共查询到20条相似文献,搜索用时 15 毫秒
1.
Zhe Ren Sara G. Baer Loretta C. Johnson Matthew B. Galliart Laurel R. Wilson David J. Gibson 《应用植被学》2023,26(2):e12725
Questions
A robust ecosystem requires a functionally heterogeneous community of organisms with ecological traits that permit broad resource partitioning. Understanding community diversity patterns can help investigate drivers of community assembly and assess restoration success. Do biodiversity patterns differ among grassland communities sown with different ecotypes of dominant species during restoration along a rainfall gradient in the tallgrass prairie of the central US Great Plains?Location
Four field sites across a rainfall gradient within the North American Great Plains: Colby, Kansas (39°23′17.8″N, 101°04′57.4″W), Hays, Kansas (38°51′13.2″N, 99°19′08.6″W), Manhattan, Kansas (39°08′22.3″N, 96°38′23.3″W), and Carbondale, Illinois (IL, 37°41′47.0″N, 89°14′19.2″W).Methods
We applied linear mixed models to assess the effect of dominant species ecotype, year, and location on grassland taxonomic, phylogenetic, and functional diversity.Results
The non-local grass ecotype (compared to the local ecotype) promoted species richness. In contrast, the effect of the dominant species ecotype on phylogenetic or functional diversity was site-specific over the 10-year restoration. Richness decreased across the rainfall gradient from dry to moist sites, and the wettest site had the highest phylogenetic and functional diversity.Conclusions
Our results suggest that abiotic filtering by rainfall is a key assembly mechanism that could predict grassland changes in biodiversity in the early restoration phases. Given the community response across the tallgrass prairie, restoration practitioners should consider the impact of regional sources of dominant species used in restoration when biodiversity is a restoration goal. It is recommended for future grassland restoration to detect gaps and limitations in evolutionary and trait structure that will reveal which diversity components to evaluate. 相似文献2.
Miranda M. Gray Paul St. Amand Nora M. Bello Matthew B. Galliart Mary Knapp Karen A. Garrett Theodore J. Morgan Sara G. Baer Brian R. Maricle Eduard D. Akhunov Loretta C. Johnson 《Molecular ecology》2014,23(24):6011-6028
Big bluestem (Andropogon gerardii) is an ecologically dominant grass with wide distribution across the environmental gradient of U.S. Midwest grasslands. This system offers an ideal natural laboratory to study population divergence and adaptation in spatially varying climates. Objectives were to: (i) characterize neutral genetic diversity and structure within and among three regional ecotypes derived from 11 prairies across the U.S. Midwest environmental gradient, (ii) distinguish between the relative roles of isolation by distance (IBD) vs. isolation by environment (IBE) on ecotype divergence, (iii) identify outlier loci under selection and (iv) assess the association between outlier loci and climate. Using two primer sets, we genotyped 378 plants at 384 polymorphic AFLP loci across regional ecotypes from central and eastern Kansas and Illinois. Neighbour‐joining tree and PCoA revealed strong genetic differentiation between Kansas and Illinois ecotypes, which was better explained by IBE than IBD. We found high genetic variability within prairies (80%) and even fragmented Illinois prairies, surprisingly, contained high within‐prairie genetic diversity (92%). Using Bayenv 2, 14 top‐ranked outlier loci among ecotypes were associated with temperature and precipitation variables. Six of seven BayeScan FST outliers were in common with Bayenv 2 outliers. High genetic diversity may enable big bluestem populations to better withstand changing climates; however, population divergence supports the use of local ecotypes in grassland restoration. Knowledge of genetic variation in this ecological dominant and other grassland species will be critical to understanding grassland response and restoration challenges in the face of a changing climate. 相似文献
3.
We investigated the plant species diversity, community assemblage, net primary production and soil carbon sequestration in an old field (OF), which went through passive restoration with spontaneous secondary succession, and a restored prairie (RP), which went through active restoration with reintroduction of native plants. The passive restoration in OF did not attain as high diversity and richness of plant species as did in RP. Our NMS (nonmetric multidimensional scaling) ordination revealed a clear divergence of RP and OF vegetation with dissimilar species compositions to separate paths of succession trajectory. The spontaneous succession in OF has made very little progress due to a potentially strong inhibitory priority effect of invasive plants. The belowground biomass in the high-diversity RP was 1.3× higher than the low-diversity OF. We found no measurable difference in soil C sequestration between RP and OF at this time, possibly due to edaphic factors, lack of legumes, or both. Human intervention is needed for restoring abandoned croplands—highly disturbed, fragmented and isolated habitats—to tallgrass prairies in the U.S. Midwest. Our recommended intervention includes but is not limited to removal of exotic plants, further augmentation of native plants (particularly legumes), and periodic burns. 相似文献
4.
Courtney R Salm Jasmine E Saros Callie S Martin Jarvis M Erickson 《Aquatic biosystems》2009,5(1):1-13
Seasonal changes in freshwater phytoplankton communities have been extensively studied, but key drivers of phytoplankton in saline lakes are currently not well understood. Comparative lake studies of 19 prairie saline lakes in the northern Great Plains (USA) were conducted in spring and summer of 2004, with data gathered for a suite of limnological parameters. Nutrient enrichment assays for natural phytoplankton assemblages were also performed in spring and summer of 2006. Canonical correspondence analysis of 2004 data showed salinity (logCl), nitrogen, and phosphorus (N:P ratios) to be the main drivers of phytoplankton distribution in the spring, and phosphorus (C:P ratios), iron (logTFe), and nitrogen (logTN) as important factors in the summer. Despite major differences in nutrient limitation patterns (P-limitation in freshwater systems, N-limitation in saline systems), seasonal patterns of phytoplankton phyla changes in these saline lakes were similar to those of freshwater systems. Dominance shifted from diatoms in the spring to cyanobacteria in the summer. Nutrient enrichment assays (control, +Fe, +N, +P, +N+P) in 2006 indicated that nutrient limitation is generally more consistent within lakes than for individual taxa across systems, with widespread nitrogen and secondary phosphorus limitation. Understanding phytoplankton community structure provides insight into the overall ecology of saline lakes, and will assist in the future conservation and management of these valuable and climatically-sensitive systems. 相似文献
5.
Conservation of nitrogen increases with precipitation across a major grassland gradient in the Central Great Plains of North America 总被引:1,自引:0,他引:1
Regional analyses and biogeochemical models predict that ecosystem N pools and N cycling rates must increase from the semi-arid
shortgrass steppe to the sub-humid tallgrass prairie of the Central Great Plains, yet few field data exist to evaluate these
predictions. In this paper, we measured rates of net N mineralization, N in above- and belowground primary production, total
soil organic matter N pools, soil inorganic N pools and capture in resin bags, decomposition rates, foliar 15N, and N use efficiency (NUE) across a precipitation gradient. We found that net N mineralization did not increase across
the gradient, despite more N generally being found in plant production, suggesting higher N uptake, in the wetter areas. NUE
of plants increased with precipitation, and δ15N foliar values and resin-captured N in soils decreased, all of which are consistent with the hypothesis that N cycling is
tighter at the wet end of the gradient. Litter decomposition appeared to play a role in maintaining this regional N cycling
trend: litter decomposed more slowly and released less N at the wet end of the gradient. These results suggest that immobilization
of N within the plant–soil system increases from semi-arid shortgrass steppe to sub-humid tallgrass prairie. Despite the fact
that N pools increase along a bio-climatic gradient from shortgrass steppe to mixed grass and tallgrass prairie, this element
becomes relatively more limiting and is therefore more tightly conserved at the wettest end of the gradient. Similar to findings
from forested systems, our results suggest that grassland N cycling becomes more open to N loss with increasing aridity. 相似文献
6.
Background and AimsAndropogon gerardii is a highly productive C4 grass species with a large geographic range throughout the North American Great Plains, a biome characterized by a variable temperate climate. Plant traits are often invoked to explain growth rates and competitive abilities within broad climate gradients. For example, plant competition models typically predict that species with large geographic ranges benefit from variation in traits underlying high growth potential. Here, we examined the relationship between climate variability and leaf-level traits in A. gerardii, emphasizing how leaf-level microanatomical traits serve as a mechanism that may underlie variation in commonly measured traits, such as specific leaf area (SLA).MethodsAndropogon gerardii leaves were collected in August 2017 from Cedar Creek Ecosystem Science Reserve (MN), Konza Prairie Biological Station (KS), Platte River Prairie (NE) and Rocky Mountain Research Station (SD). Leaves from ten individuals from each site were trimmed, stained and prepared for fluorescent confocal microscopy to analyse internal leaf anatomy. Leaf microanatomical data were compared with historical and growing season climate data extracted from PRISM spatial climate models.Key ResultsMicroanatomical traits displayed large variation within and across sites. According to AICc (Akaike’s information criterion adjusted for small sample sizes) selection scores, the interaction of mean precipitation and temperature for the 2017 growing season was the best predictor of variability for the anatomical and morphological traits measured here. Mesophyll area and bundle sheath thickness were directly correlated with mean temperature (annual and growing season). Tissues related to water-use strategies, such as bulliform cell and xylem area, were significantly correlated with one another.ConclusionsThe results indicate that (1) microanatomical trait variation exists within this broadly distributed grass species, (2) microanatomical trait variability appears likely to impact leaf-level carbon and water use strategies, and (3) microanatomical trait values vary across climate gradients, and may underlie variation in traits measured at larger ecological scales. 相似文献
7.
Carolina Quintero Carolina Laura Morales Marcelo Adrián Aizen 《Biodiversity and Conservation》2010,19(1):257-274
Anthropogenic habitat disturbance can have profound effects on multiple components of forest biotas including pollinator assemblages.
We assessed the effect of small-scale disturbance on local richness, abundance, diversity and evenness of insect pollinator
fauna; and how habitat disturbance affected species turnover across the landscape and overall diversity along a precipitation
gradient in NW Patagonia (Argentina). We evaluated the effect of disturbance on overall pollinator fauna and then separately
for bees (i.e. Apoidea) and non-bee pollinators. Locally, disturbed habitats had significantly higher pollinator species richness
and abundances than undisturbed habitats for the whole pollinator assemblage, but not for bees or non-bees separately. However,
significant differences in species richness between habitats vanished after accounting for differences in abundance between
habitat types. At a local scale Shannon–Weaver diversity and evenness did not vary with disturbance. A β diversity index indicated
that, across forest types, species turnover was lower between disturbed habitats than between undisturbed habitats. In addition,
rarefaction curves showed that disturbed habitats as a whole accumulated fewer species than undisturbed habitats at equivalent
sample sizes. We concluded that small patches of disturbed habitat have a negligible effect on local pollinator diversity;
however, habitat disturbance reduced β diversity through a homogenization of the pollinator fauna (in particular of bees)
across the landscape. 相似文献
8.
9.
10.
11.
Genetic diversity and species diversity are expected to covary according to area and isolation, but may not always covary
with environmental heterogeneity. In this study, we examined how patterns of genetic and species diversity in stream fishes
correspond to local and regional environmental conditions. To do so, we compared population size, genetic diversity and divergence
in central stonerollers (Campostoma anomalum) to measures of species diversity and turnover in stream fish assemblages among similarly sized watersheds across an agriculture–forest
land-use gradient in the Little Miami River basin (Ohio, USA). Significant correlations were found in many, but not all, pair-wise
comparisons. Allelic richness and species richness were strongly correlated, for example, but diversity measures based on
allele frequencies and assemblage structure were not. In-stream conditions related to agricultural land use were identified
as significant predictors of genetic diversity and species diversity. Comparisons to population size indicate, however, that
genetic diversity and species diversity are not necessarily independent and that variation also corresponds to watershed location
and glaciation history in the drainage basin. Our findings demonstrate that genetic diversity and species diversity can covary
in stream fish assemblages, and illustrate the potential importance of scaling observations to capture responses to hierarchical
environmental variation. More comparisons according to life history variation could further improve understanding of conditions
that give rise to parallel variation in genetic diversity and species diversity, which in turn could improve diagnosis of
anthropogenic influences on aquatic ecosystems. 相似文献
12.
The Agricultural Land Management Alternatives with Numerical Assessment Criteria (ALMANAC) model, originally developed and tested in Texas, needs to be tested for switchgrass (Panicum virgatum L.) simulation in more northerly locations. The Northern Great Plains of the U.S. has regionally adapted native populations of switchgrass and has excellent potential for growing switchgrass as a biofuel crop. The objective of this study was to adjust switchgrass parameters (potential leaf area index (DMLA) and degree days to maturity (PHU)) for northern sites and populations and to validate the model against switchgrass data from diverse sites in this region. Three or 4 years of measured yield data were used from a ten field sites in North Dakota (ND), South Dakota (SD), and Nebraska (NE). ALMANAC realistically simulated mean annual switchgrass yields ranging from means of 4.75 to 9.13 Mg ha?1. Mean simulated yields were within 3%, 15%, and 9% of mean measured yields for NE, SD, and ND, respectively. Sensitivity analysis with temperature and rainfall demonstrated variable responses of potential yields depending on whether season duration, soil water, or soil nitrogen was the limiting factor at a site. ALMANAC shows promise as a useful tool for switchgrass evaluation and management in the northern Great Plains and in similar latitudes with low rainfall such as the East European Plain. 相似文献
13.
We investigated the effects of arbuscular mycorrhizal fungal (AMF) species richness and composition on plant community productivity and diversity, and whether AMF mediate plant species coexistence by promoting niche differentiation in phosphorus use. Our experiment manipulated AMF species richness and identity across a range of P conditions in tallgrass prairie mesocosms. We showed that increasing AMF richness promoted plant diversity and productivity, but that this AMF richness effect was small relative to the effects of individual AMF species. We found little support for AMF-facilitated complementarity in P use. Rather, the AMF richness effect appeared to be caused by the inclusion of particular diversity- and productivity-promoting AMF (a sampling effect). Furthermore, the identity of the diversity-promoting fungi changed with P environment, as did the relationship between the diversity-promoting and productivity-promoting benefits of AMF. Our results suggest that plant diversity and productivity are more responsive to AMF identity than to AMF diversity per se, and that AMF identity and P environment can interact in complex ways to alter community-level properties. 相似文献
14.
Phyllis H. Pischl Sean V. Burke Elizabeth M. Bach Melvin R. Duvall 《Ecology and evolution》2020,10(14):7602-7615
Native grasslands are one of the most endangered ecosystems in North America. In this study, we examined the ecological and evolutionary roles of endangered and threatened (e/t) grasses by establishing robust evolutionary relationships with other nonthreatened native and introduced grass species of the community. We hypothesized that the phylogenomic distribution of e/t species of grasses in Illinois would be phylogenetically clustered because closely related species would be vulnerable to the same threats and have similar requirements for survival. This study presents the first time a phylogeny based on complete plastome DNA of Poaceae was analyzed by phylogenetic diversity analysis. To avoid the disturbance of e/t populations, DNA was extracted from herbarium specimens. Next‐generation sequencing (NGS) techniques were used to sequence DNA of plastid genomes (plastomes). The resulting phylogenomic tree was analyzed by phylogenetic diversity metrics. The extracted DNA successfully produced complete plastomes demonstrating that herbarium material is a practical source of DNA for genomic studies. The phylogenomic tree was strongly supported and defined Dichanthelium as a separate clade from Panicum. The phylogenetic metrics revealed phylogenetic clustering of e/t species, confirming our hypothesis. 相似文献
15.
Xiaoli Cheng Yiqi Luo Bo Su Shiqiang Wan Dafeng Hui Quanfa Zhang 《Journal of Plant Ecology》2011,4(4):228
Aims Land use management affects plant carbon (C) supply and soil environments and hence alters soil nitrogen (N) dynamics, with consequent feedbacks to terrestrial ecosystem productivity. The objective of this study was to better identify mechanisms by which land-use management (clipping and shading) regulates soil N in a tallgrass prairie, OK, USA.Methods We conducted 1-year clipping and shading experiment to investigate the effects of changes in land-use management (soil microclimates, plant C substrate supply and microbial activity) on soil inorganic N (NH 4 + ? N and NO 3 ? ? N), net N mineralization and nitrification in a tallgrass prairie.Important findings Land-use management through clipping and/or shading significantly increased annual mean inorganic N, possibly due to lowered plant N uptake and decreased microbial N immobilization into biomass growth. Shading significantly increased annual mean mineralization rates (P < 0.05). Clipping slightly decreased annual mean N nitrification rates whereas shading significantly increased annual mean N nitrification rates. Soil microclimate significantly explained 36% of the variation in NO 3 ? ? N concentrations (P = 0.004). However, soil respiration, a predictor of plant C substrate supply and microbial activity, was negatively correlated with NH 4 + ? N concentrations (P = 0.0009), net N mineralization (P = 0.0037) and nitrification rates (P = 0.0028) across treatments. Our results suggest that change in C substrate supply and microbial activity under clipping and/or shading is a critical control on NH 4 + ? N, net N mineralization and nitrification rates, whereas clipping and shading-induced soil microclimate change can be important for NO 3 ? ? N variation in the tallgrass prairie. 相似文献
16.
Michael Reagon Carrie S Thurber Briana L Gross Kenneth M Olsen Yulin Jia Ana L Caicedo 《BMC evolutionary biology》2010,10(1):180
Background
Weedy rice (red rice), a conspecific weed of cultivated rice (Oryza sativa L.), is a significant problem throughout the world and an emerging threat in regions where it was previously absent. Despite belonging to the same species complex as domesticated rice and its wild relatives, the evolutionary origins of weedy rice remain unclear. We use genome-wide patterns of single nucleotide polymorphism (SNP) variation in a broad geographic sample of weedy, domesticated, and wild Oryza samples to infer the origin and demographic processes influencing U.S. weedy rice evolution. 相似文献17.
Within plant communities, niche‐based species sorting can occur among distinct soil patches (microsites), increasing coexistence and diversity. Microsite edges (microedges) may also offer additional niche space. Therefore, in recently abandoned croplands, which often have uniform soils caused by a legacy of tillage (soil homogenization), the plant species diversity of future restoration efforts may be reduced. We conducted an experiment during the early establishment phase (3 years) of a tallgrass prairie restoration on former cropland to determine if soil homogenization decreases species diversity and alters community composition, and if microedges offer additional niche space. Heterogeneous plots with sand‐ or woodchip‐enriched patches were compared to plots made up of the same components, but distributed homogeneously, and pits and mounds were compared to flat topsoil. Homogenization decreased diversity in flat topsoil plots relative to pit plots and increased diversity in woodchip plots. In both cases, the treatments with the lowest canopy cover and greatest plant density had the greatest diversity. Sand and topographic homogenization decreased diversity, but when a drought occurred in year two, the effect was suppressed in the sand treatment and magnified in the pit plots. Microedges had properties unique from adjacent patches. Overall, variability in heterogeneity–diversity relationships was affected by interactions with plant growth patterns and environmental conditions. Our results indicate that while the addition of contrasting soil microsites has the potential to promote increased diversity in grassland restoration on former cropland, the patch components and design must be optimized to achieve this management goal. 相似文献
18.
Contrasting patterns of lichen functional diversity and species richness across an elevation gradient 总被引:1,自引:0,他引:1 下载免费PDF全文
Claus Bässler Marc W. Cadotte Burkhard Beudert Christoph Heibl Markus Blaschke Johannes Heribert Bradtka Thomas Langbehn Silke Werth Jörg Müller 《Ecography》2016,39(7):689-698
Major environmental gradients co‐vary with elevation and have been a longstanding natural tool allowing ecologists to study global diversity patterns at smaller scales, and to make predictions about the consequences of climate change. These analyses have traditionally studied taxonomic diversity, but new functional diversity approaches may provide a deeper understanding of the ecological mechanisms driving species assembly. We examined lichen taxonomic and functional diversity patterns on 195 plots (200 m²) together with forest structure along an elevational gradient of 1000 m in a temperate low mountain range (Bohemian Forest, Germany). Along this elevation gradient temperature decreased and precipitation increased, two macroclimatic variables critical for lichens. Elevation was more important than forest structure in driving taxonomic and functional diversity. While species richness increased with elevation, functional diversity decreased and revealed that community patterns shift with elevation from random to clustered, reflecting selection for key shared traits. Higher elevations favored species with a complex growth form (which takes advantage of high moisture) and asexual reproductive mode (facilitating establishment under low temperature conditions). Our analysis highlights the need to examine alternative forms of diversity and opens the avenue for community predictions about climate change. For a regional scenario with increasing temperature and decreasing availability of moisture, we expect a loss of specialized species with a complex growth form and those with vegetative organs at higher elevations in low mountain ranges in Europe. 相似文献
19.
Abigail White Jeremie B. Fant Kayri Havens Mark Skinner Andrea T. Kramer 《Restoration Ecology》2018,26(4):605-611
Large quantities of diverse and appropriately adapted native plant germplasm are required to facilitate restoration globally, yet shortages can prevent restorations from attaining desired species diversity and structure. An extensive native plant industry has developed in the United States to help meet these demands, yet very little is known about its capacity to support germplasm needs. To better understand current capacity and germplasm availability, we report results of the first comprehensive and quantitative assessment of the native plant industry in the United States, which includes at least 841 vendors nationwide and the species they make available for restoration. We synthesized lists of commercially available species from native plant vendors across the United States and identified gaps in species availability to inform germplasm research, development, and production. Of the approximately 25,000 vascular plant taxa native to the United States, 26% are sold commercially, with growth form, conservation status, distribution, and taxonomy significantly predicting availability. In contrast, only 0.07% of approximately 3,000 native nonvascular taxa are sold commercially. We also investigated how demand for germplasm to support high‐quality restoration efforts is met by vendors in the Midwestern tallgrass prairie region, which has been targeted extensively by restoration efforts for decades. In this well‐developed native plant market, 74% of more than 1,000 target species are commercially available, often from vendors that advertise genetically diverse, locally sourced germplasm. We make recommendations to build on the successes of regional markets like the tallgrass prairie region, and to fill identified gaps, including investing in research to support production, ensuring more consistent and clear demand, and fostering regional collaboration. 相似文献
20.
Above-ground productivity of dominant freshwater, brackish, and salt-marsh species from the U.S. Gulf Coast was evaluated using both gas exchange techniques and harvest methods. Both techniques showed significant differences in productivity among the study species which represent major components of their respective communities. Estimates of net aerial primary productivity using the harvest method yielded 3683 g dw (dry weight) m?2yr?1 for Spartina alterniflora (tall), 2008 g dw m?2yr?1 for S. alterniflora (short), 3677 g dw m?yr?1 for S. patens and 1641 g dwm?yr?1 for Panicum hemitomon. Carbon balance estimated from gas exchange calculation yielded values approximately equivalent to a biomass accumulation of 6024 g dw m?2yr?1 for S. alterniflora (tall), 3047 g dw m?yr?1 for S. alterniflora (short), 5702 g dw m?yr?1 for S. patens, and 2912 g dm?yr?1 for P. hemitomon. The net aerial primary production was estimated to be approximately 61% of total productivity in S. alterniflora (tall-form) and 66%o of total productivity in short-form, 64% in S. patens and 56%) in P. hemitomon. The assimilation data also indicated that Spartina alterniflora and S. patens continue carbon fixation throughout the year while assimilation in Panicum hemitomon is absent due to lack of live leaves during the winter. Various aspects of harvest and gas exchange techniques are discussed. 相似文献