首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Horizontal gene transfer between bacteria and animals   总被引:1,自引:0,他引:1  
Horizontal gene transfer is increasingly described between bacteria and animals. Such transfers that are vertically inherited have the potential to influence the evolution of animals. One classic example is the transfer of DNA from mitochondria and chloroplasts to the nucleus after the acquisition of these organelles by eukaryotes. Even today, many of the described instances of bacteria-to-animal transfer occur as part of intimate relationships such as those of endosymbionts and their invertebrate hosts, particularly insects and nematodes, while numerous transfers are also found in asexual animals. Both of these observations are consistent with modern evolutionary theory, in particular the serial endosymbiotic theory and Muller's ratchet. Although it is tempting to suggest that these particular lifestyles promote horizontal gene transfer, it is difficult to ascertain given the nonrandom sampling of animal genome sequencing projects and the lack of a systematic analysis of animal genomes for such transfers.  相似文献   

2.
《Trends in biotechnology》2023,41(7):853-856
The recent discovery of the horizontal transfer of a toxin-neutralizing gene from plant to whitefly (Bemisia tabaci), a polyphagous insect, sparked a new area of study. In this forum, we discuss some potential biotechnological applications of this newly discovered knowledge in the coevolutionary arms race between plants and whitefly.  相似文献   

3.
Horizontal gene transfer and the origin of species: lessons from bacteria   总被引:31,自引:0,他引:31  
In bacteria, horizontal gene transfer (HGT) is widely recognized as the mechanism responsible for the widespread distribution of antibiotic resistance genes, gene clusters encoding biodegradative pathways and pathogenicity determinants. We propose that HGT is also responsible for speciation and sub-speciation in bacteria, and that HGT mechanisms exist in eukaryotes.  相似文献   

4.
5.
植物内生细菌在植物修复重金属污染土壤中的应用   总被引:1,自引:0,他引:1  
土壤重金属污染是威胁人群健康和经济可持续发展的重要环境问题。植物修复具有经济、环保等特点,已成为治理重金属污染土壤的重要技术。如何提高植物对重金属的抗性、促进植物生长是影响植物修复效率的关键之一。内生菌群-植物共生关系在此方面具有独特优势。其中,植物内生细菌可改善植物营养、降低植物病菌感染、影响酶活性,以及分泌激素、含铁载体和有机配位体等,进而提高超积累植物对重金属的吸收作用。本文综述了近年来国内外关于抗重金属植物内生细菌筛选与应用的研究进展,分析了内生细菌促进植物生长、增强植物对重金属抗性、促进重金属向茎叶转移的机理,阐述了植物内生细菌在重金属污染土壤修复中的应用前景与研究重点。  相似文献   

6.
Toxicity of chromium often impairs the remediation capacity of plants used in phytoremediation of polluted soils. In this study, we have identified Albizia lebbeck as a prospective chromium hyperaccumulator and examined cultivable diversity of endophytes present in chromium-treated and control saplings. High numbers (22–100%) of endophytic bacteria, isolated from root, stem, and leaf tissues, could tolerate elevated (1–3 mM) concentrations of K2CrO7. 16S rRNA gene sequence-based phylogenetic analysis showed that the 118 isolates obtained comprised of 17 operational taxonomic units affiliated with the proteobacterial genera Rhizobium (18%), Marinomonas (1%), Pseudomonas (16%), and Xanthomonas (7%) but also with members of Firmicutes genera, such as Bacillus (35%) and Salinococcus (3%). The novel isolates belonging to Salinococcus and Bacillus could tolerate high K2CrO7 concentrations (3 mM) and also showed elevated activity of chromate reductase. In addition, majority (%) of the endophytic isolates also showed production of indole-3-acetic acid. Taken together, our results indicate that the innate endophytic bacterial community assists plants in reducing heavy metal toxicity.  相似文献   

7.
Bacteria and phytoremediation: new uses for endophytic bacteria in plants   总被引:13,自引:0,他引:13  
Newman LA  Reynolds CM 《Trends in biotechnology》2005,23(1):6-8; discussion 8-9
The use of plants and bacterial to clean up environmental pollutants has gained momentum in past years. A limitation to phytoremediation of solvents has been toxicity of the compounds to plants, and the uncertainty as to the fate of many of the compounds. In a recent study, engineered endophytes have been shown to increase plant tolerance to toluene, and to decrease the transpiration of toluene to the atmosphere. This type of work has the potential to increase the use of phytoremediation by decreasing toxicity and increasing degradation of toxins.  相似文献   

8.
Phytoremediation of highly water soluble and volatile organic xenobiotics is often inefficient because plants do not completely degrade these compounds through their rhizospheres. This results in phytotoxicity and/or volatilization of chemicals through the leaves, which can cause additional environmental problems. We demonstrate that endophytic bacteria equipped with the appropriate degradation pathway improve the in planta degradation of toluene. We introduced the pTOM toluene-degradation plasmid of Burkholderia cepacia G4 into B. cepacia L.S.2.4, a natural endophyte of yellow lupine. After surface-sterilized lupine seeds were successfully inoculated with the recombinant strain, the engineered endophytic bacteria strongly degraded toluene, resulting in a marked decrease in its phytotoxicity, and a 50-70% reduction of its evapotranspiration through the leaves. This strategy promises to improve the efficiency of phytoremediating volatile organic contaminants.  相似文献   

9.
This review explores examples of horizontal genetic transfer in eukaryotes and prokaryotes. The best understood of these involves various conserved families of transposable elements, but examples of non-transposable-element-based movement of genes or gene clusters have also been identified in prokaryotic genomes. A unifying theme is the structural and DNA-sequence homology of transposable elements from widely unrelated genomes, suggesting evolutionarily conserved mechanisms for horizontal transfer. This is reinforced by the fundamental similarity in the enzymatic mechanisms of retro viral integration (by integrases) and of transposition (by transposases). The review deals with various types of horizontal transfer, the mechanisms available for such transfer, potential barriers, and the evolutionary significance of horizontal genetic transfer.  相似文献   

10.
11.
Aerobic heterotrophs were isolated from subsurface soil samples obtained from the U.S. Department of Energy's (DOE) Field Research Center (FRC) located at Oak Ridge, Tenn. The FRC represents a unique, extreme environment consisting of highly acidic soils with co-occurring heavy metals, radionuclides, and high nitrate concentrations. Four hundred isolates obtained from contaminated soil were assayed for heavy metal resistance, and a smaller subset was assayed for tolerance to uranium. The vast majority of the isolates were gram-positive bacteria and belonged to the high-G+C- and low-G+C-content genera Arthrobacter and Bacillus, respectively. Genomic DNA from a randomly chosen subset of 50 Pb-resistant (Pb(r)) isolates was amplified with PCR primers specific for P(IB)-type ATPases (i.e., pbrA/cadA/zntA). A total of 10 pbrA/cadA/zntA loci exhibited evidence of acquisition by horizontal gene transfer. A remarkable dissemination of the horizontally acquired P(IB)-type ATPases was supported by unusual DNA base compositions and phylogenetic incongruence. Numerous Pb(r) P(IB)-type ATPase-positive FRC isolates belonging to the genus Arthrobacter tolerated toxic concentrations of soluble U(VI) (UO(2)(2+)) at pH 4. These unrelated, yet synergistic, physiological traits observed in Arthrobacter isolates residing in the contaminated FRC subsurface may contribute to the survival of the organisms in such an extreme environment. This study is, to the best of our knowledge, the first study to report broad horizontal transfer of P(IB)-type ATPases in contaminated subsurface soils and is among the first studies to report uranium tolerance of aerobic heterotrophs obtained from the acidic subsurface at the DOE FRC.  相似文献   

12.
Conjugal transfer between soil bacterial population and microorganisms isolated from the rumen of herbivores from mercury-polluted area was investigated. The transfer of merA encoding mercury-resistance plasmids from soil bacteria Enterobacter cloacae and Enterococcus durans into two ruminal isolates Citrobacter freundii and Bacillus subtilis was observed. Approximately the same frequency of mobilization in mating experiments was observed for both Gram-negative (approximately 2.5 x 10(-8), transconjugants-to-recipient ratio) and Gram-positive (approximately 1.3 x 10(-8)) bacteria.  相似文献   

13.
Using soil bacteria to facilitate phytoremediation   总被引:4,自引:0,他引:4  
In the past twenty years or so, researchers have endeavored to utilize plants to facilitate the removal of both organic and inorganic contaminants from the environment, especially from soil. These phytoremediation approaches have come a long way in a short time. However, the majority of this work has been done under more controlled laboratory conditions and not in the field. As an adjunct to various phytoremediation strategies and as part of an effort to make this technology more efficacious, a number of scientists have begun to explore the possibility of using various soil bacteria together with plants. These bacteria include biodegradative bacteria, plant growth-promoting bacteria and bacteria that facilitate phytoremediation by other means. An overview of bacterially assisted phytoremediation is provided here for both organic and metallic contaminants, with the intent of providing some insight into how these bacteria aid phytoremediation so that future field studies might be facilitated.  相似文献   

14.
15.
Trypanosomes harbour a large number of structural and biochemical peculiarities. Kinetoplast DNA, mitochondrial RNA editing, the sequestration of glycolysis inside glycosomes and unique oxidative-stress protection mechanisms (to name but a few) are found only in the members of the order Kinetoplastida. Thus, it is not surprising that they have provoked much speculation about why and how such oddities have evolved in trypanosomes. However, the true reasons for their existence within the eukaryotic world are still far from clear. Here, Fred Opperdoes and Paul Michels argue that the trypanosome-specific evolution of novel processes and organization could only have been made possible by the acquisition of a large number of foreign genes, which entered a trypanosomatid ancestor through lateral gene transfer. Many different organisms must have served as donors. Some of them were viruses, and others were bacteria, such as cyanobacterial endosymbionts and non-phototrophic bacteria.  相似文献   

16.
Horizontal gene transfer and phylogenetics   总被引:6,自引:0,他引:6  
The initial analysis of complete genomes has suggested that horizontal gene transfer events are very frequent between microorganisms. This could potentially render the inference, and even the concept itself, of the organismal phylogeny impossible. However, a coherent phylogenetic pattern has recently emerged from an analysis of about a hundred genes, the so-called 'core', strongly suggesting that it is possible to infer the phylogeny of prokaryotes. Also, estimation of the frequency of horizontal gene transfers at the genome level in a phylogenetic context seems to indicate that it is rather low, although of significant biological impact. Nevertheless, it should be emphasized that the history of microorganisms cannot be properly represented by the phylogeny of the core, which represents only a tiny fraction of the genome. This history, even if horizontal gene transfers are rare, should be represented by a network surrounding the core phylogeny.  相似文献   

17.
Horizontal gene transfer in plants   总被引:1,自引:0,他引:1  
Horizontal gene transfer (HGT) has played a major role in bacterial evolution and is fairly common in certain unicellular eukaryotes. However, the prevalence and importance of HGT in the evolution of multicellular eukaryotes remain unclear. Recent studies indicate that plant mitochondrial genomes are unusually active in HGT relative to all other organellar and nuclear genomes of multicellular eukaryotes. Although little about the mechanisms of plant HGT is known, several studies have implicated parasitic plants as both donors and recipients of mitochondrial genes. Most cases uncovered thus far have involved a single transferred gene per species; however, recent work has uncovered a case of massive HGT in Amborella trichopoda involving acquisition of at least a few dozen and probably hundreds of foreign mitochondrial genes. These foreign genes came from multiple donors, primarily eudicots and mosses. This review will examine the implications of such massive transfer, the potential mechanisms and consequences of plant-to-plant mitochondrial HGT in general, as well as the limited evidence for HGT in plant chloroplast and nuclear genomes.  相似文献   

18.
19.

Background  

Horizontal gene transfer (HGT), the non-genealogical transfer of genetic material between different organisms, is considered a potentially important mechanism of genome evolution in eukaryotes. Using phylogenomic analyses of expressed sequence tag (EST) data generated from a clonal cell line of a free living dinoflagellate alga Karenia brevis, we investigated the impact of HGT on genome evolution in unicellular chromalveolate protists.  相似文献   

20.
Horizontal gene transfer (HGT) describes the transmission of genetic material across species boundaries. HGT often occurs in microbic and eukaryotic genomes. However, the pathways by which HGTs occur in multicellular eukaryotes, especially in plants, are not well understood. We systematically summarized more than ten possible pathways for HGT. The intimate contact which frequently occurs in parasitism, symbiosis, pathogen, epiphyte, entophyte, and grafting interactions could promote HGTs between two species. Besides these direct transfer methods, genes can be exchanged with a vector as a bridge: possible vectors include pollen, fungi, bacteria, viruses, viroids, plasmids, transposons, and insects. HGT, especially when involving horizontal transfer of transposable elements, is recognized as a significant force propelling genomic variation and biological innovation, playing an important functional and evolutionary role in both eukaryotic and prokaryotic genomes. We proposed possible mechanisms by which HGTs can occur, which is useful in understanding the genetic information exchange among distant species or distant cellular components.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号