首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到6条相似文献,搜索用时 0 毫秒
1.
Hyperosmolality in recombinant Chinese hamster ovary (rCHO) cell cultures induces autophagy and apoptosis. To investigate the effect of Bcl-xL overexpression on autophagy and apoptosis in hyperosmotic rCHO cell cultures, an erythropoietin (EPO)-producing rCHO cell line with regulated Bcl-xL overexpression was subjected to hyperosmolality resulting from NaCl addition in a batch culture and nutrient supplementation in a fed-batch culture. In the batch culture, Bcl-xL overexpression suppressed apoptosis, as evidenced by a decreased amount of cleaved caspase-7 and PARP. Concurrently, Bcl-xL overexpression also delayed autophagy, as indicated by reduced LC3 conversion, from LC3-I to LC3-II. As a result, the cell viability and EPO production were improved by Bcl-xL overexpression. In the fed-batch culture, the simultaneous application of Bcl-xL overexpression and nutrient feeding increased the culture longevity and maximum EPO concentration. Taken together, Bcl-xL overexpression delayed autophagy and apoptosis in hyperosmotic rCHO cell cultures, resulting in increased EPO production.  相似文献   

2.
A balance between proliferation and cell death is critical for achieving desirable high cell densities in mammalian cell culture. In this study, we evaluate a recently discovered anti-apoptotic gene, aven, and examine its effectiveness alone and in combination with a member of the Bcl-2 family, bcl-xL. The commercially popular cell line, Chinese hamster ovary (CHO), was genetically modified to constitutively express aven, bcl-xL, and the two genes in combination. Cells were exposed to several model insults that simulate severe bioreactor environments, including serum deprivation, spent medium, and Sindbis virus infection, as well as staurosporine, a known chemical inducer of apoptosis. CHO cells exhibited DNA fragmentation, a hallmark of apoptosis, after exposure to these model insults. After exposure to serum deprivation, 4- and 5-day spent medium, and staurosporine, cells expressing Aven provided limited protection against cell death when compared with the protection afforded by cells expressing Bcl-xL alone. However, the highest survival levels for all insults were achieved when Aven was expressed in combination with Bcl-xL. In fact, Aven appeared to act synergistically to enhance the protective function of Bcl-xL for several insults, because the protective function of the two genes expressed together in one cell line often exceeded the additive protective levels of each anti-apoptosis gene expressed alone. Surprisingly, Aven expression provided a mildly pro-apoptotic response in CHO isolates infected with Sindbis virus. However, CHO cells expressing both Bcl-xL and Aven showed protection against Sindbis virus infection due to the inhibitory properties of the bcl-xL anti-apoptosis gene. This study shows that combinatorial anti-apoptosis cell engineering strategies may be the most effective mechanisms for providing extended protection against cell death in mammalian cell culture.  相似文献   

3.
Lower yields and poorer quality of biopharmaceutical products result from cell death in bioreactors. Such cell death may occur from necrosis but is more commonly associated with apoptosis. During the process of programmed cell death or apoptosis, caspases become activated and cause a cascade of events that eventually destroy the cell. XIAP is the most potent caspase inhibitor encoded in the mammalian genome. The effectiveness of XIAP and its deletion mutants was examined in two cell lines commonly utilized in commercial bioreactors: Chinese hamster ovary (CHO) and 293 human embryonic kidney (293 HEK) cells. CHO cells undergo apoptosis as a result of various insults, including Sindbis virus infection and serum deprivation. In this study, we demonstrate that 293 HEK cells undergo apoptosis during Sindbis virus infection and exposure to the toxins, etoposide and cisplatin. Two deletion mutants of XIAP were created; one containing three tandem baculovirus iap repeat (BIR) domains and the other containing only the C-terminal RING domain, lacking the BIRs. Viability studies were performed for cells expressing each mutant and the wild-type protein on transiently transfected cells, as stable pools, or as stable clonal cell populations after induction of apoptosis by serum deprivation, Sindbis virus infection, etoposide, and cisplatin treatment. Expression of the wild-type XIAP inhibited apoptosis significantly; however, the XIAP mutant containing the three BIRs provided equivalent or improved levels of apoptosis inhibition in all cases. Expression of the RING domain offered no protection and was pro-apoptotic in transient expression experiments. With the aid of an N-terminal YFP fusion to each protein, distribution within the cell was visualized, and the wild-type and mutants showed differing intracellular accumulation patterns. While the wild-type XIAP protein accumulated primarily in aggregates in the cytosol, the RING mutant was enriched in the nucleus. In contrast, the deletion mutant containing the three BIRs was distributed evenly throughout the cytosol. Thus, protein engineering of the XIAP protein can be used to alter the intracellular distribution pattern and improve the ability of this caspase inhibitor to protect against apoptosis for two mammalian cell lines.  相似文献   

4.
Apoptosis has been found to occur in bioreactors as a result of environmental stresses. The overexpression of bcl-2 is a widely used strategy to limit the induction of apoptosis in mammalian cell cultures. In this study, the effectiveness of wild-type Bcl-2 was compared to a Bcl-2 mutant lacking the nonstructured loop domain in two commercially prominent cell lines, Chinese hamster ovary (CHO) and baby hamster kidney (BHK) cells. The generation of a DNA "ladder" and condensation of chromatin indicated that apoptosis occurred in these cell lines following Sindbis virus infection and serum deprivation. When cells were engineered to overexpress the bcl-2 mutant, cell death due to Sindbis virus was inhibited in a concentration-dependent manner. Furthermore, the Bcl-2 mutant provided increased protection as compared to wild-type Bcl-2 following two model insults, Sindbis virus infection and serum deprivation. Total production for a heterologous protein encoded on the Sindbis virus was increased in cell lines expressing the Bcl-2 variants compared to the parental cell line. In order to understand the reasons for the improved anti-apoptosis properties of the mutant, wild-type Bcl-2 and mutant Bcl-2 were examined by Western blot following each model insult. Wild-type Bcl-2 was observed to degrade into a 23 kDa fragment following both Sindbis virus infection and serum withdrawal in both cell lines, while the mutant Bcl-2 protein was not degraded during the same period. The processing of Bcl-2 was found to correlate with reduced cell viabilities following the two external insults to suggest that Bcl-2 degradation may limit its ability to inhibit apoptosis. These studies indicate that the cells regulate anti-apoptosis protein levels and these processing events can limit the effectiveness of cell death inhibition strategies in mammalian cell culture systems.  相似文献   

5.
Mammalian cells are used for the production of numerous biologics including monoclonal antibodies. Unfortunately, mammalian cells can lose viability at later stages in the cell culture process. In this study, the effects of expressing the anti-apoptosis genes, E1B-19K and Aven, separately and in combination on cell growth, survival, and monoclonal antibody (MAb) production were investigated for a commercial Chinese Hamster Ovary (CHO) mammalian cell line. CHO cells were observed to undergo apoptosis following a model insult, glucose deprivation, and at later stages of batch cell culture. The CHO cell line was then genetically modified to express the anti-apoptotic proteins E1B-19K and/or Aven using an ecdysone-inducible expression system. Stable transfected pools induced to express Aven or E1B-19K alone were found to survive 1-2 days longer than the parent cell line following glucose deprivation while the expression of both genes in concert increased cell survival by 3 days. In spinner flask batch studies, a clonal isolate engineered to express both anti-apoptosis genes exhibited a longer operating lifetime and higher final MAb titer as a result of higher viable cell densities and viabilities. Interestingly, survival was increased in the absence of an inducer, most likely as a result of leaky expression of the anti-apoptosis genes confirmed in subsequent PCR studies. In fed-batch bioreactors, the expression of both anti-apoptosis genes resulted in higher growth rates and cell densities in the exponential phase and significantly higher viable cell densities, viabilities, and extended survival during the post-exponential phase. As a result, the integral of viable cells (IVC) was between 40 and 100% higher for cell lines engineered to express both Aven and E1B-19K in concert, and the operational lifetime of the fed-batch bioreactors was increased from 2 to 5 days. The maximum titers of MAb were also increased by 40-55% for bioreactors containing cells expressing Aven and E1B-19K. These increases in volumetric productivity arose primarily from enhancements in viable cell density over the course of the fed-batch culture period since the specific productivities for the cells expressing anti-apoptosis genes were comparable or slightly lower than the parental hosts. These results demonstrate that expression of anti-apoptosis genes can enhance culture performance and increase MAb titers for mammalian CHO cell cultures especially under conditions such as extended fed-batch bioreactor operation.  相似文献   

6.
Sialic acid, a terminal monosaccharide present in N-glycans, plays an important role in determining both the in vivo half-life and the therapeutic efficacy of recombinant glycoproteins. Low sialylation levels of recombinant human erythropoietin (rhEPO) in recombinant Chinese hamster ovary (rCHO) cell cultures are considered a major obstacle to the production of rhEPO in fed-batch mode. This is mainly due to the accumulation of extracellular sialidases released from the cells. To overcome this hurdle, three sialidase genes (Neu1, 2, and 3) were initially knocked-out using the CRISPR/Cas9-mediated large deletion method in the rhEPO-producing rCHO cell line. Unlike wild type cells, sialidase knockout (KO) clones maintained the sialic acid content and proportion of tetra-sialylated rhEPO throughout fed-batch cultures without exhibiting a detrimental effect with respect to cell growth and rhEPO production. Additional KO of two pro-apoptotic genes, BAK and BAX, in sialidase KO clones (5X KO clones) further improved rhEPO production without any detrimental effect on sialylation. On day 10 in fed-batch cultures, the 5X KO clones had 1.4-times higher rhEPO concentration and 3.0-times higher sialic acid content than wild type cells. Furthermore, the proportion of tetra-sialylated rhEPO on day 10 in fed-batch cultures was 42.2–44.3% for 5X KO clones while it was only 2.2% for wild type cells. Taken together, KO of sialidase and pro-apoptotic genes in rCHO cells is a useful tool for producing heavily sialylated glycoproteins such as rhEPO in fed-batch mode.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号