首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
N-terminal deletion mutants of Na,K-ATPase alpha 1 isoforms initiating translation at Met34 (alpha 1T1) or at Met43 (alpha 1T2) were expressed in X. laevis oocytes. Compared to beta 3 cRNA injected controls, the co-expression of alpha 1wt, alpha 1T1, alpha 1T2 with beta 3 subunits results in a 2- to 3-fold increase of ouabain binding sites, parallelled by a concomitant increase in Na,K-pump current. The apparent K1/2 for potassium activation of the alpha 1T2/beta 3 Na,K-pumps is significantly higher than that of the alpha 1wt/beta 3 or alpha 1T1/beta 3 Na,K-pumps expressed at the cell surface. Total deletion of the lysine-rich N-terminal domain thus allows the expression of active Na,K-pump but with distinct cation transport properties.  相似文献   

2.
The role of multiple isoforms for the alpha subunit of Na,K-ATPase is essentially unknown. To examine the functional properties of the three alpha subunit isoforms, we developed a system for the heterologous expression of Na,K-ATPase in which the enzymatic activity of each isoform can be independently analyzed. Ouabain-resistant forms of the rat alpha 2 and alpha 3 subunits were constructed by site-directed mutagenesis of amino acid residues at the extracellular borders of the first and second transmembrane domains (L111R and N122D for alpha 2 and Q108R and N119D for alpha 3). cDNAs encoding the rat alpha 1 subunit, which is naturally ouabain-resistant, and rat alpha 2 and alpha 3, which were mutated to ouabain resistance (designated rat alpha 2* and rat alpha 3*, respectively) were cloned into an expression vector and transfected into HeLa cells. Resistant clones were isolated and analyzed for ouabain-inhibitable ATPase activity in the presence of 1 microM ouabain, which inhibits the endogenous Na,K-ATPase present in HeLa cells (I50 approximately equal to 10 nM). The remaining activity corresponds to Na,K-ATPase molecules containing the transfected rat alpha 1, rat alpha 2*, or rat alpha 3* isoforms. Utilizing this system, we examined Na+, K+, and ATP dependence of enzyme activity. Na,K-ATPase molecules containing rat alpha 1 and rat alpha 2* exhibited a 2-3-fold higher apparent affinity for Na+ than those containing rat alpha 3* (apparent KNa+ (millimolar): rat alpha 1 = 1.15 +/- 0.13; rat alpha 2* = 1.05 +/- 0.11; rat alpha 3* = 3.08 +/- 0.06). Additionally, rat alpha 3* had a slightly higher apparent affinity for ATP (in the millimolar concentration range) compared with rat alpha 1 or rat alpha 2* (apparent K0.5 (millimolar): rat alpha 1 = 0.43 +/- 0.12; rat alpha 2* = 0.54 +/- 0.15; rat alpha 3* = 0.21 +/- 0.04) and all three isoforms has similar apparent affinities for K+ (apparent KK+: rat alpha 1 = 0.45 +/- 0.01; rat alpha 2* = 0.43 +/- 0.004; rat alpha 3* = 0.27 +/- 0.01). This study represents the first comparison of the functional properties of the three Na,K-ATPase alpha isoforms expressed in the same cell type.  相似文献   

3.
Modulation of the Na,K-pump function by beta subunit isoforms   总被引:4,自引:0,他引:4       下载免费PDF全文
To study the role of the Na,K-ATPase beta subunit in the ion transport activity, we have coexpressed the Bufo alpha 1 subunit (alpha 1) with three different isotypes of beta subunits, the Bufo Na,K-ATPase beta 1 (beta 1NaK) or beta 3 (beta 3NaK) subunit or the beta subunit of the rabbit gastric H,K-ATPase (beta HK), by cRNA injection in Xenopus oocyte. We studied the K+ activation kinetics by measuring the Na,K- pump current induced by external K+ under voltage clamp conditions. The endogenous oocyte Na,K-ATPase was selectively inhibited, taking advantage of the large difference in ouabain sensitivity between Xenopus and Bufo Na,K pumps. The K+ half-activation constant (K1/2) was higher in the alpha 1 beta 3NaK than in the alpha 1 beta 1NaK groups in the presence of external Na+, but there was no significant difference in the absence of external Na+. Association of alpha 1 and beta HK subunits produced active Na,K pumps with a much lower apparent affinity for K+ both in the presence and in the absence of external Na+. The voltage dependence of the K1/2 for external K+ was similar with the three beta subunits. Our results indicate that the beta subunit has a significant influence on the ion transport activity of the Na,K pump. The small structural differences between the beta 1NaK and beta 3NaK subunits results in a difference of the apparent affinity for K+ that is measurable only in the presence of external Na+, and thus appears not to be directly related to the K+ binding site. In contrast, association of an alpha 1 subunit with a beta HK subunit results in a Na,K pump in which the K+ binding or translocating mechanisms are altered since the apparent affinity for external K+ is affected even in the absence of external Na+.  相似文献   

4.
The cardiac glycoside ouabain inhibits Na,K-ATPase by binding to the alpha subunit. In a highly ouabain resistant clone from the MDCK cell line, we have found two alleles of the alpha subunit in which the cysteine, present in the wild-type first transmembrane segment, is replaced by a tyrosine (Y) or a phenylalanine (F). We have studied the kinetics of ouabain inhibition by measuring the current generated by the Na,K-pump in Xenopus oocytes injected with wild-type and mutated alpha 1 and wild-type beta 1 subunit cRNAs. When these mutations, alpha 1C113Y and alpha 1C113F [according to the published sequence [Verrey et al. (1989) Am. J. Physiol., 256, F1034] were introduced in the alpha 1 subunit of the Na,K-ATPase from Xenopus laevis, the inhibition constant (Ki) of ouabain increased greater than 1000-fold compared with wild-type. A more conservative mutation, serine alpha 1C113S did not change the Ki. We observed that the decreased affinity for ouabain was mainly due to a faster dissociation, but probably also to a slower association. Thus we propose that an amino acid residue of the first transmembrane segment located deep in the plasma membrane participates in the structure and the function of the ouabain binding site.  相似文献   

5.
Na,K-ATPase and H,K-ATPase are the only members of the P-type ATPases in which a glycosylated beta-subunit is part of the purified active enzyme. In this study, we have followed the synthesis and the posttranslational processing of the beta-subunit of H,K-ATPase (beta HK) in Xenopus oocytes injected with beta HK cRNA and have tested whether it can act as a surrogate for the beta-subunit of Na,K-ATPase (beta NaK) to support the functional expression of Na,K-pumps. In Xenopus oocytes, beta HK is processed from an Endo H-sensitive 51-kDa coreglycosylated form to an Endo H-resistant 71-kDa fully glycosylated form. Similar to beta NaK, beta HK can stabilize and increase the trypsin resistance of alpha-subunits of Na,K-ATPase (alpha NaK). Finally, expression of beta HK together with alpha NaK leads to an increased number of ouabain binding sites at the plasma membrane accompanied by an increased Rb+ uptake and Na,K-pump current. Our data suggest that beta HK, similar to beta NaK, can assemble to alpha NaK, support the structural maturation and the intracellular transport of catalytic alpha NaK, and ultimately form active alpha NaK-beta HK complexes with Na,K-pump transport properties.  相似文献   

6.
In human heart failure, disturbances in Ca2+ homeostasis are well known but the fate of the Na,K-ATPase isoforms (alpha1beta1, alpha2beta1 and alpha3beta1), the receptors for cardiac glycosides, still remains under study. Microsomes have been purified from non-failing human hearts. As judged by the sensitivities of Na,K-ATPase activity to ouabain (IC50 values: 7.0 +/- 2.5 and 81 +/- 11 nM), 3H-ouabain-binding measurements at equilibrium with and without 10 mM K+ and by a biphasic ouabain dissociation process, at least two finctionally active Na,K-ATPase isozymes coexist in normal human hearts. These are demonstrated as a very high- and a high affinity ouabain-binding site. The KD values are 3.6 +/- 1.6 nM and 17 +/- 6 nM, respectively. The two dissociation rate constants are 42 x 10(4) min(-1) and 360 x 10(-4) min(-1). Addition of 10 mM K+ ions shifted the respective KD values for ouabain from 3.6 +/- 1.6 to 20 +/- 5 nM and from 17 +/- 6 nM to 125 +/- 25 nM, respectively. The isozymes involved are identified by comparing these three pharmacological parameters to those of each alpha/beta-isozyme separately expressed in Xenopus oocytes (9). In human heart, the very high affinity site for ouabain is the alpha1beta1 dimer and the high affinity site is alpha2beta1.  相似文献   

7.
Na+/K+-ATPase during diabetes may be regulated by synthesis of its alpha and beta subunits and by changes in membrane fluidity and lipid composition. As these mechanisms were unknown in liver, we studied in rats the effect of streptozotocin-induced diabetes on liver Na+/K+-ATPase. We then evaluated whether fish oil treatment prevented the diabetes-induced changes. Diabetes mellitus induced an increased Na+/K+-ATPase activity and an enhanced expression of the beta1 subunit; there was no change in the amount of the alpha1 and beta3 isoenzymes. Biphasic ouabain inhibition curves were obtained for diabetic groups indicating the presence of low and high affinity sites. No alpha2 and alpha3 isoenzymes could be detected. Diabetes mellitus led to a decrease in membrane fluidity and a change in membrane lipid composition. The diabetes-induced changes are not prevented by fish oil treatment. The results suggest that the increase of Na+/K+-ATPase activity can be associated with the enhanced expression of the beta1 subunit in the diabetic state, but cannot be attributed to changes in membrane fluidity as typically this enzyme will increase in response to an enhancement of membrane fluidity. The presence of a high-affinity site for ouabain (IC50 = 10-7 M) could be explained by the presence of (alphabeta)2 diprotomeric structure of Na+/K+-ATPase or an as yet unknown alpha subunit isoform that may exist in diabetes mellitus. These stimulations might be related, in part, to the modification of fatty acid content during diabetes.  相似文献   

8.
Acetylcholine (ACh) hyperpolarized the rat diaphragm muscle fibers by 4.5 +/- 0.8 mV (K0.5 = = 36 +/- 6 nmol/l). The AC-induced hyperpolarization was blocked by d-tubocurarine and ouabain in nanomolar concentrations. This effect of ACh was not observed in cultured C2C12 muscle cells and in Xenopus oocytes with expressed embryonic mouse muscle nicotinic acetylcholine receptors (nAChR) or with neuronal alpha 4 beta 2 nAChR. In membrane preparations from the Torpedo californica electric organ, containing both nAChR and Na, K-ATPase, 10 nmol/l ouabain modulated the binding kinetics of the cholinergic ligand dansyl-C6-choline to the nAChR. These results suggest that in-sensitive alpha 2 isoform) and nAChR in a state with high affinity to Ach and d-tubocurarine may form a functional complex in which binding of ACh to nAchR is coupled to activation of the Na, K-ATPase.  相似文献   

9.
A cDNA for a chimeric alpha subunit of the (Na,K)ATPase was constructed and expressed in Xenopus oocytes in order to elucidate structural features involved in ouabain sensitivity. A chimeric alpha subunit, in which the N-terminal 165 amino acid sequence of ouabain-resistant rat alpha subunit, including the first two transmembrane segments (M1 and M2), was replaced by a sequence from the corresponding region of ouabain-sensitive Torpedo alpha subunit, was ouabain-sensitive, suggesting that the M1-M2 junction is a site responsible for ouabain sensitivity of the (Na,K)ATPase.  相似文献   

10.
We transferred murine NIH 3T3 metaphase chromosomes into monkey CV-1 cells to investigate the different ouabain sensitivities of rodent and primate cells. In 16 ouabain-resistant transferents, the mouse Na,K-ATPase alpha 1 subunit gene was detected, suggesting that structural differences between the rodent and primate alpha 1 subunits determine the different ouabain sensitivities.  相似文献   

11.
The prostate gland is unique in its ability to secrete large amounts of zinc and citrate, suggesting that it employs unusual transport mechanisms. Intracellular ionic homeostasis in prostate is likely to be mediated by the Na,K-pump, yet there have been few studies of its regulation in this tissue. Accordingly, we explored the expression of the Na,K-pump in PC3 cells, an established cell line of human prostate epithelial cells. Total RNA from confluent monolayers of PC3 cells was isolated, reverse transcribed, and the resulting complementary DNA was amplified by polymerase chain reaction using primers specific for each of the pump's constituent subunits. The amplification revealed a complex pattern of Na,K-pump expression, with detection of mRNAs encoding the alpha1-, alpha3-, alpha4-, betal-, beta2- and beta3-isoforms. We next examined the effect on pump activity of prolactin, an important mediator of cell proliferation in prostate cancer. Monolayers exposed to 10 nM prolactin for 24 hr revealed an inhibition of 40% in ouabain-sensitive 86Rb+ uptake, a sensitive measure of pump-mediated transport. These experiments suggest that the unique transport properties of prostate may depend, at least in part, on a complicated pattern of Na,K-pump expression and regulation.  相似文献   

12.
Na,K-ATPase plays a crucial role in cellular ion homeostasis and is the pharmacological receptor for digitalis in man. Nine different human Na,K-ATPase isozymes, composed of 3 alpha and beta isoforms, were expressed in Xenopus oocytes and were analyzed for their transport and pharmacological properties. According to ouabain binding and K(+)-activated pump current measurements, all human isozymes are functional but differ in their turnover rates depending on the alpha isoform. On the other hand, variations in external K(+) activation are determined by a cooperative interaction mechanism between alpha and beta isoforms with alpha2-beta2 complexes having the lowest apparent K(+) affinity. alpha Isoforms influence the apparent internal Na(+) affinity in the order alpha1 > alpha2 > alpha3 and the voltage dependence in the order alpha2 > alpha1 > alpha3. All human Na,K-ATPase isozymes have a similar, high affinity for ouabain. However, alpha2-beta isozymes exhibit more rapid ouabain association as well as dissociation rate constants than alpha1-beta and alpha3-beta isozymes. Finally, isoform-specific differences exist in the K(+)/ouabain antagonism which may protect alpha1 but not alpha2 or alpha3 from digitalis inhibition at physiological K(+) levels. In conclusion, our study reveals several new functional characteristics of human Na,K-ATPase isozymes which help to better understand their role in ion homeostasis in different tissues and in digitalis action and toxicity.  相似文献   

13.
The primary objective of this study was to examine the functional role of the Na,K-ATPase alpha 1 isoform in the regulation of cardiac contractility. Previous studies using knock-out mice showed that the hearts of animals lacking one copy of the alpha 1 or alpha 2 isoform gene exhibit opposite phenotypes. Hearts from alpha 2(+/-) animals are hypercontractile, whereas those of the alpha 1(+/-) animals are hypocontractile. The cardiac phenotype of the alpha 1(+/-) animals was unexpected as other studies suggest that inhibition of either isoform increases contraction. To help resolve this difference, we have used genetically engineered knock-in mice expressing a ouabain-sensitive alpha 1 isoform and a ouabain-resistant alpha 2 isoform of the Na,K-ATPase, and we analyzed cardiac contractility following selective inhibition of the alpha1 isoform by ouabain. Administration of ouabain to these animals and to isolated heart preparations selectively inhibits only the activity of the alpha 1 isoform without affecting the activity of the alpha 2 isoform. Low concentrations of ouabain resulted in positive cardiac inotropy in both isolated hearts and intact animals expressing the modified alpha 1 and alpha 2 isoforms. Pretreatment with 10 microm KB-R7943, which inhibits the reverse mode of the Na/Ca exchanger, abolished the cardiotonic effects of ouabain in isolated wild type and knock-in hearts. Immunoprecipitation analysis demonstrated co-localization of the alpha1 isoform and the Na/Ca exchanger in cardiac sarcolemma. The alpha 1 isoform co-immunoprecipitated with the Na/Ca exchanger and vice versa. These results demonstrate that the alpha 1 isoform regulates cardiac contractility, and that both the alpha 1 and alpha 2 isoforms are functionally and physically coupled with the Na/Ca exchanger in heart.  相似文献   

14.
The Na,K-ATPase generates electrochemical gradients that are used to drive the coupled transport of many ions and nutrients across the plasma membrane. The functional enzyme is comprised of an alpha and beta subunit and families of isoforms for both subunits exist. Recent studies in this laboratory have identified a biological role for the Na,K-ATPase alpha4 isoform in sperm motility. Here we further investigate the role of the Na,K-ATPase carrying the alpha4 isoform, showing again that ouabain eliminates sperm motility, and in addition, that nigericin, a H+/K+ ionophore, and monensin, a H+/Na+ ionophore, reinitiate motility. These data, along with the observation that the K+ ionophore valinomycin has no effect on the motility of ouabain-inhibited sperm, suggest that ouabain may change intracellular H+ levels in a manner that is incompatible with sperm motility. We have also localized NHE1 and NHE5, known regulators of intracellular H+ content, to the same region of the sperm as the Na,K-ATPase alpha4 isoform. These data highlight the important role of the Na,K-ATPase alpha4 isoform in regulating intracellular H(+) levels, and provide evidence suggesting the involvement of the Na+/H+ exchanger, which is critical for maintaining normal sperm motility.  相似文献   

15.
It has recently been shown that replacement of the border residues (Gln-111 and Asn-122) of the H1-H2 extracellular domain of the sheep Na,K-ATPase alpha subunit with the charged amino acids Arg and Asp generates a ouabain-resistant enzyme (Price, E. M. and Lingrel, J. B. (1988) Biochemistry 27, 8400-8408). In order to further study structure-function relationships in Na,K-ATPase, six additional mutations have been made at these border positions. Two of these mutants were single amino acid substitutions (Gln-111 to Arg or Asn-122 to Asp). These mutations change one or the other H1-H2 border residue to a charged amino acid. The remaining substitutions were double mutants in which both of the H1-H2 border residues were simultaneously changed to charged amino acids. Changes were made which introduced either positively charged amino acids (Lys at positions 111 and 122), negatively charged amino acids (Glu at positions 111 and 122) or oppositely charged amino acids (Lys at position 111 and Glu at 122; Asp at position 111 and Arg at 122) at the borders of the H1-H2 extracellular domain. HeLa cells transfected with any of these sheep Na,K-ATPase alpha subunit mutants were able to grow in concentrations of ouabain that were toxic to untransfected cells or cells transfected with the wild type sheep alpha subunit. Crude membranes isolated from the transfectants were analyzed for ouabain inhibitable Na,K-ATPase activity. All of the transfectants contained a relatively ouabain-resistant component of enzyme activity, with the ouabain I50 values ranging from 4 x 10(-3) M to 1 x 10(-6) M. The most resistant enzyme was the double mutant that contained Asp at position 111 and Arg at 122, whereas the least resistant were the enzymes containing the single amino acid substitutions. There was no correlation between the type of charged amino acid present at the border position and the degree of ouabain resistance. These data demonstrate the functional importance, in terms of ouabain binding, of the border positions of the H1-H2 extracellular domain of the Na,K-ATPase alpha subunit.  相似文献   

16.
Expression of Na,K-ATPase catalytic alpha isoform (alpha 1, alpha 2, and alpha 3) and beta subunit genes in rodent muscle was investigated using the murine C2C12 myogenic cell line. RNA blot analyses of myoblasts revealed expression primarily of the alpha 1 mRNA and low levels of alpha 2 mRNA. Fusion of the proliferating myoblasts to form myotubes was accompanied by an approximate 12-fold induction of the alpha 2 mRNA. In contrast, expression of alpha 1 mRNA remained constant throughout myogenesis. The alpha 3 mRNA was not detected in either myoblasts or myotubes. The beta mRNA abundance also increased 2-3-fold during myotube formation. In rodent tissues, low and high affinity cardiac glycoside (e.g. ouabain) receptors have been shown to be associated with the Na,K-ATPase catalytic alpha 1 and alpha 2 isoform subunits, respectively. The existence of these two functional classes of Na,K-ATPase in myoblasts and myotubes correlated with the biphasic ouabain inhibition of Na,K-ATPase activity. Confluent myoblasts expressed primarily the alpha 1 isozyme (IC50 = 3.6 X 10(-5) M; 95% of total activity) and lesser amounts of the alpha 2 isozyme (IC50 = 1.1 X 10(-7) M; 5% of total activity). In contrast, the myotubes showed significant levels of the alpha 1 isozyme (IC50 = 4.0 X 10(-5) M; 68% of total activity) and, in addition, showed a 6-fold increase in the relative levels of the alpha 2 isozyme (IC50 = 1.1 X 10(-7) M; 32% of total activity). To quantitate further the expression of the high affinity, ouabain-sensitive alpha 2 isozyme, a whole cell [3H]ouabain-binding assay was used. Results revealed that myotubes have an approximately 6-fold greater concentration of [3H]ouabain-binding sites than myoblasts with an apparent dissociation constant (Kd) of 1.4 X 10(-7) M. The results indicate that muscle cells can express multiple isozymes of Na,K-ATPase and that expression of the alpha 2 isozyme is developmentally regulated during myogenesis.  相似文献   

17.
To analyze determinants within the Na,K-ATPase alpha subunit that contribute to differential ouabain sensitivity, we constructed and expressed a panel of chimeric cDNA molecules between ouabain-resistant and ouabain-sensitive alpha subunit cDNAs. When introduced into ouabain-sensitive monkey CV-1 cells, ouabain-resistant rat alpha 1 subunit cDNA and chimeras in which the 5' end of ouabain-sensitive human alpha 1 or rat alpha 2 subunit cDNA was replaced by the 5' end of rat alpha 1 subunit cDNA conferred resistance to 100 microM ouabain. Monkey cells transfected with the reciprocal chimeras were unable to survive selection in 1 microM ouabain. Rat alpha 2 subunit cDNA and a chimera in which the 5' end of rat alpha 1 subunit cDNA was replaced by the 5' end of rat alpha 2 subunit cDNA conferred resistance to 0.5 microM ouabain. These results suggest that determinants of ouabain resistance reside within the amino-terminal portions of the rat alpha 1 and alpha 2 subunits. Expression of chimeric alpha subunit cDNAs should prove useful for elucidating the structural basis of Na,K-ATPase function.  相似文献   

18.
Dahl JP  Binda A  Canfield VA  Levenson R 《Biochemistry》2000,39(48):14877-14883
We have examined the relationship between Na,K-ATPase and FGF-2 secretion in transfected primate cells. FGF-2 lacks a classic hydrophobic export signal, and the mechanisms mediating its secretion are unknown. To monitor secretion, a FLAG epitope tag was inserted into the carboxyl terminus of the 18 kDa form of human FGF-2, and the construct was transfected into either human HEK 293 or monkey CV-1 cells. Exported FGF-2 was detected in the culture medium using the FLAG-specific monoclonal antibody M2. FGF-2 secretion from HEK 293 or CV-1 cells was linear over time and sensitive to inhibition by the cardiac glycoside ouabain, a specific inhibitor of the Na,K-ATPase. In contrast, the secretion of FGF-8 (an FGF family member that contains a hydrophobic secretory signal) was not inhibited by treatment of HEK 293 or CV-1 cells with ouabain. FGF-2 secretion was also assayed in CV-1 cells expressing the naturally ouabain-resistant rodent Na,K-ATPase alpha1 subunit. In cells expressing the rodent alpha1 subunit, FGF-2 secretion was unaffected by high levels of ouabain, indicating that the rodent alpha1 subunit was capable of rescuing ouabain-inhibitable FGF-2 export. Expression of ouabain-resistant mutants of the rodent alpha2 and alpha3 subunits, or the naturally ouabain-resistant rodent alpha4 subunit, also supported FGF-2 secretion in ouabain-treated cells. Taken together, our studies are consistent with the idea that the Na,K-ATPase plays a prominent role in regulating FGF-2 secretion, although none of the alpha subunit isoforms exhibited specificity with regard to FGF-2 export.  相似文献   

19.
Functionally active preparations of Na+,K(+)-ATPase isozymes from calf brain that contain catalytic subunits of three types (alpha 1, alpha 2, and alpha 3) were obtained using two approaches: a selective removal of contaminating proteins by the Jorgensen method and a selective solubilization of the enzyme with subsequent reconstitution of the membrane structure by the Esmann method. The ouabain inhibition constants were determined for the isozymes. The real isozyme composition of the Na+ pump from the grey matter containing glial cells and the brain stem containing neurons was determined. The plasma membranes of glial cells were shown to contain mainly Na+,K(+)-ATPase of the alpha 1 beta 1 type and minor amounts of isozymes of the alpha 2 beta 2 (beta 1) and the alpha 3 beta 1 (beta 2) type. The axolemma contains alpha 2 beta 1- and alpha 3 beta 1 isozymes. A carbohydrate analysis indicated that alpha 1 beta 1 enzyme preparations from the brain grey matter substantially differ from the renal enzymes of the same composition in the glycosylation of the beta 1 isoform. An enhanced sensitivity of the alpha 3 catalytic subunit of Na+,K(+)-ATPase from neurons to endogenous proteolysis was found. A point of specific proteolysis in the amino acid sequence PNDNR492 decreases Y493 was localized (residue numbering is that of the human alpha 3 subunit). This sequence corresponds to one of the regions of the greatest variability in alpha 1, alpha 2, alpha 3, and alpha 4-subunits, but at the same time, it is characteristic of the alpha 3 isoforms of various species. The presence of the beta 3 isoform of tubulin (cytoskeletal protein) was found for the first time in the high-molecular-mass Na+,K(+)-ATPase alpha 3 beta 1 isozyme complex isolated from the axolemma of brain stem neurons, and its binding to the alpha 3 catalytic subunit was shown.  相似文献   

20.
The purpose of this study was to investigate the hypothesis that muscle Na+-K+-ATPase activity is directly related to Na+-K+-ATPase content and the content of the alpha2-catalytic isoform in muscles of different fiber-type composition. To investigate this hypothesis, tissue was sampled from soleus (Sol), red gastrocnemius (RG), white gastrocnemius (WG), and extensor digitorum longus (EDL) muscles at rest from 38 male Wistar rats weighing 413 +/- 6.0 g (mean +/- SE). Na+-K+-ATPase activity was determined in homogenates (Hom) and isolated crude membranes (CM) by the regenerating ouabain-inhibitable hydrolytic activity assay (ATPase) and the 3-O-methylfluorescein K+-stimulated phosphatase (3-O-MFPase) assay in vitro. In addition, Na+-K+-ATPase content (Bmax) and the distribution of alpha1-, alpha2-, beta1-, and beta2-isoforms were determined by [3H]ouabain binding and Western blot, respectively. For the ATPase assay, differences (P < 0.05) in enzyme activity between muscles were observed in Hom (EDL > WG) and in CM (Sol > EDL = WG). For the 3-O-MFPase assay, differences (P < 0.05) were also found for Hom (Sol > RG = EDL > WG) and CM (Sol = WG > RG). For Bmax, differences in the order of RG = EDL > Sol = WG (P < 0.05) were observed. Isoform distribution was similar between Hom and CM and indicated in CM, a greater density (P < 0.05) of alpha1 in Sol than WG and EDL (P < 0.05), but more equal distribution of alpha2 between muscles. The beta1 was greater (P < 0.05) in Sol and RG, and the beta2 was greater in EDL and WG (P < 0.05). Over all muscles, the correlation (r) between Hom 3-O-MFPase and Bmax was 0.45 (P < 0.05) and between Hom alpha2 and Bmax, 0.59 (P < 0.05). The alpha1 distribution correlated to Hom 3-O-MFPase (r = 0.79, P < 0.05) CM ATPase (r = 0.69, P < 0.005) and CM 3-O-MFPase activity (r = 0.32, P < 0.05). The alpha2 distribution was not correlated with any of the Na+-K+-ATPase activity measurements. The results indicate generally poor relationships between activity and total pump content and alpha2 isoform content of the Na+-K+-ATPase. Several factors, including the type of preparation and the type of assay, appear important in this regard.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号