共查询到20条相似文献,搜索用时 15 毫秒
1.
Muscarinic receptor-induced phosphoinositide hydrolysis at resting cytosolic Ca2+ concentration in PC12 cells 总被引:6,自引:0,他引:6
L M Vicentini A Ambrosini F Di Virgilio T Pozzan J Meldolesi 《The Journal of cell biology》1985,100(4):1330-1333
In PC12 cells, cultured in the presence of nerve growth factor to increase their complement of muscarinic receptors, treatment with carbachol induces muscarinic receptor-dependent rises in free cytosolic Ca2+ as well as hydrolysis of membrane phosphoinositides. Experiments were carried out to clarify the relationship between these two receptor-triggered events. In particular, since inositol-1,4,5-trisphosphate (the hydrophilic metabolite produced by the hydrolysis of phosphatidylinositol-4,5-bisphosphate) is believed to mediate intracellularly the release of Ca2+ from nonmitochondrial store(s), it was important to establish whether it can be generated at resting cytoplasmic concentration of Ca2+ (approximately 0.1 microM). Cells incubated in Ca2+-free medium were depleted of their cytoplasmic Ca2+ stores by pretreatment with ionomycin. When these cells were then treated with carbachol, their cytosolic concentration of Ca2+ remained at the resting level, whereas inositol-1,4,5-trisphosphate generation was still markedly stimulated. Our results demonstrate that an increase in the concentration of cytosolic Ca2+ is not a necessary intermediate between receptor activation and phosphoinositide hydrolysis, and therefore support the second-messenger role of inositol-1,4,5-trisphosphate. 相似文献
2.
Activation of muscarinic receptors in PC12 cells. Stimulation of Ca2+ influx and redistribution. 总被引:3,自引:5,他引:3 下载免费PDF全文
Ca2+ homoeostasis was investigated in pheochromocytoma neurosecretory (PC12) cells both before and after treatment with nerve growth factor, which induces a neuronal-like differentiation accompanied by a large increase in the number of muscarinic receptors. The resting concentration of free cytosolic Ca2+, [Ca2+]i, measured by the quin2 technique, was found to be higher and more variable in differentiated cells. Moreover, the [Ca2+]i rises induced by the Ca2+ ionophore ionomycin and by depolarizing concentrations of KC1 were greater and more transient. Exposure to carbachol induced modest, but long-lasting, [Ca2+]i rises, which were faster and greater in differentiated than in non-differentiated cells. These effects were due to the activation of the muscarinic receptor, because they were unaffected by nicotinic blockers (hexamethonium and D-tubocurarine) and completely eliminated by low concentrations of the muscarinic antagonists atropine and pirenzepine [IC50 (concn. causing 50% inhibition) = 2 and 60 nM respectively]. The muscarinic-receptor-dependent [Ca2+]i rises were the result of two concomitant processes: (1) redistribution of Ca2+ from cytoplasmic stores to the cytosol, possibly mediated by generation of inositol 1,4,5-trisphosphate as a consequence of the muscarinic-receptor-coupled hydrolysis of polyphosphoinositides, and (2) increased Ca2+ influx through a pathway of the plasmalemma insensitive to verapamil and thus different from the voltage-dependent Ca2+ channel. The existence of this second process was documented: (a) by the difference of the [Ca2+]i responses brought about by carbachol in Ca2+-containing and Ca2+-free media; (b) by the occurrence of [Ca2+]i rise and increased 45Ca accumulation in cells exposed to 1 mM-CaCl2 after having been treated for 2 min with carbachol in Ca2+-free medium; (c) by typical differences in the quin2 signal kinetics observed in parallel samples of PC12 cells loaded with different concentrations of the dye. 相似文献
3.
4.
A rise of cytosolic Ca2+ is induced by NGF in rat pheochromocytoma PC12 and bovine chromaffin cells investigated (both in suspension and while attached to polyornithine-coated glass slides) by fluorescence techniques (with quin-2 and fura-2). The effect of NGF on [Ca2+]i is delayed (30-40 s of lag phase), slow (t1/2 = 40 s), relatively small (+50-75%) and persistent (over 10 min). It is due to Ca2+ influx (requires extracellular Ca2+ greater than 10 microM) through a pathway different from the voltage-gated Ca2+ channel, possibly accompanied by intracellular Ca2+ redistribution, and might play a messenger role in NGF action. 相似文献
5.
Sternfeld L Dudenhöffer M Ludes A Heinze D Anderie I Krause E 《Cellular signalling》2007,19(7):1457-1464
In many cell types membrane receptors for hormones or neurotransmitters activate a signal transduction pathway which releases Ca2+ from intracellular Ca2+ stores by the second messenger inositol 1,4,5-trisphosphate. As a consequence store-operated Ca2+ entry (SOCE) becomes activated. In the present study we addressed the question if receptor/agonist binding can modulate Ca2+ entry by mechanisms different from the store-operated one. Therefore SOCE was examined in HEK293 cells microscopically with the fura-2 technique and with patch clamp. We found that maximally preactivated SOCE could, concentration dependently, be reduced up to 80% by the muscarinic agonist acetylcholine when the cytoplasmic Ca2+ concentration was used as a measure. Muscarinic receptors seem to mediate this decrease since atropine blocked the effect completely and cell types without muscarinic receptors (BHK21, CHO) did not show acetylcholine-induced decrease of Ca2+ entry. Moreover expression of muscarinic receptor subtypes M1 and M3 in BHK21 cells established the muscarinic decrease of SOCE. Electrical measurements revealed that the membrane potential of HEK293 cells did not show any response to ACh, excluding that changes of driving forces are responsible for the block of Ca2+ entry. In contrast the electrical current which is responsible for SOCE in HEK293 cells (Ca2+ release-activated Ca2+ current (I(CRAC)) was inhibited (maximally 55%) by 10 microM ACh. From these data we conclude that in HEK293 cells a muscarinic signal transduction pathway exists which decreases the cytoplasmic Ca2+ concentration by an inhibition of I(CRAC). This mechanism may serve as a modulator of Ca2+ entry preventing a Ca2+ overload of the cytoplasm after Ca2+ store depletion. 相似文献
6.
The spatial distribution of the intracellular free Ca2+ (Ca2+i) rise elicited by different stimuli in bovine adrenal chromaffin cells was examined in single fura-2-loaded cells. In response to the potent secretagogues nicotine and high K+, Ca2+i was initially localized exclusively to the entire subplasmalemmal area of the cell. In response to the ineffective secretagogues, methacholine and muscarine, the rise in Ca2+i originated only in one pole of the cell and even at the peak of the response Ca2+ was still generally restricted to this same area of the cell. These results suggest that the triggering of exocytosis from these cells requires a specific spatial distribution of Ca2+i. 相似文献
7.
In dissociated cells from chick embryos or from chick limb buds, acetylcholine (ACh) induced an increase in cellular levels of inositol 1,4,5-trisphosphate (Ins-P3) and of inositol 1,3,4,5-tetrakisphosphate (Ins-P4). The concentration of Ins-P3 was enhanced transiently, whereas the level of Ins-P4 remained elevated for at least 20 min after addition of ACh. In most cases the increase in Ins-P4 levels was more pronounced than that of Ins-P3 levels. The inhibition of the ACh-induced inositol-phosphate response by atropine (half-maximal inhibition at 10 nM) indicates the involvement of muscarinic receptors, which in chick embryo cells induce a transient rise and a following persistent elevation of cytosolic Ca2+ activity (G. Oettling et al. (1989) J. Dev. Physiol. 12, 85-94). Adenosine 5'-triphosphate (ATP) elicited a similar transient rise in cytosolic Ca2+ activity, however, without a subsequent plateau. ATP also caused an increase in inositol-oligophosphate levels. Thus, both muscarinic and purinergic receptors in chick embryo cells are coupled to phospholipase C. The enzymatically formed Ins-P3 mediates the release of Ca2+ from internal stores. The Ca2+ signal could be involved in embryonic cell migration during morphogenesis. 相似文献
8.
Carbachol (CCh), a muscarinic-cholinergic agonist, increased both cytosolic free calcium concentration ([Ca2+]i) and amylase release in rat parotid acinar cells or acini in a dose-dependent manner. Treatment of acinar cells with the intracellular Ca2+ antagonist, 8-(N,N-diethylamino)octyl-3,4,5-trimethoxybenzoate (TMB-8), or the intracellular Ca2+ chelator, 1,2-bis(O-aminophenoxy)ethane-N,N,N'N'-tetraacetic acid (BAPTA), strongly attenuated the increases in [Ca2+]i evoked by CCh, but amylase release from acini was not significantly suppressed by the treatment with TMB-8 or BAPTA. Low concentrations (0.02-0.5 microM) of ionomycin, a Ca2+ ionophore, caused increases in [Ca2+]i comparable to those induced by CCh, but the same concentrations had only a little effect on amylase release. The protein kinase C activator, 12-O-tetradecanoylphorbol-13-acetate (TPA), stimulated amylase release in quantities similar to those induced by CCh, although TPA alone did not cause any change in [Ca2+]i. Combined addition of TPA and ionomycin potentiated only modestly amylase release stimulated by TPA alone. Staurosporine, a protein kinase C-inhibitor, similarly inhibited both the CCh- and TPA-induced amylase release. These results suggest that an increase in [Ca2+]i elicited by CCh does not play an essential role for inducing amylase release in rat parotid acini. Amylase release by muscarinic stimulation may be mediated mainly by activation of protein kinase C. 相似文献
9.
Preferential coupling of cell surface muscarinic receptors to phosphoinositide hydrolysis in human neuroblastoma cells. 总被引:3,自引:0,他引:3
The ability of muscarinic receptors, present in either the cell surface or sequestered compartments of intact human SK-N-SH neuroblastoma cells, to stimulate phosphoinositide hydrolysis has been examined. When cells were first exposed to carbachol for 1 h at 37 degrees C, approximately 50% of the cell surface receptors became sequestered, and this was accompanied by a comparable reduction in the subsequent ability of muscarinic agonists to stimulate phosphoinositide turnover, as monitored by the release of labeled inositol phosphates at 10 degrees C. At this temperature, muscarinic receptor cycling between the two cell compartments is prevented. Upon warming the carbachol-pretreated cells to 37 degrees C, receptor cycling is reinitiated and stimulated phosphoinositide turnover is fully restored within 5-8 min. When measured at 10 degrees C, the reduction of stimulated phosphoinositide turnover observed following carbachol pretreatment was similar in magnitude for both hydrophilic (carbachol, oxotremorine-M) and lipophilic (arecoline, oxotremorine-2, and L-670,548) agonists. The loss of response for both groups of agonists could be prevented if the incubation temperature was maintained at 37 degrees C, rather than at 10 degrees C. At the latter temperature carbachol pretreatment of SK-N-SH cells reduced the maximum release of inositol phosphates elicited by either carbachol or L-670,548 but not the agonist concentrations required for half-maximal stimulation. Radioligand binding studies, carried out at 10 degrees C, indicate that following receptor sequestration, significantly higher concentrations of carbachol were required to occupy the available muscarinic receptor sites. In contrast the lipophilic full agonist L-670,548 recognized receptors present in control and carbachol-pretreated cells with comparable affinities. Analysis of the inositol lipids present after carbachol pretreatment indicate that only a minimal depletion of the substrates necessary for phospholipase C activation had occurred. The results indicate that the agonist-induced sequestration of muscarinic receptors from the cell surface results in a loss of stimulated phosphoinositide hydrolysis when measured under conditions in which the return of the sequestered receptors to the cell surface is prevented. Thus, only those receptors present at the cell surface are linked to phospholipase C activation. 相似文献
10.
Synaptogyrins constitute a family of synaptic vesicle proteins of unknown function. With the full-length structure of a new brain synaptogyrin isoform, we now show that the synaptogyrin family in vertebrates includes two neuronal and one ubiquitous isoform. All of these synaptogyrins are composed of a short conserved N-terminal cytoplasmic sequence, four homologous transmembrane regions, and a variable cytoplasmic C-terminal tail that is tyrosine-phosphorylated. The localization, abundance, and conservation of synaptogyrins suggest a function in exocytosis. To test this, we employed a secretion assay in PC12 cells expressing transfected human growth hormone (hGH) as a reporter protein. When Ca2+-dependent hGH secretion from PC12 cells was triggered by high K+ or alpha-latrotoxin, co-transfection of all synaptogyrins with hGH inhibited hGH exocytosis as strongly as co-transfection of tetanus toxin light chain. Synaptophysin I, which is distantly related to synaptogyrins, was also inhibitory but less active. Inhibition was independent of the amount of hGH expressed but correlated with the amount of synaptogyrin transfected. Inhibition of exocytosis was not observed with several other synaptic proteins, suggesting specificity. Analysis of the regions of synaptogyrin required for inhibition revealed that the conserved N-terminal domain of synaptogyrin is essential for inhibition, whereas the long C-terminal cytoplasmic tail is largely dispensable. Our results suggest that synaptogyrins are conserved components of the exocytotic apparatus, which function as regulators of Ca2+-dependent exocytosis. 相似文献
11.
Activation of muscarinic acetylcholine receptors (mAChRs) causes the rapid release of Ca2+ from intracellular stores and a sustained influx of external Ca2+ in PC12D cells, a subline of the widely studied cell line PC12. Release of Ca2+ from intracellular stores and a sustained influx of Ca2+ are also observed following exposure to thapsigargin, a sesquiterpene lactone that depletes intracellular Ca2+ pools by irreversibly inhibiting the Ca2+ pump of the endoplasmic reticulum. In this study, we show that carbachol and thapsigargin empty the same intracellular Ca2+ stores, and that these stores are a subset of intracellular stores depleted by the Ca2+ ionophore ionomycin. Intracellular Ca2+ stores remain depleted during continuous stimulation of mAChR with carbachol in medium containing 2 mM extracellular Ca2+, but rapidly refill following inhibition of mAChRs with atropine. Addition of atropine to carbachol-stimulated cells causes intracellular Ca2+ levels to return to baseline levels in two steps: a rapid decrease that correlates with the reuptake of Ca2+ into internal stores and a delayed decrease that correlates with the inhibition of a Mn2+-permeable Ca2+ channel. Several lines of evidence suggest that carbachol and thapsigargin stimulate Ca2+ influx by a common mechanism: (i) pretreatment with thapsigargin occludes atropine-mediated inhibition of Ca2+ influx, (ii) carbachol and thapsigargin applied individually or together are equally efficient at stimulating the influx of Mn2+, and (iii) identical rates of Ca2+ influx are observed when Ca2+ is added to cells pretreated with carbachol, thapsigargin, or both agents in the absence of extracellular Ca2+. Taken together, these data suggest that the sustained influx of extracellular Ca2+ observed following activation of mAChRs in PC12D cells is mediated primarily by activation of a Mn2+-permeable, Ca2+ store-operated Ca2+ channel. 相似文献
12.
Muscarinic-stimulated norepinephrine release and phosphoinositide hydrolysis in PC12 cells are independent events 总被引:2,自引:0,他引:2
This laboratory has reported recently that muscarinic receptor-stimulated release of norepinephrine from pheochromocytoma (PC12) cells is dependent upon an influx of Ca2+ through a Ca2+ channel that is regulated by a pertussis toxin-sensitive GTP-binding protein (G-protein) (Inoue, K., and Kenimer J. G. (1988) J. Biol. Chem. 263, 8157-8161). In the present study, we have examined the role of phosphoinositide hydrolysis in this mechanism. The muscarinic agonist methacholine was shown to stimulate phosphoinositide hydrolysis by a mechanism that was sensitive to pertussis toxin inhibition. When assayed in the absence of Ca2+, muscarinic-stimulated norepinephrine release but not phosphoinositide hydrolysis was blocked. Conversely, muscarinic-stimulated phosphoinositide hydrolysis but not norepinephrine release was blocked in cells preincubated with phorbol 12,13-dibutyrate. In contrast to several previous hypotheses that suggested that muscarinic-stimulated neurotransmitter release is dependent upon phosphoinositide hydrolysis, our results suggest that these two muscarinic-stimulated processes are independent events in PC12 cells. Inhibition studies with muscarinic receptor subtype-specific antagonists suggest that norepinephrine release is regulated by an M2 subtype muscarinic receptor and that phosphoinositide hydrolysis is regulated by an M3 subtype muscarinic receptor. 相似文献
13.
《The Journal of general physiology》1995,106(5):975-993
The relationship between the depletion of IP3-releasable intracellular Ca2+ stores and the activation of Ca(2+)-selective membrane current was determined during the stimulation of M1 muscarinic receptors in N1E-115 neuroblastoma cells. External Ca2+ is required for refilling Ca2+ stores and the voltage-independent, receptor-regulated Ca2+ current represents a significant Ca2+ source for refilling. The time course of Ca2+ store depletion was measured with fura-2 fluorescence imaging, and it was compared with the time course of Ca2+ current activation measured with nystatin patch voltage clamp. At the time of maximum current density (0.18 + .03 pA/pF; n = 48), the Ca2+ content of the IP3- releasable Ca2+ pool is reduced to 39 + 3% (n = 10) of its resting value. Calcium stores deplete rapidly, reaching a minimum Ca2+ content in 15-30 s. The activation of Ca2+ current is delayed by 10-15 s after the beginning of Ca2+ release and continues to gradually increase for nearly 60 s, long after Ca2+ release has peaked and subsided. The delay in the appearance of the current is consistent with the idea that the production and accumulation of a second messenger is the rate-limiting step in current activation. The time course of Ca2+ store depletion was also measured after adding thapsigargin to block intracellular Ca2+ ATPase. After 15 min in thapsigargin, IP3-releasable Ca2+ stores are depleted by > 90% and the Ca2+ current is maximal (0.19 + 0.05 pA/pF; n = 6). Intracellular loading with the Ca2+ buffer EGTA/AM (10 microM; 30 min) depletes IP3-releasable Ca2+ stores by between 25 and 50%, and it activates a voltage-independent inward current with properties similar to the current activated by agonist or thapsigargin. The current density after EGTA/AM loading (0.61 + 0.32 pA/pF; n = 4) is three times greater than the current density in response to agonist or thapsigargin. This could result from partial removal of Ca(2+)- dependent inactivation. 相似文献
14.
The effect of 5-hydroxytryptamine (5-HT) on phospholipase C (PLC)-mediated phosphoinositide (PI) hydrolysis and intracellular Ca2+ ([Ca2+]i) changes was investigated in canine cultured aorta smooth muscle cells (ASMCs). 5-HT-stimulated inositol phosphate (IP) accumulation was time and concentration dependent with a half-maximal response (pEC50) and a maximal response at 6.4 and 10 microM, n = 6, respectively. Stimulation of ASMCs by 5-HT produced an initial transient peak followed by a sustained, concentration-dependent elevation in [Ca+]i. The half-maximal response (pEC50) values of 5-HT for the peak and sustained plateau were 7.1 and 6.9, respectively. Ketanserin and mianserin (1 and 3 nM), 5-HT2A antagonists, were equipotent and had high affinity in antagonising the 5-HT-induced IP accumulation and [Ca2+]i change with pK(B) values of 8.6-9.1 and 8.6-9.4, respectively. In contrast, the concentration-effect curves of 5-HT-induced IP and [Ca2+]i responses were not shifted until the concentrations of NAN-190 and metoctopramide (5-HT1A and 5-HT3 receptor antagonists, respectively) were increased to as high as 1 microM with pK(B) values of 5.7-6.3 and 6.1-6.6, respectively, indicating that the 5-HT receptor-mediated responses had low affinity for these antagonists. Pre-treatment of ASMCs with pertussis toxin (100 ng/mL, 24 h) caused a significant inhibition of 5-HT-induced IP accumulation and [Ca2+]i change in ASMCs. Depletion of external Ca2+ or removal of Ca2+ by addition of EGTA led to a significant attenuation of IP accumulation and [Ca2+]i change induced by 5-HT. Influx of external Ca2+ was required for the 5-HT-induced responses, because Ca2+-channel blockers--verapamil, nifedipine and Ni2+--partly inhibited the 5-HT-induced IP accumulation and Ca2+ mobilisation. The sustained elevation of [Ca2+]i response to 5-HT was dependent on the presence of external Ca2+. Removal of external Ca2+ by addition of 5 mM EGTA during the sustained phase caused a rapid decline in [Ca2+]i to lower than the resting level. The sustained elevation of [Ca2+]i could then be evoked by addition of 1.8 mM Ca2+ in the continued presence of 5-HT. These results demonstrate that 5-HT directly stimulates PLC-mediated PI hydrolysis and Ca2+ mobilisation, at least in part, through a pertussis toxin-sensitive G protein in canine ASMCs. 5-HT2A receptors may be predominantly mediating IP accumulation, and subsequently IP-induced Ca2+ mobilisation may function as the transducing mechanism for 5-HT-stimulated contraction of aorta smooth muscle. 相似文献
15.
Mitsunori Fukuda Judith A Kowalchyk Xiaodong Zhang Thomas F J Martin Katsuhiko Mikoshiba 《The Journal of biological chemistry》2002,277(7):4601-4604
Synaptotagmin (Syt) I-deficient phaeochromocytoma (PC12) cell lines show normal Ca(2+)-dependent norepinephrine (NE) release (Shoji-Kasai, Y., Yoshida, A., Sato, K., Hoshino, T., Ogura, A., Kondo, S., Fujimoto, Y., Kuwahara, R., Kato, R., and Takahashi, M. (1992) Science 256, 1821-1823). To identify an alternative Ca(2+) sensor, we searched for other Syt isoforms in Syt I-deficient PC12 cells and identified Syt IX, an isoform closely related to Syt I, as an abundantly expressed dense-core vesicle protein. Here we show that Syt IX is required for the Ca(2+)-dependent release of NE from PC12 cells. Antibodies directed against the C2A domain of either Syt IX or Syt I inhibited Ca(2+)-dependent NE release in permeable PC12 cells indicating that both Syt proteins function in dense-core vesicle exocytosis. Our results support the idea that Syt family proteins that co-reside on secretory vesicles may function cooperatively and redundantly as potential Ca(2+) sensors for exocytosis. 相似文献
16.
The effect of the muscarinic receptors agonist carbachol (Cch) on intracellular calcium concentration ([Ca(2+)](i)) and cAMP level was studied in polarized Fischer rat thyroid (FRT) epithelial cells. Cch provoked a transient increase in [Ca(2+)](i), followed by a lower sustained phase. Thapsigargin, a specific microsomal Ca(2+)-ATPase inhibitor, caused a rapid rise in [Ca(2+)](i) and subsequent addition of Cch was without effect. Removal of extracellular Ca(2+) reduced the initial transient response and completely abolished the plateau phase. Ryanodine, an agent that depletes intracellular Ca(2+) stores through stimulation of ryanodine receptors (RyRs), had no effect on [Ca(2+)](i). However, the transitory activation of [Ca(2+)](i) was dose-dependently attenuated in cells pretreated with U73122, a specific inhibitor of phospholipase C (PLC). These data suggest that the Cch-stimulated increment of [Ca(2+)](i) required IP(3) formation and binding to its specific receptors in Ca(2+) stores. Further studies were performed to investigate whether the effect of Cch on Ca(2+) entry into FRT cells was via L-type voltage-dependent Ca(2+) channels (L-VDCCs). Nicardipine, a nonspecific L-type Ca(2+) channel blocker, decreased Cch-induced increase on [Ca(2+)](i), while Bay K-8644, an L-type Ca(2+) channel agonist, slightly increased [Ca(2+)](i) in FRT cells. These data indicate that Ca(2+) entry into these nondifferentiated thyroid cells occurs through an L-VDCC, and probably through another mechanism such as a capacitative pathway. Cch did not affect the intracellular cAMP levels, but its effects on [Ca(2+)](i) were significantly reduced when cells were pretreated with forskolin, suggesting the existence of an intracellular cross-talk between PLC and cAMP mechanisms in the regulation of intracellular Ca(2+) mobilization in neoplastic FRT cells. 相似文献
17.
18.
Ca2+-dependent protein phosphorylation has been detected in numerous tissues and may mediate some of the effects of hormones and other extracellular stimuli on cell function. In this paper we demonstrate that a Ca2+/calmodulin-dependent protein kinase similar to the enzyme previously purified and characterized from rat brain is present in PC12, a rat pheochromocytoma cell line. We show that Ca2+ influx elicited by various forms of cell stimulation leads to increased 32P incorporation into tyrosine hydroxylase (TH), a major phosphoprotein in these cells. Several other unidentified proteins are either phosphorylated or dephosphorylated as a result of Ca2+ influx. Acetylcholine stimulates TH phosphorylation by activation of nicotinic receptors. K+-induced depolarization stimulates TH phosphorylation in a Ca2+-dependent manner, presumably by opening voltage-dependent Ca2+ channels. Ca2+ influx that results from the direct effects of the ionophore A23187 also leads to TH phosphorylation. Phosphorylation of TH is accompanied by an activation of the enzyme. These Ca2+-dependent effects are independent of cyclic AMP and thus implicate a Ca2+-dependent protein kinase as a mediator of both hormonal and electrical stimulation of PC12 cells. 相似文献
19.
Díaz-Prieto N Herrera-Peco I de Diego AM Ruiz-Nuño A Gallego-Sandín S López MG García AG Cano-Abad MF 《Cell calcium》2008,44(4):339-352
Altered calcium homeostasis and increased cytosolic calcium concentrations ([Ca(2+)](c)) are linked to neuronal apoptosis in epilepsy and in cerebral ischemia, respectively. Apoptotic programmed cell death is regulated by the antiapoptotic Bcl2 family of proteins. Here, we investigated the role of Bcl2 on calcium (Ca(2+)) homeostasis in PC12 cells, focusing on L-type voltage-dependent calcium channels (VDCC). Cytosolic Ca(2+) transients ([Ca(2+)](c)) and changes of mitochondrial Ca(2+) concentrations ([Ca(2+)](m)) were monitored using cytosolic and mitochondrially targeted aequorins of control PC12 cells and PC12 cells stably overexpressing Bcl2. We found that: (i) the [Ca(2+)](c) and [Ca(2+)](m) elevations elicited by K(+) pulses were markedly depressed in Bcl2 cells, with respect to control cells; (ii) such depression of [Ca(2+)](m) was not seen either in digitonin-permeabilized cells or in intact cells treated with ionomycin; (iii) the [Ca(2+)](c) transient depression seen in Bcl2 cells was reversed by shRNA transfection, as well as by the Bcl2 inhibitor HA14-1; (iv) the L-type Ca(2+) channel agonist Bay K 8644 enhanced K(+)-evoked [Ca(2+)](m) peak fourfold in Bcl2, and twofold in control cells; (v) in current-clamped cells the depolarization evoked by K(+) generated a more hyperpolarized voltage step in Bcl2, as compared to control cells. Taken together, our experiments suggest that the reduction of the [Ca(2+)](c) and [Ca(2+)](m) transients elicited by K(+), in PC12 cells overexpressing Bcl2, is related to the reduction of Ca(2+) entry through L-type Ca(2+) channels. This may be due to the fact that Bcl2 mitigates cell depolarization, thus diminishing the recruitment of L-type Ca(2+) channels, the subsequent Ca(2+) entry, and mitochondrial Ca(2+) overload. 相似文献