首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Neuron L7 of the marine mollusc, Aplysia californica, is unique in that it innervates five different target tissues in the animal. We show that when L7 is grown in vitro with two of these targets, that is, muscle cells isolated from the auricle or the gill vein, newly formed L7 neurites contact the muscle cells. Chemical synapses are formed since intracellular stimulation of L7 elicits contraction of individual muscle cells. Interestingly, auricle muscles are also innervated by neuron RBhe and co-cultures of RBhe and auricle muscle cells also exhibit synapse formation. To explore the molecular basis for synaptogenesis between L7 and its targets, it would be useful to quantify the extent of synapse formation in vitro, that is, to determine how many muscle cells can be innervated by a single L7. We show that this can be attained by staining for cytochrome oxidase activity. Cultures of auricle and gill vein muscles were exposed to the appropriate neurotransmitter in order to elicit contraction. The cells were then fixed and stained. In both cases, only cells that contracted were stained and electron microscopy showed reaction product associated with the cristae of mitochondria. When this procedure was applied to cultures of L7 and muscle cells, 38 ± 2.8% (S.E.M.;n=7) of the cells on the neurites were stained and therefore responded to L7 stimulation. Thus, part of the L7-RBhe circuit can be assembled in vitro and the extent of synaptogenesis can be accurately quantitated.  相似文献   

2.
Juvenile androgen treatment during developmental synapse elimination changes the pattern of innervation in the adult levator ani (LA), an androgen-sensitive muscle (Jordan, Letinsky, and Arnold, 1989b). Most notably, such adult muscles contain an unusually high number of muscle fibers that are innervated by two or more axons indicating that these fibers are multiply innervated. Juvenile androgen treatment also increases the adult level of preterminal branching, the number of junctional sites per adult fiber, and the size of adult LA muscle fibers and motoneurons in the spinal nucleus of the bulbocavernosus (SNB). The present study was designed to determine when in development androgen treatment is most effective in maintaining multiple innervation in adulthood and whether there are different critical periods for the different effects of juvenile androgen treatment. Male rats were castrated on 7, 21, or 34 days after birth (roughly corresponding to the beginning, middle, and end of synapse elimination in the LA muscle) and treated daily with testosterone propionate for the next 2 weeks. All rats were sacrificed at 9 weeks and their spinal cords and LA muscles were stained and analyzed. Only during the first treatment period (7-20) did androgen treatment result in increased levels of multiple innervation at 9 weeks. During this period, androgen also increased the number of junctional sites per fiber and the size of SNB somata but did not influence the adult level of preterminal branching or the diameter of adult LA muscle fibers. Androgen treatment during the two later periods increased the level of preterminal branching and the size of LA muscle fibers without influencing the level of multiple innervation.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

3.
Regeneration of motor systems involves reestablishment of central control networks, reinnervation of muscle targets by motoneurons, and reconnection of neuromodulatory circuits. Still, how these processes are integrated as motor function is restored during regeneration remains ill defined. Here, we examined the mechanisms underlying motoneuronal regeneration of neuromuscular synapses related to feeding movements in the pulmonate snail Helisoma trivolvis. Neurons B19 and B110, although activated during different phases of the feeding pattern, innervate similar sets of muscles. However, the percentage of muscle fibers innervated, the efficacy of excitatory junction potentials, and the strength of muscle contractions were different for each cell's specific connections. After peripheral nerve crush, a sequence of transient electrical and chemical connections formed centrally within the buccal ganglia. Neuromuscular synapse regeneration involved a three-phase process: the emergence of spontaneous synaptic transmission (P1), the acquisition of evoked potentials of weak efficacy (P2), and the establishment of functional reinnervation (P3). Differential synaptic efficacy at muscle contacts was recapitulated in cell culture. Differences in motoneuronal presynaptic properties (i.e., quantal content) were the basis of disparate neuromuscular synapse function, suggesting a role for retrograde target influences. We propose a homeostatic model of molluscan motor system regeneration. This model has three restoration events: (1) transient central synaptogenesis during axonal outgrowth, (2) intermotoneuronal inhibitory synaptogenesis during initial neuromuscular synapse formation, and (3) target-dependent regulation of neuromuscular junction formation.  相似文献   

4.
To identify mechanisms that regulate the deposition of the junctional basal lamina during synaptogenesis, immunocytochemical experiments were carried out on cultured nerve and muscle cells derived from Xenopus laevis embryos. In some experiments successive observations were made on individual muscle cells after pulse-labeling with a fluorescent monoclonal antibody specific for a basal lamina proteoglycan. In others, old and new proteoglycan molecules were differentially labeled with antibody conjugated to contrasting fluorochromes. These observations revealed that surface deposits of antibody-labeled proteoglycan remain morphologically stable for several days on developing muscle cells. Over the same period, however, new sites of proteoglycan accumulation formed that contained primarily those antigenic sites recently exposed at the cell surface. When muscle cells became innervated by cholinergic neurites, new proteoglycan accumulations were induced at the developing neuromuscular junctions, and these too were composed almost exclusively of recently deposited antigen. In older muscle cultures, where many cells possessed relatively high background concentrations of antigen over their surfaces, developing neuromuscular junctions initially showed a markedly reduced proteoglycan site-density compared with the adjacent, extrajunctional muscle surface. Much of this perineural region eventually became filled with dense, nerve induced proteoglycan plaques at later stages of synapse development. Motoneurons thus appear to have two, superficially paradoxical effects on muscle basal lamina organization. They first cause the removal of any existing, extrajunctional proteoglycan from the path of cell contact, and then induce the deposition of dense plaques of recently synthesized proteoglycan within the developing junctional basal lamina. This observation suggests that the proteolytic enzyme systems that have already been implicated in tissue remodeling may also contribute to the inductive interaction between nerve and muscle cells during synaptogenesis.  相似文献   

5.
In bivalves, water-pumping potential is determined both by ciliary activity and by the geometry of the system of passageways that acts as a conduit for water flow. Smooth muscles intrinsic to the gills of eulamellibranch bivalves possess the anatomical organization needed to regulate the dimensions of these water passageways. The tone of these muscles can be controlled experimentally using excitatory neurotransmitters to elicit muscle contraction and by removing Ca++ from the Ringer's solution to induce muscular relaxation. These experimental methods were used to investigate the effects of smooth muscle tone on the gill dimensions of two freshwater bivalves, Dreissena polymorpha and Corbicula fluminea, and one marine bivalve, Mercenaria mercenaria. In addition, endoscopic observations were made from the suprabranchial chamber of a freshwater unionid, Lampsilis anodontoides. Contraction of gill muscles led to a significant reduction in interfilament width, internal ostial area, and the cross-sectional area of the water tubes. Endoscopic observation from minimally disturbed L. anodontoides revealed rapid constriction of the water tubes upon contraction of the muscles of the gill and gill axis. Taken together, these data support the idea that alteration of smooth muscle tone in the gill provides a mechanism for controlling water-pumping activities.  相似文献   

6.
The Dock SH2-SH3 domain adapter protein, a homolog of the mammalian Nck oncoprotein, is required for axon guidance and target recognition by photoreceptor axons in Drosophila larvae. Here we show that Dock is widely expressed in neurons and at muscle attachment sites in the embryo, and that this expression pattern has both maternal and zygotic components. In motoneurons, Dock is concentrated in growth cones. Loss of zygotic dock function causes a selective delay in synapse formation by the RP3 motoneuron at the cleft between muscles 7 and 6. These muscles often completely lack innervation in late stage 16 dock mutant embryos. RP3 does form a synapse later in development, however, because muscles 7 and 6 are normally innervated in third-instar mutant larvae. The absence of zygotically expressed Dock also results in subtle defects in a longitudinal axon pathway in the embryonic central nervous system. Concomitant loss of both maternally and zygotically derived Dock dramatically enhances these central nervous system defects, but does not increase the delay in RP3 synaptogenesis. These results indicate that Dock facilitates synapse formation by the RP3 motoneuron and is also required for guidance of some interneuronal axons The involvement of Dock in the conversion of the RP3 growth cone into a presynaptic terminal may reflect a role for Dock-mediated signaling in remodeling of the growth cone's cytoskeleton.  相似文献   

7.
Summary The fine structure of the collecting tubules of the trout and killifish kidney was studied. These tubules are surrounded by layers of smooth muscle cells which are commonly innervated. The nerve terminals contain synaptic vesicles and, occasionally, a few dense-cored granules as well. Capillaries occur in the connective tissue space between these smooth muscle cells and the collecting tubule. Epithelial cells of the collecting tubules contain abundant mitochondria and a well developed membrane system displaying parallel arrays, and were considered to be actively involved in the transport of materials. In the trout, the collecting tubules contain peculiar cells in addition to regular tubule cells. The fine structure of these peculiar cells is highly reminiscent of that of gill chloride cells. The significance of these findings may be summarized as follows: If the smooth muscles around the collecting tubule contract under neural influence, intratubular pressure may be increased and, thus affect glomerular filtration rate. The contraction of these muscles may also cause the collapse of peritubular capillaries, affecting the transport activity of tubule cells.  相似文献   

8.
Denervated but not innervated skeletal muscles secrete polypeptides that are involved in neuromuscular synapse formation. With the aim of identifying such components, metabolically labeled polypeptides in extracts from denervated and innervated muscles were submitted to two-dimensional gel electrophoresis, and the abundance of individual molecular species was compared. Consistent differences between the proteomic maps from the two sources of muscles were seen. Likewise, proteomic maps of polypeptides from organ culture media conditioned by chronically denervated muscles and by control muscles revealed consistent differences, but the abundance of material within individual spots from conditioned media was not sufficient for analysis by mass spectrometry. Since it was not possible to match the patterns from muscle extracts and from conditioned media, it has been established that extract of Sol8 muscle cells was a satisfactory source of material for analysis. From 1,200 spots identified on the proteomic map from Sol8 cells by image analysis, some 140 have been defined by mass spectrometric analysis. In order to identify the components that are shared by secreted molecules from denervated muscles and Sol8 cells, a mixture of extracts from the two sources was co-electrophoresed and a shared proteomic pattern was established by visualization of metabolically labeled spots from the conditioned medium and of silver stained spots from the Sol8 cells. More than 100 spots sharing x/y coordinate localization could be seen on the pattern. Of these, fourteen were among those identified by mass spectrometry. It is concluded that co-electrophoresis of radioactively labeled polypeptides from conditioned media with extracts from Sol8 cells can be used to mark in the proteome of Sol8 cells those polypeptides that are secreted at low abundance by adult muscles. Their higher abundance in Sol8 cells opens the possibility for further scrutiny of spots by mass spectrometry or by microsequencing.  相似文献   

9.
The superficial flexor muscles of the crayfish are a neuromuscular system of a few muscle cells innervated by six neurons in a precise position-dependent pattern. The neurons are capable of regenerating their normal connectivity patterns within a short span of time when conditions are favorable. The superficial flexor muscles of the second and third segments, despite their similarities in neuronal and muscle cell size and number, have distinctive connectivity patterns; some homologous neurons form similar patterns but other homologous neurons form patterns that are reversed between segments. We transplanted each segment's nerve into each other's muscle in order to observe regeneration of the nerves into a target area that differed in connectivity patterns from their original muscle. During the first weeks of regeneration all neurons formed a connectivity pattern with more connections medially and declining connections laterally, a pattern determined by the medial location of the nerve transplant. This pattern is maintained for most of the neurons, but for some there is an eventual reduction in medial connections as maximum synapse formation shifts to the lateral muscle fibers. Three of the eight neurons studied were able to regenerate connectivity patterns that corresponded to their segment of origin and not to their host muscle. This suggests that intersegmental muscle differences are not influencing the formation of these connectivity patterns, so the neurons will follow their inherent synaptogenesis program.  相似文献   

10.
Using tetranitroblue tetrazolium (TNBT) to stain neuromuscular synapses, we compared the development of the adult pattern of innervation in two fast-twitch muscles in the rat: the androgen-sensitive levator ani (LA) and the extensor digitorum longus (EDL), which is not thought to be androgen sensitive. We found that about 18% of adult LA muscle fibers, but only about 2% of adult EDL fibers, are multiply innervated. Moreover, synapse elimination occurs substantially later in the LA compared with the EDL. At 2 weeks after birth, the EDL is already predominantly singly innervated, whereas the LA is still predominantly multiply innervated. The apparent delay in the normal time course of synapse elimination in the LA corresponds to a similar delay in other aspects of neuromuscular development (the time course of appearance of axonal retraction bulbs, the growth of fibers, and the development of adult motor terminal morphology). Finally, motor terminals change during synapse elimination from morphologies resembling growth cones to the adult form of neuromuscular synapses. Because the period of synapse elimination is significantly different for muscles that differ in their androgen sensitivity, hormonal sensitivity may represent an important property of motoneurons or muscle fibers influencing the normal time course of neuromuscular synapse elimination in rats. Thus, androgen might regulate the normal ontogenetic process of synapse elimination.  相似文献   

11.
《The Journal of cell biology》1987,105(6):2479-2488
To localize factors that guide axons reinnervating skeletal muscle, we cultured ciliary ganglion neurons on cryostat sections of innervated and denervated adult muscle. Neurons extended neurites on sections of muscle (and several other tissues), generally in close apposition to sectioned cell surfaces. Average neurite length was greater on sections of denervated than on sections of innervated muscle, supporting the existence of functionally important differences between innervated and denervated muscle fiber surfaces. Furthermore, outgrowth was greater on sections of denervated muscle cut from endplate-rich regions than on sections from endplate-free regions, suggesting that a neurite outgrowth-promoting factor is concentrated near synapses. Finally, 80% of the neurites that contacted original synaptic sites (which are known to be preferentially reinnervated by regenerating axons in vivo) terminated precisely at those contacts, thereby demonstrating a specific response to components concentrated at endplates. Together, these results support the hypothesis that denervated muscles use cell surface (membrane and matrix) molecules to inform regenerating axons of their state of innervation and proximity to synaptic sites.  相似文献   

12.
Although physiological differences among neuromuscular junctions (NMJs) have long been known, NMJs have usually been considered as one type of synapse, restricting their potential value as model systems to investigate mechanisms controlling synapse assembly and plasticity. Here we discuss recent evidence that skeletal muscles in the mouse can be subdivided into two previously unrecognized subtypes, designated FaSyn and DeSyn muscles. These muscles differ in the pattern of neuromuscular synaptogenesis during embryonic development. Differences between classes are intrinsic to the muscles, and manifest in the absence of innervation or agrin. The distinct rates of synaptogenesis in the periphery may influence processes of circuit maturation through retrograde signals. While NMJs on FaSyn and DeSyn muscles exhibit a comparable anatomical organization in postnatal mice, treatments that challenge synaptic stability result in nerve sprouting, NMJ remodeling, and ectopic synaptogenesis selectively on DeSyn muscles. This anatomical plasticity of NMJs diminishes greatly between 2 and 6 months postnatally. NMJs lacking this plasticity are lost selectively and very early on in mouse models of motoneuron disease, suggesting that disease-associated motoneuron dysfunction may fail to initiate maintenance processes at “non-plastic” NMJs. Transgenic mice overexpressing growth-promoting proteins in motoneurons exhibit greatly enhanced stimulus-induced sprouting restricted to DeSyn muscles, supporting the notion that anatomical plasticity at the NMJ is primarily controlled by processes in the postsynaptic muscle. The discovery that entire muscles in the mouse differ substantially in the anatomical plasticity of their synapses establishes NMJs as a uniquely advantageous experimental system to investigate mechanisms controlling synaptic rearrangements at defined synapses in vivo.  相似文献   

13.
The small noncoding vault RNA (vtRNA) is a component of the vault complex, a ribonucleoprotein complex found in most eukaryotes. Emerging evidence suggests that vtRNAs may be involved in the regulation of a variety of cellular functions when unassociated with the vault complex. Here, we demonstrate a novel role for vtRNA in synaptogenesis. Using an in vitro synapse formation model, we show that murine vtRNA (mvtRNA) promotes synapse formation by modulating the MAPK signaling pathway. mvtRNA is transported to the distal region of neurites as part of the vault complex. Interestingly, mvtRNA is released from the vault complex in the neurite by a mitotic kinase Aurora-A–dependent phosphorylation of MVP, a major protein component of the vault complex. mvtRNA binds to and activates MEK1 and thereby enhances MEK1-mediated ERK activation in neurites. These results suggest the existence of a regulatory mechanism of the MAPK signaling pathway by vtRNAs as a new molecular basis for synapse formation.  相似文献   

14.
Abstract: The role of adhesion molecule L1 in synapse formation was examined by transient transfection of L1 cDNA in neuroblastoma × glioma hybrid NG108-15 cells. L1 overexpression was found in ∼50% of the transfected NG108-15 cell population. Neurite outgrowth induced by 0.25 m M dibutyryl cyclic AMP (cAMP) was much greater in L1-transfected NG108-15 cells than that in nontransfected and mock-transfected cells. The proportion of cells with neurites and the number of neurites per cells were increased in L1-transfected cells after 2 days of dibutyryl cAMP treatment. The proportion of cells with branched neurites and the average length of neurites were higher at day 4. A significantly higher rate of synapse formation with myotubes was apparent in the late phase of coculture (days 4–7) in L1-transfected cells than in control cells. The miniature end-plate potential frequency in myotubes was the same for the three types of NG108-15 cells. These results show that overexpression of L1 in NG108-15 cells facilitates synaptic connections by enhancing branching and elongation of neurites induced with dibutyryl cAMP, rather than by increasing probability of acetylcholine release.  相似文献   

15.
Previous studies in this laboratory have described a cell surface glycoprotein, called neural cell adhesion molecule or N-CAM, that appears to be a ligand in the adhesion between neural membranes. N-CAM antigenic determinants were also shown to be present on embryonic muscle and an N-CAM-dependent adhesion was demonstrated between retinal cell membranes and muscle cells in short-term assays. The present studies indicate that these antigenic determinants are associated with the N-CAM polypeptide, and that rapid adhesion mediated by this molecule occurs between spinal cord membranes and muscle cells. Detailed examination of the effects of anti-(N-CAM) Fab' fragments in cultures of spinal cord with skeletal muscle showed that the Fab' fragments specifically block adhesion of spinal cord neurites and cells to myotubes. The Fab' did not affect binding of neurites to fibroblasts and collagen substrate, and did not alter myotube morphology. These results indicate that N-CAM adhesion is essential for the in vitro establishment of physical associations between nerve and muscle, and suggest that binding involving N-CAM may be an important early step in synaptogenesis.  相似文献   

16.
C. elegans pharyngeal behavior consists of two distinct types of muscle contractions, termed pumping and peristalsis. Pumping ingests and concentrates bacteria in the anterior pharyngeal lumen, and it is occasionally followed by a transient peristaltic contraction that carries ingested bacteria through the posterior pharyngeal isthmus. These behaviors are controlled by a small pharyngeal nervous system consisting of 20 neurons that is almost completely independent of the extra-pharyngeal nervous system. The cholinergic motor neuron M4 controls peristalsis via synapses with the posterior isthmus muscles. Here we show that the NK-2 family homeobox gene ceh-28 is expressed in M4, where it regulates synapse assembly and peristalsis. ceh-28 mutants exhibit frequent and prolonged peristalses, and treatment with agonists or antagonists of muscarinic acetylcholine receptors can phenocopy or suppress ceh-28 mutant defects, respectively. Synapses in ceh-28 mutant M4 cells are irregularly spaced and sized, and they are abnormally located along the full length of the isthmus. We suggest that CEH-28 inhibits synaptogenesis, and that ceh-28 mutant behavioral defects result from excessive or ectopic stimulation of muscarinic acetylcholine receptors in the isthmus muscles.  相似文献   

17.
18.
The twitch duration of mesothoracic wing muscles of the male katydid Neoconocephalus robustus (Insecta; Orthoptera; Tettigoniidae) decreases rapidly within the first 5 days of adulthood, to about half of its value in newly molted adults. To determine if this change is dependent upon neural input, male mesothoracic first tergocoxal muscles were unilaterally denervated on the second day of adulthood. The contraction kinetics of the denervated and contralateral innervated muscles were tested four days later. The development of rapid contraction kinetics was slowed or stopped in the denervated muscles, while the contralateral innervated muscles did become faster. Mesothoracic wing muscles of females do not develop faster contraction kinetics. When the female mesothoracic first tergocoxal muscle is denervated, there is no difference in twitch duration after 4 days between the innervated and contralateral denervated muscles. Therefore, denervation in newly molted adult male katydids interrupts a developmental program for the acquisition of adult contraction kinetics.  相似文献   

19.
Synaptic differentiation is normally "induced" by regulatory signals that are exchanged only at close contacts between neurites and their predetermined target cells. These signals can, however, be mimicked by contact of either cell with some kinds of polymer microbeads. To find what bead action is responsible for this mimicry, we compared the effects of active and inert microbeads on Xenopus muscle cells developing in culture and on glass-adsorbed films of laminin or fibronectin. Our results show that inductive bioactivity is a property of native polystyrene microbeads that (a) is not dependent merely on bead-muscle adhesion, (b) can be eliminated simply by exposing the beads to inert serum proteins, and (c) correlates closely with the ability of some beads to desorb proteins from adjacent surfaces. Quasi-synaptic differentiation of the muscle surface thus seems to be triggered by the focal removal of peripheral cell surface components, rather than by direct bead interactions with membrane receptors or ion channels or their gradual acquisition of endogenous regulatory substances. Since nerve-muscle interaction also causes an elimination of extracellular matrix proteins from the muscle surface, very early in synapse development, we consider the possibility that the extracellular degradation of peripheral surface components contributes to the transmission of inductive positional signals during synaptogenesis.  相似文献   

20.
The development of clusters of acetylcholine (ACh) receptors at newly formed synapses between embryonic chick spinal cord and muscle cells grown in vitro has been studied by iontophoretic mapping with ACh. A semi-automated technique using on-line computer analysis of ACh responses and a photographic system to record the position of each ACh application permit the rapid construction of extensive and detailed maps of ACh sensitivity. Clusters of receptors, evident as peaks of ACh sensitivity, are present on many uninnervated myotubes. The distribution of ACh sensitivity closely parallels the distribution of 125I-alpha-bungarotoxin binding sites on the same muscle cell. In all cases where individual myotubes were adequately mapped before and after synapse formation, ingrowing axons induced new clusters of receptors rather than seeking out preexisting clusters. Synapses can form at active growth cones within 3 h of nerve-muscle contact. New receptor clusters can appear beneath neurites within a few hours. Many of the uninnervated clusters on innervated myotubes disappear with time. In contrast, receptor clusters on uninnervated myotubes remain in the same location for many hours. Synaptic clusters and clusters on uninervated myotubes are stable even though individual receptors are metabolized rapidly. The morphology of several identified sites of transmitter release was examined. At the scanning EM level, synapses appeared as small, rough-surfaced varicosities with filopodia that radiated outwards over the muscle surface. One synapse was studied by transmission EM. Acetylcholinesterase and a basement lamina were present within the synaptic cleft.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号