首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Summary The intracellular localization and isozyme distribution of hexokinase were studied during rabbit reticulocyte maturation and aging. In reticulocytes 50% of the enzyme was particulate while in the mature erythrocytes all the hexokinase activity was soluble. The bound enzyme co-sediments with mitochondria and by column chromatography it was found to be hexokinase Ia. The cytosol of reticulocytes contains hexokinase Ia (38%) and hexokinase Ib (62%) while the mature erythrocytes contain only hexokinase Ia. The amount of bound hexokinase decreases very quickly during cell maturation and aging as was shown by following in vivo reticulocyte maturation or by analysis of hexokinase compartmentation in cells of different ages, obtained by density gradient ultracentrifugations. A role for this intracellular distribution of hexokinase is suggested.  相似文献   

2.
Summary Mammalian red blood cell hexokinase has been shown to exist in two or more distinct molecular forms, which are separable by ion-exchange chromatography. Of these forms just one corresponds to hexokinase type I from other tissues, while the others differ from any previously reported hexokinase isozyme. Analysis of several molecular properties of the three major forms (la, Ib and Ic in the order of their elution from DE-52 columns) of hexokinase prepared from human red cells and of the two forms purified from rabbit reticulocytes, shows significant differences in the isoelectric point. The kinetic and regulatory characteristics, the molecular weight, the temperature and pH-dependence of the various isozymes were similar.The hexokinase isozymic pattern is largely dependent upon red blood cell age. Among all, hexokinase Ib is the predominant form in rabbit reticulocytes and becomes the minor component in the older cells; a similar situation has also been found in the human erythrocyte. At present the molecular basis of hexokinase heterogeneity remains unknown, however preliminary experimental findings indicate a post-translational modification as a possible mechanism.  相似文献   

3.
Summary Rabbit hexokinase (EC 2.7.1.1) has been shown to exist in reticulocytes as two distinct molecular forms, designated hexokinase Ia and Ib, but only one of these was consistently present in mature red cells. In vivo, hexokinase la and Ib show a decay rate of 3 and 8% a day, respectively, while in vitro they show a similar stability.The possibility that the proteolytic activities of the reticulocyte could be responsible for the fast decay of hexokinase was investigated. No differences were found in the decay rates of hexokinase la and Ib during in vitro reticulocyte maturation in presence or absence of proteolytic inhibitors. Contrariwise, many findings indicate the ATP-dependent proteolytic system of the reticulocyte as a possible mechanism. In fact, the decay of hexokinase and the degradation of 3H-globins are both stimulated by ATP and ubiquitin; they show similar kinetic properties and both disappear during reticulocyte maturation.The cellular localization of hexokinase la and Ib was shown to be responsible for the differences found between their decay rates.Abbreviations PMSF phenylmethylsulfonyl fluoride - TPCK 1-1-tosylamide-2-phenylethyl-chloromethyl ketone - TLCK N -p-tosyl-L-lysine chloromethyl ketone  相似文献   

4.
The isoenzyme pattern of hexokinase in rabbit red cells (erythrocytes, fetal erythrocytes and reticulocytes) were determined by means of agarose gel and disc electrophoresis. One duplicated hexokinase (4a and 4b according to the IUPAC-nomenclature) was detected in rabbit erythrocytes as also described for human erythrocytes. Besides the isoenzymes 4a and 4b reticulocytes also contain hexokinase 2 and 3 like rabbit and rat liver. The high KM glucose phosphorylating enzyme, hexokinase 1 could be demonstrated only under specific conditions in the reticulocytes during the initial stage of the anemia. After the fractionation of reticulocyte homogenates the total hexokinase activity was recovered in the mitochondria and cytosol to nearly equal amounts as revealed by the distribution of markers. Hexokinase 2 and 3 were detectable in reticulocytes and in isolated mitochondria only after the addition of certain dissociating agents. In contrast to the tightly bound mitochondrial hexokinases 2 and 3 the type 4a and 4b are more loosely bound and exhibit a bilocal distribution between mitochondria and cytosol of reticulocytes.  相似文献   

5.
Improved methods are described for the preparation of hexokinase from baker's yeast. The isolation procedure is designed to avoid proteolysis, by using mechanical disintegration of the yeast cells, by organophosphate inhibition of the serine-dependent proteases, and by removal of all other proteases by gel filtration.

Three isoenzymes, A, B and C, can be obtained thus. For hexokinase A, the ratio of activity in phosphorylating fructose as compared to glucose is about twice that of B or C. Hexokinase C is very similar in properties to B, but is separable by ion-exchange chromatography and appears to be a conformational isoenzyme of B. In the final purified state, the specific activity on glucose (27 mM, pH 8.3, 25.0) is 275 international units per mg for A, 900 for B and 750 for C, these values being higher than those for previously reported forms.  相似文献   

6.
1. Red cell pyruvate kinase (EC 2.7.1.40) and hexokinase (EC 2.7.1.1) in high and low potassium (K) dogs were shown to exist as multiple forms which were separable by electrophoresis and ion-exchange chromatography. The R2-type pyruvate kinase, which was determined to be a young type enzyme in canine red cells, was shown to be the predominant form of pyruvate kinase in high K cells. 2. The M2-type pyruvate kinase, a prototype isozyme in erythroid cells, existed in high K dog erythrocytes as well as in high K and low K dog reticulocytes. 3. Isozyme analysis of high K red cell hexokinase also showed a profile similar to that obtained for low K reticulocytes. 4. These results seem to reflect the immaturity of high K erythrocytes, which suggest that an abnormal cell differentiation or maturation may occur at an early stage of erythroid cell proliferation in high K dogs.  相似文献   

7.
We have analysed the pattern of expression of the hexokinase isoenzyme group in RIN-m5F insulinoma cells. Three hexokinase forms were resolved by DEAE-cellulose chromatography. The most abundant isoenzyme co-eluted with hexokinase type II from rat adipose tissue and displayed a Km for glucose of 0.15 mM, similar to the adipose-tissue enzyme. Hexokinase type II was in large part associated with a particulate subcellular fraction in RIN-m5F cells. The two other hexokinases separated by ion-exchange chromatography were an enzyme similar to hexokinase type I from brain and glucokinase (or hexokinase type IV). The latter isoenzyme was identified as the liver-type glucokinase by the following properties: co-elution with hepatic glucokinase from DEAE-cellulose and DEAE-Sephadex; sigmoid saturation kinetics with glucose with half-maximal velocity at 5.6 mM and Hill coefficient (h) of 1.54; suppression of enzyme activity by antibodies raised against rat liver glucokinase; apparent Mr of 56,500 and pI of 5.6, as shown by immunoblotting after one- and two-dimensional gel electrophoresis; peptide map identical with that of hepatic glucokinase after proteolysis with chymotrypsin and papain. These data indicate that the gene coding for hepatic glucokinase is expressed in RIN-m5F cells, a finding consistent with indirect evidence for the presence of glucokinase in the beta-cell of the islet of Langerhans. On the other hand, the overall pattern of hexokinases is distinctly different in RIN-m5F cells and islets of Langerhans, since hexokinase type II appears to be lacking in islets. Alteration in hexokinase expression after tumoral transformation has been reported in other systems.  相似文献   

8.
The hexokinase isozymic pattern of circulating reticulocytes fractionated by density gradient ultracentrifugation was studied. All the cellular fractions obtained show similar ratio of hexokinase Ia/hexokinase Ib while a four fold decay in specific activity was evidenced. Bone-marrow cells of anemic rabbits also contain low amounts of HK Ib while this isozymic form is not present in basophilic erythroblasts.  相似文献   

9.
In rabbit reticulocytes more than half of the total hexokinase activity is mitochondrial bound and shows a fast decay during reticulocyte maturation. During in vitro incubation of rabbit reticulocytes, Ca2+ increases the decay of hexokinase while salicylhydroxamate (SHAM), an inhibitor of lipoxygenase, reduces the decay. Swelling of mitochondria, by incubation of the cells in hypotonic solutions, greatly enhances hexokinase decay, but both the Ca2+ and SHAM are still appreciable suggesting that Ca2+ and the swelling act by additive mechanisms, both able to influence hexokinase decay. This was confirmed by incubation of rabbit brain mitochondria in hypotonic solutions which does not promote any hexokinase decay, while the presence of Ca2+ does. Analyses of hexokinase isozymic pattern after incubation of reticulocytes in hypotonic solution both with and without Ca2+ and SHAM showed that the decay of hexokinase mainly involves the mitochrondrial bound isozymic forms.Abbreviations SHAM Salicylhydroxamate - HPLC High-Performance Liquid Chromatography  相似文献   

10.
Regulation of hexokinase binding to VDAC   总被引:5,自引:1,他引:4  
Hexokinase isoforms I and II bind to mitochondrial outer membranes in large part by interacting with the outer membrane voltage-dependent anion channel (VDAC). This interaction results in a shift in the susceptibility of mitochondria to pro-apoptotic signals that are mediated through Bcl2-family proteins. The upregulation of hexokinase II expression in tumor cells is thought to provide both a metabolic benefit and an apoptosis suppressive capacity that gives the cell a growth advantage and increases its resistance to chemotherapy. However, the mechanisms responsible for the anti-apoptotic effect of hexokinase binding and its regulation remain poorly understood. We hypothesize that hexokinase competes with Bcl2 family proteins for binding to VDAC to influence the balance of pro-and anti-apoptotic proteins that control outer membrane permeabilization. Hexokinase binding to VDAC is regulated by protein kinases, notably glycogen synthase kinase (GSK)-3β and protein kinase C (PKC)-ɛ. In addition, there is evidence that the cholesterol content of the mitochondrial membranes may contribute to the regulation of hexokinase binding. At the same time, VDAC associated proteins are critically involved in the regulation of cholesterol uptake. A better characterization of these regulatory processes is required to elucidate the role of hexokinases in normal tissue function and to apply these insights for optimizing cancer treatment.  相似文献   

11.
Regulatory properties of human erythrocyte hexokinase during cell ageing   总被引:2,自引:0,他引:2  
Human red blood cell hexokinase exists in multiple molecular forms with different isoelectric points but similar kinetic and regulatory properties. All three major isoenzymes (HK Ia, Ib, and Ic) are inhibited competitively with respect to Mg.ATP by glucose 6-phosphate (Ki = 15 microM), glucose 1,6-diphosphate (Ki - 22 microM), 2,3-diphosphoglycerate (Ki = 4 mM), ATP (Ki = 1.5 mM), and reduced glutathione (Ki = 3 mM). All these compounds are present in the human erythrocyte at concentrations able to modify the hexokinase reaction velocity. However, the oxygenation state of hemoglobin significantly modifies their free concentrations and the formation of the Mg complexes. The calculated rate of glucose phosphorylation, in the presence of the mentioned compounds, is practically identical to the measured rate of glucose utilization by intact erythrocytes (1.43 +/- 0.15 mumol h-1 ml red blood cells-1). Hexokinase in young red blood cells is fivefold higher when compared with the old ones, but the concentration of many inhibitors of the enzyme is also cell age-dependent. Glucose 6-phosphate, glucose 1,6-diphosphate, 2,3-diphosphoglycerate, ATP, and Mg all decay during cell ageing but at different rates. The free concentrations and the hemoglobin and Mg complexes of both ATP and 2,3-diphosphoglycerate with hemoglobin in the oxy and deoxy forms have been calculated. This information was utilized in the calculation of glucose phosphorylation rate during cell ageing. The results obtained agree with the measured glycolytic rates and suggest that the decay of hexokinase during cell ageing could play a critical role in the process of cell senescence and destruction.  相似文献   

12.
Cho JI  Ryoo N  Ko S  Lee SK  Lee J  Jung KH  Lee YH  Bhoo SH  Winderickx J  An G  Hahn TR  Jeon JS 《Planta》2006,224(3):598-611
Hexokinase (HXK) is a dual-function enzyme that both phosphorylates hexose to form hexose 6−phosphate and plays an important role in sugar sensing and signaling. To investigate the roles of hexokinases in rice growth and development, we analyzed rice sequence databases and isolated ten rice hexokinase cDNAs, OsHXK1 (Oryza sativa Hexokinase 1) through OsHXK10. With the exception of the single-exon gene OsHXK1, the OsHXKs all have a highly conserved genomic structure consisting of nine exons and eight introns. Gene expression profiling revealed that OsHXK2 through OsHXK9 are expressed ubiquitously in various organs, whereas OsHXK10 expression is pollen-specific. Sugars induced the expression of three OsHXKs, OsHXK2, OsHXK5, and OsHXK6, in excised leaves, while suppressing OsHXK7 expression in excised leaves and immature seeds. The hexokinase activity of the OsHXKs was confirmed by functional complementation of the hexokinase-deficient yeast strain YSH7.4-3C (hxk1, hxk2, glk1). OsHXK4 was able to complement this mutant only after the chloroplast-transit peptide was removed. The subcellular localization of OsHXK4 and OsHXK7, observed with green fluorescent protein (GFP) fusion constructs, indicated that OsHXK4 is a plastid-stroma-targeted hexokinase while OsHXK7 localizes to the cytosol.Electronic Supplementary Material Supplementary material is available for this article at and is accessible for authorized users.  相似文献   

13.
Hexokinase activity was detected in cytosols and homogenates from different developmental stages of Bufo bufo embryos starting from stage 17. Free glucose was measured in the embryo cytosol and was detected at each stage tested. At stage 15, a large increase of glucose content of the embryo cytosol occurs. Hexokinase expression in the embryo thus occurs after the increase of cytosol glucose content occuring at stage 15. The findings rule out that glucose by itself is the hexokinase inducer in vivo. The very low glucose utilization found by many authors during early amphibian development may be related to the late hexokinase expression during Bufo bufo development.  相似文献   

14.
Hydrophobic interaction chromatography (HIC) has been used extensively for the separation of proteins and peptides by elution using a descending salt gradient, with and without the use of detergents or denaturing agents. In this paper we compare different hydrophobic interaction chromatographic media for the separation of multiple forms of hexokinase from rabbit reticulocytes. Among the different hydrophobic chromatographic media tested (Toyopearl Phenyl 650S, Ether 650S and Butyl 650S) Toyopearl Phenyl 650S offered the best separation of multiple forms of hexokinase, probably due to its intermediate hydrophobicity. In order to establish the optimal experimental conditions, we evaluated the effects of different salts, and the results obtained demonstrated that among the antichaotropic salts, ammonium sulphate is the most suitable for the separation of hexokinase sub-types. The sample loading capacity of the three Toyopearl supports was investigated and the recovery of enzymatic activity obtained ranged from 60% to 90%, depending on the different salts and hydrophobic media used. The chromatographic profiles of hexokinase activity from various mammalian and fungal tissues also demonstrate that Toyopearl Phenyl 650S can be successfully employed for the separation of multiple forms of enzymes from different biological sources.  相似文献   

15.
Hexokinase (ATP: D-hexose 6-phosphotransferase, EC 2.7.1.1) has been synthesized in the rabbit reticulocyte lysate system directed by poly(A)+ mRNA isolated from rat brain. Identification of the in vitro synthesis product as hexokinase was based on its immunoprecipatation with anti-hexokinase serum as well as the generation of identical peptide maps after partial cleavage of the in vitro product and authentic hexokinase with Staphylococcus aureus V8 proteinase or chymotrypsin. The in vitro product and authentic hexokinase were indistinguishable in molecular weight (SDS-gel electrophoresis); thus, despite the fact that, in situ, much of the hexokinase in brain is found in association with mitochondria, it is not synthesized in the form of a higher molecular weight precursor as is characteristic of other mitochondrial proteins. This is in accord with the view that hexokinase is best considered as a classical ‘soluble’ enzyme which is capable of exhibiting reversible association with mitochondria. The in vitro product cochromatographs (during anion-exchange HPLC) with authentic hexokinase previously shown to have a blocked (presumably acetylated) N-terminus; this procedure is capable of resolving the N-terminally blocked form of the enzyme from a partially proteolyzed form having a free N-terminal amino group. Thus the in vitro product is apparently N-acetylated by an enzyme system previously shown to be present in reticulocyte lysates. A significant fraction of the in vitro synthesized hexokinase attained a conformation characteristic of the native enzyme as judged by the observations that (1) it could be immunoprecipitated by monoclonal antibodies recognizing the native enzyme but not by antibodies recognizing denatured hexokinase, and (2) limited tryptic cleavage of the in vitro product gave fragments identical to those seen with the native enzyme and thought to reflect the organization of structural domains in that enzyme. However, based on these same criteria, the majority of the hexokinase synthesized in vitro appears to exist in a folding state that is not identical to that of either the fully denatured or native enzyme.  相似文献   

16.
In rabbit reticulocytes, the hexokinase (EC 2.7.1.1)-specific activity is 4-5 times that of corresponding mature red cells. Immunoprecipitation of hexokinase by a polyclonal antibody made in vitro shows that this maturation-dependent hexokinase decay is not due to accumulation of inactive enzyme molecules but to degradation of hexokinase. A cell-free system derived from rabbit reticulocytes, but not mature erythrocytes, was found to catalyze the decay of hexokinae activity and the degradation of 125I-labeled enzyme. This degradation is ATP-dependent and requires both ubiquitin and a proteolytic fraction retained by DEAE-cellulose. Maximum ATP-dependent degradation was obtained at pH 7.5 in the presence of MgATP. MgGTP could replace MgATP with a relative stimulation of 0.90. 125I-Hexokinase incubated with reticulocyte extract in the presence of ATP forms high molecular weight aggregates that reach a steady-state concentration in 1 h, whereas the degradation of the enzyme is linear up to 8 h, suggesting that the formation of protein aggregates precedes enzyme catabolism. These aggregates are stable upon boiling in 2% sodium dodecyl sulfate, 3% mercaptoethanol and probably represent an intermediate step in the enzyme degradation with hexokinase and other proteins covalently conjugate to ubiquitin. That hexokinase could be conjugated to ubiquitin was shown by the formation of 125I-ubiquitin-hexokinase complexes in the presence of ATP and the enzymes of the ubiquitin-protein ligase system. Thus, the decay of hexokinase during reticulocyte maturation is ATP- and ubiquitin-dependent and suggests a new physiological role for the energy-dependent degradation system of reticulocytes.  相似文献   

17.
The glycolytic enzyme hexokinase is studied in cultured leukemic lymphoblasts, in normal lymphocytes and in lymphoblasts obtained by stimulation of normal lymphocytes with phytohaemagglutinin.Hexokinase activity levels in cultured lymphoblasts and in normal lymphocytes are identical, but somewhat higher levels are found in stimulated lymphocytes. Cultured leukemic lymphoblasts differ in isozyme content in comparison to the other lymphoid cells. Besides hexokinase I, which is detected in all the lymphoid cells, they are characterized by the presence of hexokinase II. The concentration of type II increases during cell growth. Another difference between leukemic lymphoblasts and mature and stimulated lymphocytes is found in the regulatory properties of hexokinase I. Hexokinase I from both normal and stimulated lymphocytes is inhibited by glucose-1,6-diphosphate. This inhibition is decreased in part by addition of inorganic phosphate. Hexokinase I from leukemic lymphocytes, however, is inhibited to a lesser extent by glucose-1,6-diphosphate. Inorganic phosphate has no effect at all on this inhibition.In accordance with these findings a different pattern in the hexokinase I region was detected in electrophoresis with several cell types. The subisozyme hexokinase Ib, which appears to be the phosphate-regulated form, is predominant in lymphocytes, whereas it is present in a minor fraction in the cultured leukemic lymphoblasts. In these cells hexokinase Ic predominates.  相似文献   

18.
Hexokinase (EC 2.7.1.1) is present in a soluble and a bound form in homogenates of Ascaris suum muscle. Cellulose acetate electrophoresis, isoelectric focusing, and ion exchange chromatography confirmed the presence of only one molecular form of hexokinase in this muscle. A procedure for purifying hexokinase from Ascaris muscle has been developed utilizing ion-exchange chromatography, ammonium sulfate fractionation and gel filtration. The enzyme is a monomer with a molecular weight of 100 000 as determined by sodium dodecyl sulfate gel filtration. The Stokes' radius, diffusion coefficient, and frictional ratio have been determined. The apparent Michaelis constants for glucose and ATP are 4.7-10(-3) M and 2.2-10(-4) M, respectively. Ascaris hexokinase also exhibits end-product inhibition by glucose 6-phosphate and ADP. It is postulated that the kinetic parameters of the enzyme are the results of its function, that of generating glucose 6-phosphate primarily for glycogen synthesis.  相似文献   

19.
A possibility of hexokinase binding with actomyosin in skeletal muscles of Rana temporaria L., and the effect of thermal alteration (15 min at 36, 37, 38, 40 and 42 degrees C) on the binding were studied. Solutions of KCl (0.075 M and 0.15 M) extract more hexokinase from intact and altered muscles than does an non-electrolyte medium. Hexokinase freely dissolved in hyaloplasm is extracted in non-electrolyte medium. Hexokinase bound with structural components of the muscle cell is extracted upon the increase in ionic force of the extractant. The solubilizing effect of electrolytes on hexokinase is higher in alterated muscles than in the intact muscles indicating the increase in hexokinase binding under thermal alteration. Actomysin isolated from muscles reveals hexokinase activity. In reprecipitated actomyosin, the larger part of its hexokinase remains in actomyosin gel, the level of hexokinase activity not depending on the number of reprecipitation procedures or on the volume of washing solution. Hexokinase in actomyosin gel is less stable to the thermal action than in water supernatant of muscle extract. This may be due to the increase in hexokinase binding with actomiosin whose sorption activity increases under the thermal denaturation.  相似文献   

20.
Hexokinase is present in the tissues in four isoenzymic forms. Cerebral tissue contains predominantly Type I hexokinase which is believed to be insulin-insensitive. In cerebral tissue about 60 to 70% of the hexokinase is bound to the particulate fraction. The changes in the distribution of hexokinase Type I and Type II together with the bound and free hexokinase have been studied in control, diabetic and diabetic animals treated with insulin. The results indicate that the presence of insulin is essential for the normal binding of the hexokinase to the particulate fraction. In heart tissue, Type II hexokinase bound to the pellet shows a significant decrease in diabetes, which is reversed on insulin administration.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号