, a stronger reaction for 17beta-hydroxysteroid dehydrogenase is shown with NAD as cofactor than with NADP; using NADP, fetal Leydig cells show a stronger staining than adult Leydig cells. (2) The data possibly support the notion of a new isoform of 11beta-hydroxysteroid dehydrogenase in addition to types 1 and 2.  相似文献   

16.
《Gene》1996,169(2):219-222
The primary and rate-limiting step in retinoic acid (RA) biosynthesis requires the conversion of retinol into retinal. Previously, two genes encoding retinol dehydrogenases (RoDH), which recognize holo-cellular retinol-binding protein as substrate, had been cloned, expressed and identified as members of the short-chain dehydrogenase/reductase (SDR) gene family. This work reports the cloning of a cDNA encoding a third RoDH isozyme, RoDH(III). The deduced amino-acid sequence of RoDH(III) indicates 97.8% identity with RoDH(I) and 82.3% identity with RoDH(II). RNase protection assays revealed RoDH(III) mRNA expression only in rat liver, in contrast to RoDH(I) and RoDH(II), which had their mRNA expressed in rat liver, kidney, lung, testis and brain. These data extend the insight that a subfamily of SDR isozymes, tissue-distinctively expressed, catalyzes the first step in RA biogenesis  相似文献   

17.
18.
19.
The tissue distribution, subcellular localization, and metabolic functions of human 17beta-hydroxysteroid dehydrogenase type 10/short chain L-3-hydroxyacyl-CoA dehydrogenase have been investigated. Human liver and gonads are abundant in this enzyme, but it is present in only negligible amounts in skeletal muscle. Its N-terminal sequence is a mitochondrial targeting sequence, but is not required for directing this protein to mitochondria. Immunocytochemical studies demonstrate that this protein, which has been referred to as ER-associated amyloid beta-binding protein (ERAB), is not detectable in the ER of normal tissues. We have established that protocols employed to investigate the subcellular distribution of ERAB yield ER fractions rich in mitochondria. Mitochondria-associated membrane fractions believed to be ER fractions were employed in ERAB/Abeta-binding alcohol dehydrogenase studies. The present studies establish that in normal tissues this protein is located in mitochondria. This feature distinguishes it from all known 17beta-hydroxysteroid dehydrogenases, and endows mitochondria with the capability of modulating intracellular levels of the active forms of sex steroids.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号