首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Cytochrome P-450 (CYP) epoxygenases and their arachidonic acid (AA) metabolites, the epoxyeicosatrienoic acids (EETs), have been shown to produce increases in postischemic function via ATP-sensitive potassium channels (K(ATP)); however, the direct effects of EETs on infarct size (IS) have not been investigated. We demonstrate that two major regioisomers of CYP epoxygenases, 11,12-EET and 14,15-EET, significantly reduced IS in dogs compared to control (22.1 +/- 1.8%), whether administered 15 min before 60 min of coronary occlusion (6.4 +/- 1.9%, 11,12-EET; and 8.4 +/- 2.4%, 14.15-EET) or 5 min before 3 h of reperfusion (8.8 +/- 2.1%, 11,12-EET; and 9.7 +/- 1.4%, 14,15-EET). Pretreatment with the epoxide hydrolase metabolite of 14,15-EET, 14,15-dihydroxyeicosatrienoic acid, had no effect. The protective effect of 11,12-EET was abolished (24.3 +/- 4.6%) by the K(ATP) channel antagonist glibenclamide. Furthermore, one 5-min period of ischemic preconditioning (IPC) reduced IS to a similar extent (8.7 +/- 2.8%) to that observed with the EETs. The selective CYP epoxygenase inhibitor, N-methylsulfonyl-6-(2-propargyloxyphenyl)hexanamide (MS-PPOH), did not block the effect of IPC. However, administration of MS-PPOH concomitantly with N-methylsulfonyl-12,12-dibromododec-11-enanide (DDMS), a selective inhibitor of endogenous CYP omega-hydroxylases, abolished the reduction in myocardial IS expressed as a percentage of area at risk (IS/AAR) produced by DDMS (4.6 +/- 1.2%, DDMS; and 22.2 +/- 3.4%, MS-PPOH + DDMS). These data suggest that 11,12-EET and 14,15-EET produce reductions in IS/AAR primarily at reperfusion. Conversely, inhibition of CYP epoxygenases and endogenous EET formation by MS-PPOH, in the presence of the CYP omega-hydroxylase inhibitor DDMS blocked cardioprotection, which suggests that endogenous EETs are important for the beneficial effects observed when CYP omega-hydroxylases are inhibited. Finally, the protective effects of EETs are mediated by cardiac K(ATP) channels.  相似文献   

2.
Cytochrome P-450 (CYP) omega-hydroxylases and their arachidonic acid (AA) metabolite, 20-hydroxyeicosatetraenoic acid (20-HETE), produce a detrimental effect on ischemia-reperfusion injury in canine hearts, and the inhibition of CYP omega-hydroxylases markedly reduces myocardial infarct size expressed as a percentage of the area at risk (IS/AAR, %). In this study, we demonstrated that a specific CYP omega-hydroxylase inhibitor, N-methylsulfonyl-12,12-dibromododec-11-enamide (DDMS), markedly reduced 20-HETE production during ischemia-reperfusion and reduced myocardial infarct size compared with control [19.5 +/- 1.0% (control), 9.6 +/- 1.5% (0.40 mg/kg DDMS), 4.0 +/- 2.0% (0.81 mg/kg DDMS), P < 0.01]. In addition, 20-hydroxyeicosa-6(Z),15(Z)-dienoic acid (20-HEDE, a putative 20-HETE antagonist) significantly reduced myocardial infarct size from control [10.3 +/- 1.3% (0.032 mg/kg 20-HEDE) and 5.9 +/- 1.9% (0.064 mg/kg 20-HEDE), P < 0.05]. We further demonstrated that one 5-min period of ischemic preconditioning (IPC) reduced infarct size to a similar extent as that observed with the high doses of DDMS and 20-HEDE, and the higher dose of DDMS given simultaneously with IPC augmented the infarct size reduction [9.9 +/- 2.8% (IPC) to 2.5 +/- 1.4% (0.81 mg/kg DDMS), P < 0.05] to a greater degree than that observed with either treatment alone. These results suggest an important negative role for endogenous CYP omega-hydroxylases and their product, 20-HETE, to exacerbate myocardial injury in canine myocardium. Furthermore, for the first time, this study demonstrates that the effect of IPC and the inhibition of CYP omega-hydroxylase synthesis (DDMS) or its actions (20-HEDE) may have additive effects in protecting the canine heart from ischemia-reperfusion injury.  相似文献   

3.
Lee JP  Yang SH  Lee HY  Kim B  Cho JY  Paik JH  Oh YJ  Kim DK  Lim CS  Kim YS 《PloS one》2012,7(5):e37075
Soluble epoxide hydrolase (sEH) in endothelial cells determines the plasma concentrations of epoxyeicosatrienoic acids (EETs), which may act as vasoactive agents to control vascular tone. We hypothesized that the regulation of sEH activity may have a therapeutic value in preventing acute kidney injury by controlling the concentration of EETs. In this study, we therefore induced ischemia-reperfusion injury (IRI) in C57BL/6 mice and controlled sEH activity by intraperitoneal administration of the sEH inhibitor 12-(3-adamantan-1-ylureido)-dodecanoic acid (AUDA). The deterioration of kidney function induced by IRI was partially moderated and prevented by AUDA treatment. In addition, AUDA treatment significantly attenuated tubular necrosis induced by IRI. Ischemic injury induced the down-regulation of sEH, and AUDA administration had no effect on the expression pattern of sEH induced by IRI. In vivo sEH activity was assessed by measuring the substrate epoxyoctadecenoic acid (EpOME) and its metabolite dihydroxyoctadec-12-enoic acid (DHOME). Ischemic injury had no effects on the plasma concentrations of EpOME and DHOME, but inhibition of sEH by AUDA significantly increased plasma EpOME and the EpOME/DHOME ratio. The protective effect of the sEH inhibitor was achieved by suppression of proinflammatory cytokines and up-regulation of regulatory cytokines. AUDA treatment prevented the intrarenal infiltration of inflammatory cells, but promoted endothelial cell migration and neovascularization. The results of this study suggest that treatment with sEH inhibitors can reduce acute kidney injury.  相似文献   

4.
The modulation of adenosine receptor with K+(ATP) channel blocker, glibenclamide, was investigated using the radiolabeled A2A-receptor selective agonist [3H]CGS 21680. Radioligand binding studies in bovine brain striatal membranes (BBM) indicated that unlabeled CGS 21680 displaced the bound [3H]CGS 21680 in a concentration-dependent manner with a maximum displacement being approximately 65% at 10(-4) M. In the presence of 10(-5) M glibenclamide, unlabeled CGS 21680 increased the displacement of bound [3H]CGS 21860 by approximately 28% at 10(-4) M. [3H]CGS 21680 bound to BBM in a saturable manner to a single binding site (Kd = 10.6+/-1.71 nM; Bmax = 221.4+/-6.43 fmol/mg of protein). In contrast, [3H]CGS 21680 showed saturable binding to two sites in the presence of 10(-5) M glibenclamide; (Kd = 1.3+/-0.22 nM; Bmax = 74.3+/-2.14 fmol/mg protein; and Kd = 8.9+/-0.64 nM; Bmax = 243.2+/-5.71 fmol/mg protein), indicating modulation of adenosine A2A receptors by glibenclamide. These studies suggest that the K+(ATP) channel blocker, glibenclamide, modulated the adenosine A2A receptor in such a manner that [3H]CGS 21680 alone recognizes a single affinity adenosine receptor, but that the interactions between K+(ATP) channels and adenosine receptors.  相似文献   

5.
The 3-hydroxy-3-methylglutaryl coenzyme A reductase inhibitors (statins) have been shown to improve multiple normal endothelial cell functions and inhibit vascular wall cell proliferation. We hypothesized that one such agent, simvastatin, would attenuate chronic hypoxic pulmonary hypertension. Male adult Sprague-Dawley rats were exposed (14 days) to normoxia (N), normoxia plus once-a-day administered simvastatin (20 mg/kg ip) (NS), hypoxia (10% inspired O2 fraction) (H), or hypoxia plus simvastatin (HS). Mean pulmonary artery pressure, measured in anesthetized, ventilated rats with an open-chest method, was reduced from 25 +/- 2 mmHg in H to 18 +/- 1 in HS (P < 0.001) but did not reach normoxic values (12 +/- 1 mmHg). Similarly, right ventricular/left ventricular plus interventricular septal weight was reduced from 0.53 +/- 0.02 in the H group to 0.36 +/- 0.02 in the HS group (P < 0.001). The increased hematocrit in H (0.65 +/- 0.02) was prevented by simvastatin treatment (0.51 +/- 0.01, P < 0.001). Hematocrit was similar in N versus NS. Alveolar vessel muscularization and medial thickening of vessels 50-200 microM in diameter induced by hypoxia were also significantly attenuated in the HS animals. Lung endothelial nitric oxide synthase (eNOS) protein expression in the HS group was less than H (P < 0.01) but was similar in N versus NS. We conclude that simvastatin treatment potently attenuates chronic hypoxic pulmonary hypertension and polycythemia in rats and inhibits vascular remodeling. Enhancement of lung eNOS expression does not appear to be involved in mediating this effect.  相似文献   

6.
This study investigated the role of changes in the expression of the cytochrome P-450 4A (CYP450-4A) enzymes that produce 20-hydroxyeicosatetraenoic acid (20-HETE) in modulating the responses of rat mesenteric resistance arteries to norepinephrine (NE) and reduced Po(2) after short-term (3-day) changes in dietary salt intake. The CYP450-4A2, -4A3, and -4A8 isoforms were all detected by RT-PCR in arteries obtained from rats fed a high-salt (HS, 4% NaCl) diet, whereas only the CYP450-4A3 isoform was detected in vessels from rats fed a low-salt (LS, 0.4% NaCl) diet. Expression of the 51-kDa CYP450-4A protein was significantly increased by a HS diet. Inhibiting 20-HETE synthesis with 30 muM N-methylsulfonyl-12,12-dibromododec-11-enamide (DDMS) reduced the vasoconstrictor response to NE in arteries obtained from rats fed either a LS or HS diet, but NE sensitivity after DDMS treatment was significantly lower in vessels from rats on a HS diet. DDMS treatment also restored the vasodilator response to reduced Po(2) that was impaired in arteries from rats on a HS diet. These findings suggest that 1) a HS diet increases the expression of CYP450-4A enzymes in the mesenteric vasculature, 2) 20-HETE contributes to the vasoconstrictor response to NE in mesenteric resistance arteries, 3) the contribution of 20-HETE to the vasoconstrictor response to NE is greater in rats fed a HS diet than in rats fed a LS diet, and 4) upregulation of the production of 20-HETE contributes to the impaired dilation of mesenteric resistance arteries in response to hypoxia in rats fed a HS diet.  相似文献   

7.
Summary Whole-cell patch clamp experiments were carried out in rat striatal brain slices. In a subset of striatal neurons (70–80%), NMDA-induced inward currents were inhibited by the adenosine AZA receptor selective agonist CGS 21680. The non-selective adenosine receptor antagonist 8-(p-sulphophenyl)-theophylline and the AZA receptor selective antagonist 8-(3chlorostyryl) caffeine abolished the inhibitory action of CGS 21680. Intracellular GDP--S, which is known to prevent G protein-mediated reactions, also eliminated the effect of CGS 21680. Extracellular dibutyryl cAMP, a membrane permeable analogue of cAMP, and intracellular Sp-cAMPS, an activator of cAMP-dependent protein kinases (PKA), both abolished the CGS 21680-induced inhibition. By contrast, Rp-cAMPS and PKI 14–24 amide, two inhibitors of PKA had no effect. Intracellular U-73122 (a phospholipase C inhibitor) and heparin (an inositoltriphosphate antagonist) prevented the effect of CGS 21680. Finally, a more efficient buffering of intracellular Ca2+ by a substitution of EGTA (11 mM) by BAPTA (5.5 mM) acted like U-73122 or heparin. Hence, AZA receptors appear to negatively modulate NMDA receptor channel conductance via the phospholipase C/inositoltriphosphate/Ca2+ pathway rather than the adenylate cyclase/PKA pathway.  相似文献   

8.
The role of peripheral adenosine receptors in pain is a controversial issue and seems to be quite different from the roles of spinal and central adenosine receptors. The present study is aimed at clarifying the role of these receptors in peripheral nociception. To clarify this, studies were done on Swiss mice with adenosine receptor agonists and antagonists. Nociceptive behavior was induced by subcutaneous injection of glutamate (10 μmol) into the ventral surface of the hind paw of mice. Statistical analyses were performed by one-way ANOVA followed by the Student-Newman-Keuls post hoc test. Results showed that intraplantar (i.pl.) administration of N6-cyclohexyl-adenosine (CHA), an adenosine A1 receptor agonist, at 1 or 10 μg/paw significantly reduced glutamate-induced nociception (p<0.01 and p<0.001 vs. vehicle, respectively, n=8−10). In contrast, i.pl. injection of hydrochloride hydrate (CGS21680, an adenosine A2A receptor agonist) (1 μg/paw) induced a significant increase in glutamate-induced nociception compared to the vehicle (p<0.05, n=8), while 4-(-2-[7-amino-2-{2-furyl}{1,2,4}triazolo{2,3-a} {1,3,5}triazin-5-yl-amino]ethyl)phenol (ZM241385, an adenosine A2A receptor antagonist) (20 μg/paw) caused a significant reduction (p<0.05, n=7−8). There were no significant effects on i.pl. administration of four additional adenosine receptor drugs—8-cyclopentyl-1,3-dipropylxanthine (DPCPX, an A1 antagonist, 1–10 μg/paw), N(6)-[2-(3,5-dimethoxyphenyl)-2-(2-methylphenyl)-ethyl]adenosine (DPMA, an A2B agonist, 1–100 μg/paw), alloxazine (an A2B antagonist, 0.1–3 μg/paw), and 2-hexyn-1-yl-N(6)-methyladenosine (HEMADO) (an A3 agonist, 1–100 μg/paw) (p>0.05 vs. vehicle for all tests). We also found that prior administration of DPCPX (3 μg/paw) significantly blocked the anti-nociceptive effect of CHA (1 μg/paw) (p<0.05, n=7–9). Similarly, ZM241385 (20 μg/paw) administered prior to CGS21680 (1 μg/paw) significantly blocked CGS21680-induced exacerbation of nociception (p<0.05, n=8). Finally, inosine (10 and 100 μg/paw), a novel endogenous adenosine A1 receptor agonist recently reported by our research group, was also able to reduce glutamate-induced nociception (p<0.001 vs. vehicle, n=7–8). Interestingly, as an A1 adenosine receptor agonist, the inosine effect was significantly blocked by the A1 antagonist DPCPX (3 μg/paw) (p<0.05, n=7−9) but not by the A2A antagonist ZM241385 (10 μg/paw, p>0.05). In summary, these results demonstrate for the first time that i.pl administration of inosine induces an anti-nociceptive effect, similar to that elicited by CHA and possibly mediated by peripheral adenosine A1 receptor activation. Moreover, our results suggest that peripheral adenosine A2A receptor activation presents a pro-nociceptive effect, exacerbating glutamate-induced nociception independent of inosine-induced anti-nociceptive effects.  相似文献   

9.
Augmentation of intrarenal angiotensinogen (AGT) synthesis, secretion, and excretion is associated with the development of hypertension, renal oxidative stress, and tissue injury during ANG II-dependent hypertension. High salt (HS) exacerbates hypertension and kidney injury, but the mechanisms remain unclear. In this study, we determined the consequences of HS intake alone compared with chronic ANG II infusion and combined HS plus ANG II on the stimulation of urinary AGT (uAGT), renal oxidative stress, and renal injury markers. Sprague-Dawley rats were subjected to 1) a normal-salt diet [NS, n = 5]; 2) HS diet [8% NaCl, n = 5]; 3) ANG II infusion in NS rats [ANG II 80 ng/min, n = 5]; 4) ANG II infusion in HS rats [ANG II+HS, n = 5]; and 5) ANG II infusion in HS rats treated with ANG II type 1 receptor blocker (ARB) [ANG II+HS+ARB, n = 5] for 14 days. Rats fed a HS diet alone did not show changes in systolic blood pressure (SBP), proteinuria, cell proliferation, or uAGT excretion although they did exhibit mesangial expansion, collagen deposition, and had increased NADPH oxidase activity accompanied by increased peroxynitrite formation in the kidneys. Compared with ANG II rats, the combination of ANG II infusion and a HS diet led to exacerbation in SBP (175 ± 10 vs. 221 ± 8 mmHg; P < 0.05), proteinuria (46 ± 7 vs. 127 ± 7 mg/day; P < 0.05), and uAGT (1,109 ± 70 vs.. 7,200 ± 614 ng/day; P < 0.05) associated with greater collagen deposition, mesangial expansion, interstitial cell proliferation, and macrophage infiltration. In both ANG II groups, the O(2)(-) levels were increased due to increased NADPH oxidase activity without concomitant increases in peroxynitrite formation. The responses in ANG II rats were prevented or ameliorated by ARB treatment. The results indicate that HS independently stimulates ROS formation, which may synergize with the effect of ANG II to limit peroxynitrite formation, leading to exacerbation of uAGT and greater injury during ANG II salt hypertension.  相似文献   

10.
Cisplatin is a highly effective chemotherapeutic agent against many tumors; however, it is also a potent nephrotoxicant. Given that there have been no significant advances in our ability to clinically manage acute renal failure since the advent of dialysis, the development of novel strategies to ablate nephrotoxicity would represent a significant development. In this study, we investigated the ability of an inhibitor of soluble epoxide hydrolase (sEH), n-butyl ester of 12-(3-adamantan-1-yl-ureiido)-dodecanoic acid (nbAUDA), to attenuate cisplatin-induced nephrotoxicity. nbAUDA is quickly converted to AUDA and results in maintenance of high AUDA levels in vivo. Subcutaneous administration of 40 mg/kg of nbAUDA to C3H mice every 24 h resulted in elevated blood levels of AUDA; this protocol was also associated with attenuation of nephrotoxicity induced by cisplatin (intraperitoneal injection) as assessed by BUN levels and histological evaluation of kidneys. This is the first report of the use of sEH inhibitors to protect against acute nephrotoxicity and suggests a therapeutic potential of these compounds.  相似文献   

11.
Our purpose was to elucidate effects of acute exercise and training on blood lipids-lipoproteins, and high-sensitivity C-reactive protein (hsCRP) in overweight/obese men (n = 10) and women (n = 8); age, BMI, body fat percentage, and VO(2)max were (mean ± SEM): 45 ± 2.5 years, 31.9 ± 1.4 kg·m(-2), 41.1 ± 1.5%, and 25.2 ± 1.3 mlO(2)·kg(-1)·min(-1). Before exercise training subjects performed an acute exercise session on a treadmill (70% VO(2)max, 400 kcal energy expenditure), followed by 12 weeks of endurance exercise training (land-based or aquatic-based treadmill): 3 sessions·week(-1), progressing to 500 kcal·session(-1) during which subjects maintained accustomed dietary habits. After training, the acute exercise session was repeated. Blood samples, obtained immediately before and 24 h after acute exercise sessions, were analyzed for serum lipids, lipoproteins, and hsCRP adjusted for plasma volume shifts. Exercise training increased VO(2)max (+3.67 mlO(2)·kg(-1)·min(-1), P < 0.001) and reduced body weight (-2.7 kg, P < 0.01). Training increased high-density lipoprotein (HDL) and HDL(2b)-cholesterol (HDL-C) concentrations (+3.7 and +2.4 mg·dl(-1), P < 0.05) and particle numbers (+588 and +206 nmol·l(-1), P < 0.05) in men. In women despite no change in total HDL-C, subfractions shifted from HDL(3)-C (-3.2, P < 0.01) to HDL(2b)-C (+3.5, P < 0.05) and HDL(2a)-C (+2.2 mg·dl(-1), P < 0.05), with increased HDL(2b) particle number (+313 nmol·l(-1), P < 0.05). Training reduced LDL(3) concentration and particle number in women (-1.6 mg·dl(-1) and -16 nmol·l(-1), P < 0.05). Acute exercise reduced the total cholesterol (TC): HDL-C ratio in men (-0.16, P < 0.01) and increased hsCRP in all subjects (+0.05 mg·dl(-1), P < 0.05), regardless of training. Training did not affect acute exercise responses. Our data support the efficacy of endurance training, without dietary intervention, to elicit beneficial changes in blood lipids-lipoproteins in obese men and women.  相似文献   

12.

Introduction

Using a novel method called near-infrared transillumination backscattering sounding (NIR-T/BSS) that allows for the non-invasive measurement of pial artery pulsation (cc-TQ) and subarachnoid width (sas-TQ) in humans, we assessed the influence of sympathetic activation on the cardiac and respiratory contribution to blood pressure (BP) cc-TQ oscillations in healthy subjects.

Methods

The pial artery and subarachnoid width response to handgrip (HGT) and cold test (CT) were studied in 20 healthy subjects. The cc-TQ and sas-TQ were measured using NIR-T/BSS; cerebral blood flow velocity (CBFV) was measured using Doppler ultrasound of the left internal carotid artery; heart rate (HR) and beat-to-beat mean BP were recorded using a continuous finger-pulse photoplethysmography; respiratory rate (RR), minute ventilation (MV), end-tidal CO2 (EtCO2) and end-tidal O2 (EtO2) were measured using a metabolic and spirometry module of the medical monitoring system. Wavelet transform analysis was used to assess the relationship between BP and cc-TQ oscillations.

Results

HGT evoked an increase in BP (+15.9%; P<0.001), HR (14.7; P<0.001), SaO2 (+0.5; P<0.001) EtO2 (+2.1; P<0.05) RR (+9.2%; P = 0.05) and MV (+15.5%; P<0.001), while sas-TQ was diminished (-8.12%; P<0.001), and a clear trend toward cc-TQ decline was observed (-11.0%; NS). CBFV (+2.9%; NS) and EtCO2 (-0.7; NS) did not change during HGT. CT evoked an increase in BP (+7.4%; P<0.001), sas-TQ (+3.5%; P<0.05) and SaO2(+0.3%; P<0.05). HR (+2.3%; NS), CBFV (+2.0%; NS), EtO2 (-0.7%; NS) and EtCO2 (+0.9%; NS) remained unchanged. A trend toward decreased cc-TQ was observed (-5.1%; NS). The sas-TQ response was biphasic with elevation during the first 40 seconds (+8.8% vs. baseline; P<0.001) and subsequent decline (+4.1% vs. baseline; P<0.05). No change with respect to wavelet coherence and wavelet phase coherence was found between the BP and cc-TQ oscillations.

Conclusions

Short sympathetic activation does not affect the cardiac and respiratory contribution to the relationship between BP—cc-TQ oscillations. HGT and CT display divergent effects on the width of the subarachnoid space, an indirect marker of changes in intracranial pressure.  相似文献   

13.
Cytochrome P-450-4A1 (CYP4A1) is an omega-hydroxylase that catalyzes the metabolism of arachidonic acid to 20-hydroxyeicosatetraenoic acid (20-HETE). The goal of this study was to determine the vasomotor consequences of vascular overexpression of CYP4A1. Isolated rat gracilis muscle arterioles transfected ex vivo with an expression plasmid containing CYP4A1 cDNA expressed more CYP4A protein than vessels transfected with the control plasmid. In arterioles pressurized to 80 mmHg, the internal diameter of vessels transfected with CYP4A1 cDNA (55 +/- 3 microm) was surpassed (P < 0.05) by that of vessels transfected with control plasmid (97 +/- 4 microm). Treatment with a CYP4A inhibitor (N-methylsulfonyl-12,12-dibromododec-11-enamide; DDMS) or with an antagonist of 20-HETE actions [20-hydroxyeicosa-6(Z),15(Z)-dienoic acid; 20-HEDE] elicited robust dilation of arterioles transfected with CYP4A1 cDNA, whereas the treatment had little or no effect in vessels transfected with control plasmid. Examination of the intraluminal pressure-internal diameter relationship revealed that pressure increments over the range of 40-100 mmHg elicited a more intense (P < 0.05) myogenic constrictor response in arterioles transfected with CYP4A1 cDNA than in those with control plasmid. Arterioles transfected with CYP4A1 cDNA also displayed enhanced sensitivity to the constrictor action of phenylephrine. Treatment with DDMS or 20-HEDE greatly attenuated the constrictor responsiveness to both constrictor stimuli in vessels overexpressing CYP4A1, whereas the treatment had much less effect in control vessels. These data suggest that CYP4A1 overexpression promotes constriction of gracilis muscle arterioles by intensifying the responsiveness of vascular smooth muscle to constrictor stimuli. This effect of CYP4A1 overexpression appears to be mediated by a CYP4A1 product.  相似文献   

14.
The effects of adenosinergic antagonists caffeine and DPCPX, and of the adenosinergic agonists L-PIA, CPA and CGS 21680 were investigated on fully and partially reversible hypoxia-induced electrophysiological changes in rat hippocampal slices. The influence of a high potassium solution and of the N-methyl-D-aspartate antagonist dizocilpine (MK 801) was also tested. The latency to obtain a 50% decrease in the amplitude of the CA1 population spike (CA1 PS) during a short- (5-10 min) lasting hypoxic period was significantly increased (P less than 0.01) by slice perfusion with caffeine (50 microM), DPCPX (0.2 microM), and by increasing (from 3 to 4 mM) the potassium concentration in the medium bathing the hippocampal slices. The latency was significantly decreased (P less than 0.01) by slice perfusion with L-PIA (0.2 microM) and CPA (0.05 microM). It was not significantly modified by CGS 21680 (5 microM). The incidence of reappearance of the CA1 PS during reoxygenation after long- (45 min) lasting hypoxia was significantly increased (P less than 0.05) by slice perfusion with MK 801 (50 microM), while it was not significantly affected by slice perfusion with caffeine (50 microM) or DPCPX (0.2 microM) or L-PIA (0.2 microM) or CPA (0.05 microM) or CGS 21680 (5 microM). The results indicate a prevalent involvement of the A1 adenosine receptors in the early mechanisms underlying hypoxia-induced reversible changes. Adenosine seems to have a limited role in the late mechanisms occurring after a long-lasting hypoxic period.  相似文献   

15.
In previous studies, we have shown that the inactivation of the adenosine A2A receptor exacerbates chronic cerebral hypoperfusion-induced white matter lesions (WMLs) by enhancing neuroinflammatory responses. However, the molecular mechanism underlying the effect of the adenosine A2A receptor remains unknown. Recent studies have demonstrated that cystatin F, a potent endogenous cysteine protease inhibitor, is selectively expressed in immune cells in association with inflammatory demyelination in central nervous system diseases. To understand the expression of cystatin F and its potential role in the effect of A2A receptor on WMLs induced through chronic cerebral hypoperfusion, we investigated cystatin F expression in the WMLs of A2A receptor gene knockout mice, the littermate wild-type mice and wild-type mice treated daily with the A2A receptor agonist CGS21680 or both CGS21680 and A2A receptor antagonist SCH58261 after chronic cerebral hypoperfusion. The results of quantitative-PCR and western blot analysis revealed that cystatin F mRNA and protein expression were significantly up-regulated in the WMLs after chronic cerebral hypoperfusion. In addition, cystatin F expression in the corpus callosum was significantly increased in A2A receptor gene knockout mice and markedly decreased in mice treated with CGS21680 on both the mRNA and protein levels. Additionally, SCH58261 counteracted the attenuation of cystatin F expression produced by CGS21680 after chronic cerebral hypoperfusion. Moreover, double immunofluorescence staining revealed that cystatin F was co-localized with the activated microglia marker CD11b. In conclusion, the cystatin F expression in the activated microglia is closely associated with the effect of the A2A receptors, which may be related to the neuroinflammatory responses occurring during the pathological process.  相似文献   

16.
Abstract: To determine the functions of striatal adenosine A2a receptors in vivo, the effects of a selective agonist, 2-[4-(2-carboxyethyl)phenethylamino]-5'- N -ethylcarboxamidoadenosine hydrochloride (CGS 21680), and an antagonist, ( E )-8-(3,4-dimethoxystyryl)-1,3-dipropyl-7-methylxanthine (KF17837), on acetylcholine release were investigated in the striatum of awake freely moving rats using microdialysis. Intracerebroventricular injection of CGS 21680 (10 µg) increased acetylcholine release in striatum and KF17837 (30 mg/kg p.o.) antagonized the CGS 21680-induced acetylcholine elevation. To investigate the contribution of dopaminergic and GABAergic neurons on A2a receptor-mediated acetylcholine release, the effects of CGS 21680 were studied by using dopamine-depleted rats in the presence or absence of GABA antagonists. In the dopamine-depleted striatum, the intrastriatal application of CGS 21680 (0.3–30 µ M ) increased extracellular acetylcholine, which was significantly greater than that in normal striatum. The CGS 21680-induced elevation of acetylcholine release was still observed in the presence of GABA antagonists bicuculline (30 µ M ) and 2-hydroxysaclofen (100 µ M ) and was similar in both normal and dopamine-depleted striatum. These results suggest that A2a agonist stimulates acetylcholine release in vivo, and this effect of A2a agonist is modulated by dopaminergic and GABAergic neurotransmission.  相似文献   

17.
The coupling of tissue blood flow to cellular metabolic demand involves oxygen-dependent adjustments in arteriolar tone, and arteriolar responses to oxygen can be mediated, in part, by changes in local production of 20-HETE. In this study, we examined the long-term effect of dietary salt on arteriolar oxygen responsiveness in the exteriorized, superfused rat spinotrapezius muscle and the role of 20-HETE in this responsiveness. Rats were fed either a normal-salt (NS, 0.45%) or high-salt (HS, 4%) diet for 4-5 wk. There was no difference in steady-state tissue Po(2) between NS and HS rats, and elevation of superfusate oxygen content from 0% to 10% caused tissue Po(2) to increase by the same amount in both groups. However, the resulting reductions in arteriolar diameter and blood flow were less in HS rats than NS rats. Inhibition of 20-HETE formation with N-methylsulfonyl-12,12-dibromododec-11-enamide (DDMS) or 17-octadecynoic acid (17-ODYA) attenuated oxygen-induced constriction in NS rats but not HS rats. Exogenous 20-HETE elicited arteriolar constriction that was greatly reduced by the large-conductance Ca(2+)-activated potassium (K(Ca)) channel inhibitors tetraethylammonium chloride (TEA) and iberiotoxin (IbTx) in NS rats and a smaller constriction that was less sensitive to TEA or IbTx in HS rats. Arteriolar responses to exogenous angiotensin II were similar in both groups but more sensitive to inhibition with DDMS in NS rats. Norepinephrine-induced arteriolar constriction was similar and insensitive to DDMS in both groups. We conclude that 20-HETE contributes to oxygen-induced constriction of skeletal muscle arterioles via inhibition of K(Ca) channels and that a high-salt diet impairs arteriolar responses to increased oxygen availability due to a reduction in vascular smooth muscle responsiveness to 20-HETE.  相似文献   

18.
Arachidonic acid (AA) causes endothelium-dependent smooth muscle hyperpolarizations and relaxations that are mediated by a 15-lipoxygenase-I (15-LO-I) metabolite, 11,12,15-trihydroxyeicosatrienoic acid (11,12,15-THETA). We propose that AA is metabolized sequentially by 15-LO-I and hydroperoxide isomerase to an unidentified hydroxyepoxyeicosatrienoic acid (HEETA), which is hydrolyzed by a soluble epoxide hydrolase (sEH) to 11,12,15-THETA. After incubation of aorta with 14C-labeled AA, metabolites were extracted and the HEETAs were resolved by performing HPLC. Mass spectrometric analyses identified 15-Hydroxy-11,12-epoxyeicosatrienoic acid (15-H-11,12-EETA). Incubation of aortic incubates with methanol and acetic acid trapped the acid-sensitive 15-H-11,12-EETA as methoxydihydroxyeicosatrienoic acids (MDHEs) (367 m/z, M-H). Pretreatment of the aortic tissue with the sEH inhibitor 12-(3-adamantan-1-yl-ureido)-dodecanoic acid (AUDA; 10(-6) M) increased the formation of 15-H-11,12-EETA, measured as MDHEs. Thus 15-H-11,12-EETA is an acid- and sEH-sensitive precursor of 11,12,15-THETA. Aortic homogenates and endothelial cells contain a 57-kDa protein corresponding to the rabbit sEH. In preconstricted aortic rings, AA (10(-7)-10(-4) M) and acetylcholine (10(-9)-10(-6) M) caused concentration-related relaxations that were enhanced by pretreatment with AUDA. These enhanced relaxations were inhibited by increasing extracellular [K(+)] from 4.8 to 20 mM. AA (3 x 10(-6) M) induced cell membrane hyperpolarization (from -31.0 +/- 1 to -46.8 +/- 2 mV) in aortic strips with an intact endothelium, which was enhanced by AUDA. These results indicate that 15-H-11,12-EETA is produced by the aorta, hydrolyzed by sEH to 11,12,15-THETA, and mediates relaxations by membrane hyperpolarization. 15-H-11,12-EETA represents an endothelium-derived hyperpolarizing factor.  相似文献   

19.
We used the patch-clamp technique to study the effect of arachidonic acid (AA) on epithelial Na channels (ENaC) in the rat cortical collecting duct (CCD). Application of 10 microM AA decreased the ENaC activity defined by NPo from 1.0 to 0.1. The dose-response curve of the AA effect on ENaC shows that 2 microM AA inhibited the ENaC activity by 50%. The effect of AA on ENaC is specific because neither 5,8,11,14-eicosatetraynoic acid (ETYA), a nonmetabolized analogue of AA, nor 11,14,17-eicosatrienoic acid mimicked the inhibitory effect of AA on ENaC. Moreover, inhibition of either cyclooxygenase (COX) with indomethacin or cytochrome P450 (CYP) omega-hydroxylation with N-methylsulfonyl-12,12-dibromododec-11-enamide (DDMS) failed to abolish the effect of AA on ENaC. In contrast, the inhibitory effect of AA on ENaC was absent in the presence of N-methylsulfonyl-6-(propargyloxyphenyl)hexanamide (MS-PPOH), an agent that inhibits CYP-epoxygenase activity. The notion that the inhibitory effect of AA is mediated by CYP-epoxygenase-dependent metabolites is also supported by the observation that application of 200 nM 11,12-epoxyeicosatrienoic acid (EET) inhibited ENaC in the CCD. In contrast, addition of 5,6-, 8,9-, or 14,15-EET failed to decrease ENaC activity. Also, application of 11,12-EET can still reduce ENaC activity in the presence of MS-PPOH, suggesting that 11,12-EET is a mediator for the AA-induced inhibition of ENaC. Furthermore, gas chromatography mass spectrometry analysis detected the presence of 11,12-EET in the CCD and CYP2C23 is expressed in the principal cells of the CCD. We conclude that AA inhibits ENaC activity in the CCD and that the effect of AA is mediated by a CYP-epoxygenase-dependent metabolite, 11,12-EET.  相似文献   

20.
High salt intake (HS) is a risk factor for cardiovascular and kidney disease. Indeed, HS may promote blood-pressure-independent tissue injury via inflammatory factors. The lipid-lowering 3-hydroxy 3-methylglutaryl-coenzyme A (HMG-CoA) reductase inhibitors exert beneficial lipid-independent effects, reducing the expression and synthesis of inflammatory factors. We hypothesized that HS impairs kidney structure and function in the absence of hypertension, and these changes are reversed by atorvastatin. Four groups of rats were treated for 6 wk in metabolic cages with their diets: normal salt (NS); HS, NS plus atorvastatin and HS plus atorvastatin. We measured basal and final body weight, urinary sodium and protein excretion (U(Prot)V), and systolic blood pressure (SBP). At the end of the experimental period, cholesterolemia, creatinine clearance, renal vascular reactivity, glomerular volume, cortical and glomerular endothelial nitric oxide synthase (eNOS), and transforming growth factor (TGF)-β1 expression were measured. We found no differences in SBP, body weight, and cholesterolemia. HS rats had increased creatinine clearence, U(Prot)V, and glomerular volume at the end of the study. Acetylcholine-induced vasodilatation decreased by 40.4% in HS rats (P < 0.05). HS decreased cortical and glomerular eNOS and caused mild glomerular sclerosis, interstitial mononuclear cell infiltration, and increased cortical expression of TGF-β1. All of these salt-induced changes were reversed by atorvastatin. We conclude that long-term HS induces inflammatory and hemodynamic changes in the kidney that are independent of SBP. Atorvastatin corrected all, suggesting that the nitric oxide-oxidative stress balance plays a significant role in the earlier stages of salt induced kidney damage.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号