首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We have established that the gene which we had previously identified as encoding the Methanococcus voltae P-type ATPase is, in fact, the structural gene for the M. voltae S-layer protein. This conclusion is based on a comparison of the N-terminal sequence of S-layer protein prepared by two independent methods with that derived from the nucleotide sequence of the cloned gene. This conclusion was further supported by immunocytochemical localization of the antigen directed against the antibodies used in the cloning experiments.  相似文献   

2.
The gene glnA encoding glutamine synthetase I (GSI) from the archaeum Pyrococcus woesei was cloned and sequenced with the Sulfolobus solfataricus glnA gene as the probe. An operon reading frame of 448 amino acids was identified within a DNA segment of 1,528 bp. The encoded protein was 49% identical with the GSI of Methanococcus voltae and exhibited conserved regions characteristic of the GSI family. The P. woesei GSI was aligned with available homologs from other archaea (S. solfataricus, M. voltae) and with representative sequences from cyanobacteria, proteobacteria, and gram-positive bacteria. Phylogenetic trees were constructed from both the amino acid and the nucleotide sequence alignments. In accordance with the sequence similarities, archaeal and bacterial sequences did not segregate on a phylogeny. On the basis of sequence signatures, the GSI trees could be subdivided into two ensembles. One encompassed the GSI of cyanobacteria and proteobacteria, but also that of the high-G + C gram-positive bacterium Streptomyces coelicolor (all of which are regulated by the reversible adenylylation of the enzyme subunits); the other embraced the GSI of the three archaea as well as that of the low-G + C gram-positive bacteria (Clostridium acetobutilycum, Bacillus subtilis) and Thermotoga maritima (none of which are regulated by subunit adenylylation). The GSIs of the Thermotoga and the Bacillus-Clostridium lineages shared a direct common ancestor with that of P. woesei and the methanogens and were unrelated to their homologs from cyanobacteria, proteobacteria, and S. coelicolor. The possibility is presented that the GSI gene arose among the archaea and was then laterally transferred from some early methanogen to a Thermotoga-like organism. However, the relationship of the cyanobacterial-proteobacterial GSIs to the Thermotoga GSI and the GSI of low-G+C gram-positive bacteria remains unexplained.  相似文献   

3.
4.
Conserved N-terminal sequences in the flagellins of archaebacteria   总被引:6,自引:0,他引:6  
Methanococcus voltae produces two flagellins of molecular weight 31,000 and 33,000. Amino acid analysis as well as peptide mapping with cyanogen bromide, chymotrypsin and Staphylococcus aureus V-8 protease indicates that the two flagellins are distinct. N-terminal sequencing of the 31,000 Mc. voltae flagellin as well as the 24,000 and 25,000 molecular weight flagellins of Methanospirillum hungatei GP1 shows an extensive homology with the reported N-terminus of the flagellins from Halobacterium halobium, deduced from the nucleotide sequence of the cloned genes. However, the N-termini of all three sequenced methanogen flagellins lack a terminal methionine and start at position 13 from the N-terminus of H. halobium flagellins. This initial 12 amino acid stretch may be a leader peptide which is subsequently cleaved to generate the mature flagellin, which could suggest flagellar assembly in archaebacteria occurs by a mechanism distinct from that in eubacteria. The high degree of conservation of the N-terminus of the flagellins from Mc. voltae, Msp. hungatei and H. halobium suggests an important role for this sequence, and that the archaebacteria share a common mechanism for flagellar biosynthesis.  相似文献   

5.
P Rusnak  P Haney    J Konisky 《Journal of bacteriology》1995,177(11):2977-2981
Adenylate kinase has been isolated from four related methanogenic members of the Archaea. For each, the optimum temperature for enzyme activity was similar to the temperature for optimal microbial growth and was approximately 30 degrees C for Methanococcus voltae, 70 degrees C for Methanococcus thermolithotrophicus, 80 degrees C for Methanococcus igneus, and 80 to 90 degrees C for Methanococcus jannaschii. The enzymes were sensitive to the adenylate kinase inhibitor P1, P5-di(adenosine-5')pentaphosphate, a property that was exploited to purify the enzymes by CIBACRON Blue affinity chromatography. The enzymes had an estimated molecular mass (approximately 23 to 25 kDa) in the range common for adenylate kinases. Each of the enzymes had a region of amino acid sequence close to its N terminus that was similar to the canonical P-loop sequence reported for all adenylate kinases. However, the methanogen sequences lacked a lysine residue that has previously been found to be invariant in adenylate kinases, including an enzyme isolated from the archaeon Sulfolobus acidocaldarius. If verified as a nucleotide-binding domain, the methanogen sequence would represent a novel nucleotide-binding motif. There was no correlation between amino acid abundance and the optimal temperature for enzyme activity.  相似文献   

6.
Methanococcus voltae is a methanogenic bacterium which requires leucine, isoleucine, and acetate for growth. However, it also can synthesize these amino acids, and it is capable of low levels of autotrophic acetyl coenzyme A (acetyl-CoA) biosynthesis. When cells were grown in the presence of 14CO2, as well as in the presence of compounds required for growth, the alanine found in the cellular protein was radiolabeled. The percentages of radiolabel in the C-1, C-2, and C-3 positions of alanine were 64, 24, and 16%, respectively. The incorporation of radiolabel into the C-2 and C-3 positions of alanine demonstrated the autotrophic acetyl-CoA biosynthetic pathway in this bacterium. Additional evidence was obtained in cell extracts in which autotrophically synthesized acetyl-CoA was trapped into lactate. In these extracts, both CO and CH2O stimulated acetyl-CoA synthesis. 14CH2O was specifically incorporated into the C-3 of lactate. Cell extracts of M. voltae also contained low levels of CO dehydrogenase, 13 nmol min-1 mg of protein-1. These results further confirmed the presence of the autotrophic acetyl-CoA biosynthetic pathway in M. voltae. Likewise, 14CO2 and [U-14C]acetate were also incorporated into leucine and isoleucine during growth. During growth with [U-14C]leucine or [U-14C]isoleucine, the specific radioactivity of these amino acids in the culture medium declined, and the specific radioactivities of these amino acids recovered from the cellular protein were 32 to 40% lower than the initial specific radioactivities in the medium.Cell extracts of M. voltae also contained levels of isopropyl malate synthase, an enzyme that is specific to the leucine biosynthetic pathway, of 0.8 nmol min-1 mg of protein-1. Thus, M. voltae is capable of autotrophic CO2 fixation and leucine and isoleucine biosynthesis.  相似文献   

7.
A membrane-associated ATPase with an M(r) of approximately 510,000 and containing subunits with M(r)s of 80,000 (alpha), 55,000 (beta), and 25,000 (gamma) was isolated from the methanogen Methanococcus voltae. Enzymatic activity was not affected by vanadate or azide, inhibitors of P- and F1-ATPase, respectively, but was inhibited by nitrate and bafilomycin A1, inhibitors of V1-type ATPases. Since dicyclohexylcarbodiimide inhibited the enzyme when it was present in membranes but not after the ATPase was solubilized, we suggest the presence of membrane-associated component analogous to the F0 and V0 components of both F-type and V-type ATPases. N-terminal amino acid sequence analysis of the alpha subunit showed a higher similarity to ATPases of the V-type family than to those of the F-type family.  相似文献   

8.
Previous studies have identified intervening sequences that encode homing endonucleases within the genes encoding several archaeal DNA polymerases. We report the sequence of the gene encoding the DNA polymerase of Methanococcus voltae and describe evidence that it lacks analogous intervening sequences.  相似文献   

9.
10.
The nucleotide sequence of the ppc gene, the structural gene for phosphoenolpyruvate carboxylase [EC 4.1.1.31], of Escherichia coli K-12 was determined. The gene codes for a polypeptide comprising 883 amino acid residues with a calculated molecular weight of 99,061. The amino acid sequence deduced from the nucleotide sequence was entirely consistent with the protein chemical data obtained with the purified enzyme, including the NH2- and COOH-terminal sequences and amino acid composition. The coding region is preceded by two putative ribosome binding sites, and is followed closely by a good representative of rho-independent terminator. The codon usage in the ppc gene suggests a moderate expression of the gene. The secondary structure of the enzyme was predicted from the deduced amino acid sequence.  相似文献   

11.
Halobacterium volcanii mutants that are resistant to the dihydrofolate reductase inhibitor trimethoprim contain DNA sequence amplifications. This paper describes the cloning and nucleic acid sequencing of the amplified DNA sequence of the H. volcanii mutant WR215. This sequence contains an open reading frame that codes for an amino acid sequence that is homologous to the amino acid sequences of dihydrofolate reductases from different sources. As a result of the gene amplification, the trimethoprim-resistant mutant overproduces dihydrofolate reductase. This enzyme was purified to homogeneity using ammonium sulfate-mediated chromatographies. It is shown that the enzyme comprises 5% of the cell protein. The amino acid sequence of the first 15 amino acids of the enzyme fits the coding sequence of the gene. Preliminary biochemical characterization shows that the enzyme is unstable at salt concentrations lower than 2 M and that its activity increases with increase in the KCl or NaCl concentrations.  相似文献   

12.
The nucleotide sequence of the G6-amylase gene from alkalophilic Bacillus sp. H-167 was determined. The open reading frame of the gene consisted of 2865 base pairs, encoding 955 amino acids. The NH2-terminal amino acid sequence analysis of the G6-amylase indicated that the enzyme had a single peptide of 33 amino acid residues and the mature enzyme was composed of 922 amino acids, giving a molecular mass of 102,598. Identity of the NH2-terminal amino acid sequences among each component of the multiform G6-amylase suggested the proteolytic processing of the COOH-terminal side of the enzyme. The DNA sequence and the deduced amino acid sequence of the G6-amylase gene showed no homology with those of other bacterial alpha-amylases although the consensus amino acid sequences of the active center were well conserved.  相似文献   

13.
The gene encoding the enzyme gluconolactonase (D-glucono-delta-lactone lactonohydrolase, EC 3.1.1.17) has been isolated from a recombinant library of genomic Zymomonas mobilis DNA, by detection of enzyme activity in recombinant clones. The gene encoded a protein of 320 amino acids, which is processed to the mature enzyme of 285 amino acids (31079 Da) by cleavage at an Ala-Ala bond, as determined from N-terminal sequencing of the purified enzyme. A minor sequence commencing at amino acid 6 is suggestive of an alternative start of translation at the ATG codon of amino acid 5; in this case the expressed enzyme would remain cytoplasmic, whereas it is presumed that the main portion is directed to the membrane of periplasm by the leader sequence.  相似文献   

14.
A chitinase was purified from the seeds of Benincasa hispida, a medicinal plant also called white gourd, and a member of the Cucurbitaceae family. Purification was done by using a procedure consisting of only two fractionation steps: an acid denaturation step followed by ion-exchange chromatography. The sequence of the N-terminal forty amino acid residues was analyzed and the sequence indicated that the enzyme is a class III chitinase. The enzyme, which is a basic chitinase, is one of at least five chitinases detected in the seed extract of B. hispida. Like other class III chitinases, this enzyme also has lysozyme activity. A genomic clone of the gene encoding the enzyme was isolated and sequenced. The gene has the potential to encode a protein of 301 amino acid residues. The deduced amino acid sequence of the protein, as expected from the N-terminal amino acid sequence, shares high degrees of similarity with other class III chitinases.  相似文献   

15.
In contrast to wild-type cells, it was found that triazole-alanine-resistant mutants of Methanococcus voltae excreted histidine, proline, phenylalanine, and tyrosine in various combinations. These results suggest that a form of general amino acid biosynthetic control may operate in this methanogen. We also show that wild-type M. voltae excretes methionine.  相似文献   

16.
Abstract Malolactic enzyme is the key enzyme in the degradation of L-malic acid by lactic acid bacteria. Using degenerated primers designed from the first 20 N-terminal amino acid sequence of lactococcal malolactic enzyme, a 60-bp DNA fragment containing part of the mleS gene was amplified from Lactococcus lactis in a polymerase chain reaction. This specific probe was used to isolate two contiguous fragments covering the gene as a whole. The 1.9-kb region sequenced contains an open reading frame of 1623 bp, coding a putative protein of 540 amino acids. The deduced amino acid sequence reveals that lactococcal putative protein (Mlep) is highly homologous to the malic enzyme of other organisms. Expression of the mleS gene in Escherichia coli results in malolactic activity.  相似文献   

17.
18.
The aspartase gene (aspA) of Pseudomonas fluorescens was cloned and the nucleotide sequence of the 2,066-base-pair DNA fragment containing the aspA gene was determined. The amino acid sequence of the protein deduced from the nucleotide sequence was confirmed by N- and C-terminal sequence analysis of the purified enzyme protein. The deduced amino acid composition also fitted the previous amino acid analysis results well (Takagi et al. (1984) J. Biochem. 96, 545-552). These results indicate that aspartase of P. fluorescens consists of four identical subunits with a molecular weight of 50,859, composed of 472 amino acid residues. The coding sequence of the gene was preceded by a potential Shine-Dalgarno sequence and by a few promoter-like structures. Following the stop codon there was a structure which is reminiscent of the Escherichia coli rho-independent terminator. The G + C content of the coding sequence was found to be 62.3%. Inspection of the codon usage for the aspA gene revealed as high as 80.0% preference for G or C at the third codon position. The deduced amino acid sequence was 56.3% homologous with that of the enzyme of E. coli W (Takagi et al. (1985) Nucl. Acids Res. 13, 2063-2074). Cys-140 and Cys-430 of the E. coli enzyme, which had been assigned as functionally essential (Ida & Tokushige (1985) J. Biochem. 98, 793-797), were substituted by Ala-140 and Ala-431, respectively, in the P. fluorescens enzyme.  相似文献   

19.
In contrast to wild-type cells, it was found that triazole-alanine-resistant mutants of Methanococcus voltae excreted histidine, proline, phenylalanine, and tyrosine in various combinations. These results suggest that a form of general amino acid biosynthetic control may operate in this methanogen. We also show that wild-type M. voltae excretes methionine.  相似文献   

20.
The Escherichia coli gene coding for the enzyme xanthine-guanine phosphoribosyl transferase (gpt) has been widely used as a dominant selectable marker in a variety of mammalian cells. We have determined the complete nucleotide sequence of the 1057 base pair (bp) segment of DNA containing this gene. The coding sequence for the enzyme is 456 nucleotides long and can code for a 152 amino acid (16.9 Kd) polypeptide. A comparison of the amino acid sequence of the bacterial enzyme with that of the mammalian hypoxanthine-guanine phosphoribosyl transferase (hprt) reveals no significant homology between the two polypeptides.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号