首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
王春阳  周建斌  夏志敏  刘瑞 《生态学报》2011,31(8):2139-2147
黄土高原丘陵沟壑区进行的以退耕还林还草为主的生态建设,使得进入土壤生态系统有机物的种类和数量发生变化,不同种类凋落物混合对土壤微生物量碳、氮的影响是值得关注的问题。本文采用室内培养试验方法研究了采自黄土高原地区6种不同植物凋落物及等比例混合后对土壤微生物量碳、氮及矿质态氮含量的影响。结果表明,加入不同植物凋落物均显著提高了培养期间土壤微生物量碳、氮含量。总体平均,添加三种等量混合后植物凋落物的土壤微生物量碳、氮含量高于两种凋落物等量混合处理,而两种凋落物混合高于单种凋落物处理;土壤矿质态氮含量的变化则相反,即单种>两种混合>三种混合。单种和两种混合后土壤微生物量碳、氮含量与其碳氮显著相关,而三种凋落物混合后土壤微生物量碳、氮含量与其碳氮比无相关性,说明多种凋落物混合后土壤微生物量碳、氮含量受多种因素共同影响。因此,在黄土高原植被恢复重建中,有必要采用不同种类植物搭配,利用生物多样性促进生态系统健康持续发展。  相似文献   

2.
黄土高原区不同植物凋落物可溶性有机碳含量及其降解   总被引:6,自引:0,他引:6  
以黄土高原区8种植物凋落物为对象,利用水和0.01mol·L-1CaCl2两种浸提剂提取了不同大小(2mm和1cm长)的凋落物,测定其可溶性有机碳含量,并利用室内培养试验评价其生物降解特性.结果表明:不同植物凋落物可溶性有机碳含量在18.20~156.82g·kg-1,占其全碳比例的4.21%~32.84%.其中,灌木凋落物可溶性有机物含量及其占全碳的比例略高于乔木,草本最低.经过7d的培养,不同凋落物可溶性有机碳的生物降解率在44.5%~80.6%,平均为62.9%;不同种类凋落物的生物降解率为灌木乔木草本.培养结束后,溶液中结构较复杂的可溶性有机物比例呈显著上升趋势,与其中易降解组分的降解有关.说明可溶性有机碳在黄土高原区退耕还林还草过程中的物质循环及能量转化方面具有重要作用.  相似文献   

3.
高永恒  陈槐  罗鹏  吴宁  王根绪 《生态科学》2007,26(3):193-198
研究了川西北高山草甸两个优势物种垂穗鹅冠草(Roegneria nutans)和四川嵩草(Kobresia setchwanensis)凋落物在不同放牧强度下的分解及其碳氮损失率。经过一年的分解,放牧不同程度地加速了两种凋落物的分解。垂穗鹅冠草凋落物在不放牧、轻牧、中牧和重牧草地的失重率分别为26.0、27.2、29.6和32.8%;川嵩草凋落物的失重率分别为44.0,46.2,50.4和56.2%。不放牧、轻牧、中牧和重牧草地垂穗鹅冠草凋落物碳的损失率分别为26.1%、27.5%、29.4%和32.9%,氮的损失率分别为13.6%、14.4%、17.3%和19.1%;川嵩草凋落物碳的损失率分别为41.9%、44.3%、48.5%和54.4%,氮的损失率分别为39.4%、41.4%、46.4%和52.8%。研究表明,增加的放牧强度加快了两种凋落物的分解速率,加速了凋落物中碳氮的释放;同时也表明,川嵩草凋落物的分解速率要快与垂穗鹅冠草凋落物。  相似文献   

4.
2010年1-5月在川西高原采用人工雪厚度梯度试验(0、30和100 cm),应用网袋分解法对窄叶鲜卑花叶片凋落物进行分解试验,测定了凋落物的分解速率及其养分动态.结果表明:在无雪被覆盖的样地上分解5个月后的凋落物质量损失率为29.9%,而中雪和深雪样地的凋落物质量损失率分别为33.8%和35.2%.分解过程中,凋落物氮存在一定的富集现象,磷处于波动的富集状态,碳质量分数和碳氮比均呈现前期急剧下降后期逐渐上升的趋势.雪被覆盖显著增加了凋落物的质量损失率和氮含量,而对碳和磷含量无显著影响.在川西高原地区,30 cm以上的持续雪被覆盖能够改变凋落物的分解过程,从而可能对土壤营养物质转化和植物群落构建产生实质性的影响.  相似文献   

5.
干旱区人工防护林带不同林分凋落叶分解及养分释放   总被引:1,自引:1,他引:0  
2007年10月下旬至2008年11月,采用原位模拟分解网袋法,对新疆克拉玛依市区北郊人工防护林新疆杨、紫穗槐及二者混合凋落叶进行为期365 d的分解及养分释放动态试验.结果表明:树种不同,凋落叶质量损失率的动态变化不同;凋落叶组成对质量损失率有显著影响,与单优林凋落叶相比,紫穗槐与新疆杨凋落叶混合后更易于分解.经修正Olson负指数衰减模型分析,新疆杨凋落叶分解系数最低(k=0.167),混合凋落叶分解系数最高(k=0.275),估测3种凋落叶半分解和95%分解所需时间为2.41~4.19 a和10.79~17.98 a.不同的分解时期3种凋落叶中N、P和K的残留率不同,分解1年后,K为净释放,N和P为固持或从周围环境中吸收而富集.分解过程中,除紫穗槐凋落叶在分解中期有机碳分解率下降外,其他处理凋落叶有机碳分解率均不断上升,1年后分解率在35.5%~44.2%之间.C/N值基本呈下降趋势,分解前期和中期下降幅度较小,后期下降较快.  相似文献   

6.
内蒙古草原凋落物分解对生物多样性变化的响应   总被引:3,自引:0,他引:3  
生物多样性与生态系统功能紧密相关。凋落物分解作为生态系统重要功能之一, 对植物群落的物种组成和多样性具有反馈作用。本研究在内蒙古草原通过功能群去除产生不同的多样性梯度, 应用分解网袋法, 研究了草原生态系统的生物多样性变化对凋落物分解过程的影响。实验分为相互补充的三个部分, (1)分解微生境实验: 研究了由于功能群多样性改变引起的分解微生境变化对凋落物分解的影响; (2)凋落物组成实验: 研究了4个功能群的优势物种羊草(Leymus chinensis)、大针茅(Stipa grandis)、细叶葱(Allium tenuissimum)、刺穗藜(Chenopodium aristatum)的单种及不同组合的混合凋落物在相同的分解微生境下物种间的相互作用对凋落物分解过程的影响; (3)综合分解微生境和凋落物组成两种影响因素, 将收集的凋落物的单种及其混合物放回原样方进行分解。结果表明, 功能群多样性高的样方中, 其微生境有利于凋落物的分解; 混合凋落物的分解具有非加和性效应。混合凋落物的分解速率与其初始碳含量呈负相关, 与其初始氮、磷含量呈正相关; 当混合凋落物在功能群多样性不同的微生境中分解时, 重量降解速率与微生境中的功能群多样性没有显著的相关关系, 氮流失与功能群多样性呈正相关。我们的研究表明, 群落中凋落物组成和凋落物的功能群多样性相比, 前者是影响凋落物分解的决定性因素; 与地上存活植株所参与的生物学过程相比, 凋落物分解受生物多样性的影响较小; 在生物多样性更高的区域, 氮的循环加速, 有利于提高群落的生产力。  相似文献   

7.
通过小盆+凋落袋控制试验,研究了我国南方退化红壤丘陵区8种森林凋落物和4种混合凋落物初始化学组成与分解速率的关系.结果表明:阔叶凋落物中的氮、磷、钾、镁含量显著高于针叶凋落物,木质素、碳含量显著低于针叶凋落物;凋落物分解速率与凋落物初始氮、磷、钾、镁含量呈显著正相关,与凋落物初始碳、木质素含量以及木质素/氮、木质素/磷和碳/磷值呈显著负相关;木质素含量解释了凋落物分解速率变异的54.3%,是影响分解速率的最关键因子,凋落物碳、氮、磷含量也与分解速率密切相关,它们与木质素含量一起可解释分解速率变异的81.4%.在退化红壤丘陵区植被恢复过程中,低木质素含量、高氮磷含量的阔叶物种的引入有利于加速凋落物的分解速率和土壤肥力的恢复进程.  相似文献   

8.
杉木与阔叶树叶凋落物混合分解对土壤活性有机质的影响   总被引:23,自引:3,他引:20  
通过室内培养,研究了杉木叶凋落物及与桤木、刺楸和火力楠混合叶凋落物对土壤活性有机质的影响.结果表明:添加叶凋落物显著地增加了土壤微生物碳、氮及土壤呼吸强度和可溶性有机碳含量.其中,添加杉-阔混合叶凋落物对土壤活性有机质的增加效应大于纯杉木叶凋落物.在培养后期(第135天),添加纯杉木叶凋落物和杉-阔混合叶凋落物处理土壤微生物碳含量分别比对照土壤高49%和63%,微生物氮高35%和75%,土壤呼吸强度高65%和100%,可溶性有机碳含量高66%和108%.添加叶凋落物对土壤微生物熵和微生物C/N的影响不显著(P〉0.05).  相似文献   

9.
气候变化已经并将持续改变寒冷生物区季节性雪被厚度和覆盖时间,雪被厚度的减少可能影响高山森林凋落物分解,尤其是其早期分解过程中易分解碳的释放。该文研究了川西高山森林雪被去除处理后优势树种岷江冷杉(Abiesfargesii var.faxoniana)凋落叶总有机碳、热水/冷水可溶性有机碳、非结构性碳(可溶性糖、淀粉)在冬季(雪被形成期、覆盖期、融化期)和生长季(初期、中期、后期)的释放规律。结果表明:(1)经过一年的分解,对照和雪被去除处理的凋落叶质量残留量分别为76.4%和86.2%,总有机碳残留量分别为60.5%和74.8%。(2)经过一个冬季分解后,雪被去除处理降低了凋落叶热水溶性有机碳和可溶性糖的释放,而增加了总有机碳、可溶性有机碳、非结构性碳和淀粉的富集。(3)经过生长季分解后,雪被去除处理降低了凋落叶易分解碳释放,其中总有机碳、热水溶性有机碳、可溶性有机碳、非结构性碳、可溶性糖和淀粉的释放分别降低了36.3%、0.8%、43.7%、28.3%、21.7%和33.7%。偏最小二乘法分析表明,岷江冷杉凋落叶易分解碳释放受土壤冻融循环次数、脲酶活性、土壤温度和可溶性有机碳含量影响...  相似文献   

10.
凋落物分解对于维持源头溪流生态系统碳和养分平衡有重要意义。以亚热带典型源头溪流金佛山溪流为代表,选取3种河岸带常见凋落叶为分解对象,设计3个单种和4个混合物种的凋落物组合,在原位放置3种孔径的分解袋(0.05mm、0.25mm和2mm),探讨混合凋落物的性状与底栖分解类群对叶片质量损失和混合效应的影响。结果表明:(1)微生物在凋落物分解过程中相对贡献均大于50%,小型和大型底栖动物进一步加速了凋落物的分解过程。(2)单种凋落物分解速率存在显著差异:八角枫(Alangium chinense,质量损失率为53.05%)>缺萼枫香(Liquidambar acalycina,30.00%)>薄叶润楠(Machilus leptophylla,12.63%)。(3)混合凋落物中仅微生物参与的处理均表现为负的非加和效应,其中八角枫+缺萼枫香、八角枫+薄叶润楠、八角枫+缺萼枫香+薄叶润楠三个处理的效应显著;小型底栖动物加入后均表现为正的非加和效应,但不显著;在微生物、小型和大型底栖动物的共同作用下,缺萼枫香+薄叶润楠和八角枫+缺萼枫香+薄叶润楠的两个处理的正的非加和效应显著。亚热带源头溪流中凋落物分解功能与河岸植物和分解者类群的复杂性密切相关。  相似文献   

11.
12.
13.
14.
通过对6种藓类植物,即褶叶青藓(Brachythecium salebrosum(Web.et Mohr.)B.S.G.)、湿地匐灯藓(Plagiomnium acutum(Lindb.)Kop.)、侧枝匐灯藓(Plagiomnium maximoviczii(Lindb.)Kop.)、大凤尾藓(Fissidensnobilis Griff.)、大羽藓(Thuidium cymbifolium(Doz.et Molk.)B.S.G.)和大灰藓(Hypnum plumaeforme Wils.)嫩茎和老茎的石蜡切片和显微观察发现,同一藓类植株的嫩茎和老茎,茎结构稳定,不同种藓类植物茎横切面具有不同特征.植物体茎横切面形状、表层细胞的层数、细胞大小和细胞壁厚薄、皮层细胞大小和形状、中轴的有无以及比例等特征可以作为藓类植物的分科分类依据之一.  相似文献   

15.
16.
17.
18.
In experiments on Black Sea skates (Raja clavata), the potential of the receptor epithelium of the ampullae of Lorenzini and spike activity of single nerve fibers connected to them were investigated during electrical and temperature stimulation. Usually the potential within the canal was between 0 and –2 mV, and the input resistance of the ampulla 250–400 k. Heating of the region of the receptor epithelium was accompanied by a negative wave of potential, an increase in input resistance, and inhibition of spike activity. With worsening of the animal's condition the transepithelial potential became positive (up to +10 mV) but the input resistance of the ampulla during stimulation with a positive current was nonlinear in some cases: a regenerative spike of positive polarity appeared in the channel. During heating, the spike response was sometimes reversed in sign. It is suggested that fluctuations of the transepithelial potential and spike responses to temperature stimulation reflect changes in the potential difference on the basal membrane of the receptor cells, which is described by a relationship of the Nernst's or Goldman's equation type.I. P. Pavlov Institute of Physiology, Academy of Sciences of the USSR, Leningrad. I. M. Sechenov, Institute of Evolutionary Physiology and Biochemistry, Academy of Sciences of the USSR, Leningrad. Pacific Institute of Oceanology, Far Eastern Scientific Center, Academy of Sciences of the USSR, Vladivostok. Translated from Neirofiziologiya, Vol. 12, No. 1, pp. 67–74, January–February, 1980.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号