首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Although spectral variants of GFP should in theory be suited for fluorescence resonance energy transfer (FRET) and therefore suited for studies of protein-protein interactions, the unfavorable location of the fluorophore 15 A deep inside the GFP molecule has especially impaired this application. Here, metal-ion site engineering around the dimerization interface known from the X-ray structure of GFP is applied to the cyan and the yellow spectral variant of GFP to stabilize the heterodimeric form of these molecules and thereby increase FRET signaling. The FRET signal, determined as the ratio between the maximal emission for the yellow variant, 530 nm, and the cyan variant, 475 nm, during excitation of the cyan variant at 433 nm was increased up to 8-10-fold in the presence of 10(-4) M ZnCl2 by engineering of two symmetric metal-ion sites being either bidentate or tridentate. A similar increase in FRET signaling was however obtained in a pair of molecules in which a single bidentate metal-ion site was generated by introducing a zinc-binding residue in each of the two spectral variants of GFP and therefore creating an obligate heterodimeric pair. It is concluded that FRET signaling between spectral variants of GFP can be increased by stabilizing dimer formation and especially by favoring heterodimer formation in this case performed by metal-ion site engineering.  相似文献   

2.
We have investigated properties relevant to quantitative imaging in living cells of five green fluorescent protein (GFP) variants that have been used extensively or are potentially useful. We measured the extinction coefficients, quantum yields, pH effects, photobleaching effects, and temperature-dependent chromophore formation of wtGFP, alphaGFP (F99S/M153T/V163A), S65T, EGFP (F64L/S65T), and a blue-shifted variant, EBFP (F64L/S65T/Y66H/Y145F). Absorbance and fluorescence spectroscopy showed little difference between the extinction coefficients and quantum yields of wtGFP and alphaGFP. In contrast, S65T and EGFP extinction coefficients made them both approximately 6-fold brighter than wtGFP when excited at 488 nm, and EBFP absorbed more strongly than the wtGFP when excited in the near-UV wavelength region, although it had a much lower quantum efficiency. When excited at 488 nm, the GFPs were all more resistant to photobleaching than fluorescein. However, the wtGFP and alphaGFP photobleaching patterns showed initial increases in fluorescence emission caused by photoconversion of the protein chromophore. The wtGFP fluorescence decreased more quickly when excited at 395 nm than 488 nm, but it was still more photostable than the EBFP when excited at this wavelength. The wtGFP and alphaGFP were quite stable over a broad pH range, but fluorescence of the other variants decreased rapidly below pH 7. When expressed in bacteria, chromophore formation in wtGFP and S65T was found to be less efficient at 37 degrees C than at 28 degrees C, but the other three variants showed little differences between 37 degrees C and 28 degrees C. In conclusion, no single GFP variant is ideal for every application, but each one offers advantages and disadvantages for quantitative imaging in living cells.  相似文献   

3.
In the preceding accompanying paper [Shu, X., et al. (2007) Biochemistry 46, 12005-12013], the 1.5 A resolution crystal structure of green fluorescent protein (GFP) variant S65T/H148D is presented, and the possible consequences of an unusual short hydrogen bond (相似文献   

4.
We have studied the gas-phase absorption properties of the green fluorescent protein (GFP) chromophore in its neutral (protonated) charge state in a heavy-ion storage ring. To accomplish this we synthesized a new molecular chromophore with a charged NH(3) group attached to a neutral model chromophore of GFP. The gas-phase absorption cross section of this chromophore molecule as a function of the wavelength is compared to the well-known absorption profile of GFP. The chromophore has a maximum absorption at 415 +/- 5 nm. When corrected for the presence of the charged group attached to the GFP model chromophore, the unperturbed neutral chromophore is predicted to have an absorption maximum at 399 nm in vacuum. This is very close to the corresponding absorption peak of the protein at 397 nm. Together with previous data obtained with an anionic GFP model chromophore, the present data show that the absorption of GFP is primarily determined by intrinsic chromophore properties. In other words, there is strong experimental evidence that, in terms of absorption, the conditions in the hydrophobic interior of this protein are very close to those in vacuum.  相似文献   

5.
Mutants of Discosoma red fluorescent protein with a GFP-like chromophore   总被引:3,自引:0,他引:3  
The green fluorescent protein (GFP)-homologous red fluorescent protein (RFP) from Discosoma (drFP583) which emits bright red fluorescence peaking at 583 nm is an interesting novel genetic marker. We show here that RFP maturation involves a GFP-like fluorophore which can be stabilized by point mutations selected from a randomly mutated expression library. By homology modeling, these point mutations cluster near the imidazolidinone ring of the chromophore. Exciting the GFP-like absorption band in the mutant proteins produces both green and red fluorescence. Upon unfolding and heating, the absorption spectrum of the RFP chromophore slowly becomes similar to that of the GFP chromophore. This can be interpreted as a covalent modification of the GFP chromophore in RFP that appears to occur in the final maturation step.  相似文献   

6.
Green fluorescent protein (GFP) has been utilized as a powerful reporter of gene expression and protein localization in cells. We discovered a mutant carrying point mutation S208L from a UV-excitable GFP (F99S/M153T/V163A). It had the enhanced fluorescence intensity. Introduction of the red-shifted mutations (F64L/S65T) to this mutant led to the GFP having the brightest mutants reported which were expressed in Escherichia coli and excited at 488 nm. The relative fluorescence intensities to that of wild-type GFP and GFPuv were increased about 120- and 10-fold, respectively. It was shown that the S208L mutation contributes to both a higher intrinsic brightness of GFP and a higher expression level in E. coli.  相似文献   

7.
Modified forms of genes encoding green fluorescent protein (GFP) can be macroscopically detected when expressed in whole plants. This technology has opened up new uses for GFP such as monitoring transgene presence and expression in the environment once it is linked or fused to a gene of interest. When whole-plant or whole-organ GFP visualization is required, GFP should be predictably expressed and reliably fluorescent. In this study the whole plant expression and fluorescence patterns of a mGFP5er gene driven by the cauliflower mosaic virus 35S promoter was studied in intact GFP-expressing transgenic tobacco (Nicotiana tabacum cv. Xanthi). It was shown that GFP synthesis levels in single plant organs were similar to GUS activity levels from published data when driven by the same promoter. Under the control of the 35S promoter, high expression of GFP can be used to visualize stems, young leaves, flowers, and organs where the 35S promoter is most active. Modified forms of GFP could replace GUS as the visual marker gene of choice.  相似文献   

8.
Nifosì R  Tozzini V 《Proteins》2003,51(3):378-389
Molecular dynamics simulations with the Amber force field are carried out to study two mutants of the green fluorescent protein (GFP), namely EGFP (F64L/S65T) and T203Y-EGFP (E(2)GFP). Those variants display an opposite equilibrium between the structural A and B states, associated with neutral and anionic protonation forms of the chromophore. Configurations of those two states are simulated for each variant and the energetics of their equilibrium in the two mutants is studied by evaluating the change in the relative free energy of A and B states (DeltaG(AB)) upon T203Y mutation. The resulting DeltaDeltaG(AB) agrees with the value inferred from absorption measurements. A comparison of the hydrogen bond network around the chromophore rationalizes the different population of state A and B in EGFP and E(2)GFP. On the basis of structural and energetic considerations, a mechanism for destabilization of the neutral chromophore in S65T mutants is proposed. Simulations of the B state of the S65T variant and of WT GFP are also performed for comparison and to test the force field parameters of the chromophore derived for the present calculations. Possible paths of proton transfer leading to nonfluorescent states of the chromophore are discussed in light of the photodynamical behavior of GFP, as revealed by fluorescence correlation spectroscopy and single-molecule experiments.  相似文献   

9.
The Green Fluorescent Protein (GFP) from Aequorea victoria has begun to be used as a reporter protein in plants. It is particularly useful as GFP fluorescence can be detected in a non-destructive manner, whereas detection of enzyme-based reporters often requires destruction of the plant tissue. The use of GFP as a reporter enables transgenic plant tissues to be screened in vivo at any growth stage. Quantification of GFP in transgenic plant extracts will increase the utility of GFP as a reporter protein. We report herein the quantification of a mGFP5-ER variant in tobacco leaf extracts by UV excitation and a sGFP(S65T) variant in sugarcane leaf and callus extracts by blue light excitation using the BioRad VersaFluorTM Fluorometer System or the Labsystems Fluoroskan Ascent FL equipped with a narrow band emission filter (510 ± 5 nm). The GFP concentration in transgenic plant extracts was determined from a GFP-standard series prepared in untransformed plant extract with concentrations ranging from 0.1 to 4 g/ml of purified rGFP. Levels of sgfp(S65T) expression, driven by the maize ubiquitin promoter, in sugarcane calli and leaves ranged up to 0.525 g and 2.11 g sGFP(S65T) per mg of extractable protein respectively. In tobacco leaves the expression of mgfp5-ER, driven by the cauliflower mosaic virus (CaMV) 35S promoter, ranged up to 7.05 g mGFP5-ER per mg extractable protein.  相似文献   

10.
11.
Dietrich C  Maiss E 《BioTechniques》2002,32(2):286, 288-90, 292-3
GFP from Aequorea victoria is a standard genetic marker widely used to visualize cellular events in a noninvasive manner. For simultaneous imaging of different processes, in vivo mutants of GFP with shifted wavelength spectra (e.g., blue fluorescent protein) are conventionally used. The recently reported red fluorescent protein from Discosoma sp., DsRed, represents a new marker that can be used together with GFP variants for multicolor imaging. DsRed is an interesting marker protein for use in plants because of its red-shifted wavelength spectrum that will avoid damaging cells and tissues by excitation light. In this report, we show that DsRed is an excellent marker in higher plants in spite of the interfering red autofluorescence of chlorophyll, which can be eliminated by using the appropriate filter sets. Transient expression of DsRed1-C1 and a soluble-modified, red-shifted GFP variant has been carried out both individually and jointly in the epidermal cells of three different Nicotiana species and Chenopodium quinoa, which gives rise to dual labeling in plants. For this purpose, a human codon-optimized variant of DsRed has been adopted for expression in plants. Moreover, the DsRed reporter gene was expressed by using a labeled plant viral vector derived from an infectious full-length clone of potato virus X.  相似文献   

12.
We investigated the interaction between type 2 Streptococcus suis and swine phagocytes during infection of the natural host, by using green fluorescent protein (GFP) as a specific marker to observe the challenge organism. We compared the strength of the S. suis sly promoter (SP332) and the synthetic promoter (CP25) in driving GFP expression. Two GFP alleles, gfpP11 and gfpmut3*, were also compared. The two promoters and two alleles were efficiently compared using three different promoter-GFP gene combinations on a shuttle vector, which were transformed into S. suis strains SX332, SX932 or M2. Plasmid pSL6.81 has SP332 with gfpP11, pSL5.24 has SP332 with gfpmut3*, and pSL5.28 has CP25 with gfpmut3*. The transformants were fluorescent with green light when viewed with an epifluorescence microscope or during flow cytometry. The signal was also detected using a laser scanning confocal microscope. The GFP expression level varied and CP25 with gfpmut3* led to greatest expression. For optimizing GFP detection, fluorescence-based cell sorting was applied to SX332(pSL5.28) and the mean fluorescence intensity increased 25.9% after optimization. Fluorescence activated cell sorting (FACS)-based phagocytosis assay showed that, without opsonization, phagocytosis rates of SX332, SX932 and M2 by both neutrophils and monocytes were similar and low. After opsonization, the phagocytosis of M2 increased 10-fold while phagocytosis of SX332 and SX932 did not change. GFP-labeled S. suis was identified in fresh pig tonsil tissue 18 h after infection. The results of this study indicated that GFP was expressed in type 2 S. suis and GFP labeled S. suis could be used in phagocytosis and pathogenesis studies.  相似文献   

13.
The ability to target marker proteins to specific subcellular compartments is a powerful research tool to study the structure and development of organelles. Here transit sequences from nuclear-encoded, plastid proteins, namely rice FtsZ, maize non-photosynthetic ferredoxin III (FdIII) and the small subunit of RubisCO were used to target a modified synthetic GFP (S65G, S72A) to plastids. The localisations of the fusion proteins expressed in transgenic wheat plants and under the control of the rice actin promoter were compared to an untargeted GFP control. GFP fluorescence was localised to non-green plastids in pollen, roots and seed endosperm and detected in isolated leaf chloroplasts using a GFP-specific antibody. Transit peptides appeared to influence the relative fluorescence intensities of plastids in different tissues. This is consistent with differential targeting and/or turnover of GFP fusion proteins in different plastid types. Replacement of GFP sequences with alternative coding regions enables immediate applications of our vectors for academic research and commercial applications.  相似文献   

14.
Green fluorescent protein (GFP) has been widely used in a variety of experiments in cell biology. When cells were co-transfected with the GFP gene and the bcl-2 family genes bcl-2, bcl-x(L), and bax, mitochondria appeared to aggregate at the periphery of the nucleus specifically where GFP was expressed. Little aggregation was seen in the presence of other members of the GFP family, EGFP (enhanced GFP), ECFP (enhanced cyan variant), and EYFP (enhanced yellow-green variant). GFP but not EGFP seemed to promote cell death induced by pro-apoptotic Bax. Thus, GFP specifically promotes the aggregation of mitochondria when co-expressed with a member of the Bcl-2 family in association with apoptosis.  相似文献   

15.
In the preceding paper [Hanson, G. T., McAnaney, T. B., Park, E. S., Rendell, M. E. P., Yarbrough, D. K., Chu, S., Xi, L., Boxer, S. G., Montrose, M. H., and Remington, S. J. (2002) Biochemistry 41, 15477-15488], novel mutants of the green fluorescent protein (GFP) that exhibit dual steady-state emission properties were characterized structurally and discussed as potential intracellular pH probes. In this work, the excited-state dynamics of one of these new dual emission GFP variants, deGFP4 (C48S/S65T/H148C/T203C), is studied by ultrafast fluorescence upconversion spectroscopy. Following excitation of the high-energy absorption band centered at 398 nm and assigned to the neutral form of the chromophore, time-resolved emission was monitored from the excited state of both the neutral and intermediate anionic chromophores at both high and low pH and upon deuteration of exchangeable protons. The time-resolved emission dynamics and isotope effect appear to be very different from those of wild-type GFP [Chattoraj, M., King, B. A., Bublitz, G. U., and Boxer, S. G. (1996) Proc. Natl. Acad. Sci. U.S.A. 93, 8362-8367]; however, due to overlapping emission bands, the apparent difference can be analyzed quantitatively within the same framework used to describe GFP excited-state dynamics. The results indicate that the pH-sensitive steady-state emission characteristics of deGFP4 are a result of a pH-dependent modulation of the rate of excited-state proton transfer. At high pH, a rapid interconversion from the excited state of the higher energy neutral chromophore to the lower energy intermediate anionic chromophore is achieved by proton transfer. At low pH, excited-state proton transfer is slowed to the point where it is no longer rate limiting.  相似文献   

16.
研究 nm2 3- H1在肿瘤细胞中的定位及其对肿瘤细胞体外侵袭能力的影响 .用 RT- PCR方法检测人高和低转移肺巨细胞癌细胞株 95 D和 95 C中 nm2 3- H1的表达 ;利用分子克隆技术构建nm2 3- H1 -绿色荧光蛋白 ( GFP)融合基因表达质粒 ( p NM2 3- GFP) ,经脂质体转染将此质粒导入95 D和 95 C细胞中 ,筛选高荧光强度的克隆 ,用 Boyden小室模型检测其体外侵袭能力的变化 .结果显示 nm2 3- H1在 95 C细胞中的表达比 95 D高 .95 D细胞中表达的 nm2 3- H1 c DNA未发生突变 .表达的 nm2 3- H1 - GFP融合蛋白位于细胞的胞浆近胞膜处 .转染 p NM2 3- GFP质粒的 95 D和 95 C细胞体外侵袭能力明显比对照组低 .这些提示 nm2 3- H1高表达能明显降低肿瘤细胞体外侵袭能力 .  相似文献   

17.
The expression of green fluorescent protein (GFP) and its inheritance were studied in transgenic barley (Hordeum vulgare L.) plants transformed with a synthetic green fluorescent protein gene [sgfp(S65T)] driven by either a rice actin promoter or a barley endosperm-specific d-hordein promoter. The gene encoding phosphinothricin acetyltransferase (bar), driven by the maize ubiquitin promoter and intron, was used as a selectable marker to identify transgenic tissues. Strong GFP expression driven by the rice actin promoter was observed in callus cells and in a variety of tissues of T0 plants transformed with the sgfp(S65T)-containing construct. GFP expression, driven by the rice actin promoter, was observed in 14 out of 17 independent regenerable transgenic callus lines; however, expression was gradually lost in T0 and later generation progeny of diploid lines. Stable GFP expression was observed in T2 progeny from only 6 out of the 14 (43%) independent GFP-expressing callus lines. Four of the 8 lines not expressing GFP in T2 progeny, lost GFP expression during T0 plant regeneration from calli; one lost GFP expression in the transition from the T0 to T1 generations and three lines were sterile. Similarly, expression of bar driven by the maize ubiquitin promoter was lost in T1 progeny; only 21 out of 26 (81%) independent lines were Basta-resistant. In contrast to actin-driven expression, GFP expression driven by the d-hordein promoter exhibited endosperm-specificity. All seven lines transformed with d-hordein-driven GFP (100%) expressed GFP in the T1 and T2 generations, regardless of ploidy levels, and expression segregated in a Mendelian fashion. We conclude that the sgfp(S65T) gene was successfully transformed into barley and that GFP expression driven by the d-hordein promoter was more stable in its inheritance pattern in T1 and T2 progeny than that driven by the rice actin promoter or the bar gene driven by the maize ubiquitin promoter.  相似文献   

18.
To study rhodopsin biosynthesis and transport in vivo, we engineered a fusion protein (rho-GFP) of bovine rhodopsin (rho) and green fluorescent protein (GFP). rho-GFP expressed in COS-1 cells bound 11-cis retinal, generating a pigment with spectral properties of rhodopsin (A(max) at 500 nm) and GFP (A(max) at 488 nm). rho-GFP activated transducin at 50% of the wild-type activity, whereas phosphorylation of rho-GFP by rhodopsin kinase was 10% of wild-type levels. We expressed rho-GFP in the rod photoreceptors of Xenopus laevis using the X. laevis principal opsin promoter. Like rhodopsin, rho-GFP localized to rod outer segments, indicating that rho-GFP was recognized by membrane transport mechanisms. In contrast, a rho-GFP variant lacking the C-terminal outer segment localization signal distributed to both outer and inner segment membranes. Confocal microscopy of transgenic retinas revealed that transgene expression levels varied between cells, an effect that is probably analogous to position-effect variegation. Furthermore, rho-GFP concentrations varied along the length of individual rods, indicating that expression levels varied within single cells on a daily or hourly basis. These results have implications for transgenic models of retinal degeneration and mechanisms of position-effect variegation and demonstrate the utility of rho-GFP as a probe for rhodopsin transport and temporal regulation of promoter function.  相似文献   

19.
Man M  Epel BL 《Transgenic research》2006,15(1):107-113
An environmentally safe Tobacco Mosaic Virus (TMV)-based expression replicon was constructed that lacks movement protein (MP) and coat protein (CP), and which expresses the green fluorescent protein (GFP) gene from a full CP subgenomic promoter. The TMV replicon, whose cDNA was positioned between an enhanced Cauliflower Mosaic Virus 35S promoter (CaMV) and a self-cleaving hammerhead ribozyme with a downstream nopaline synthase gene polyadenylation signal [nos-poly(A)], was assessed for its effectiveness to accumulate GFP upon agroinfiltration into plant leaves compared to a control construct in which GFP was directly expressed from the enhanced CaMV 35S promoter. It was determined that individually expressing cells produced ca. 9-fold more GFP from the TMV-based replicon than from the enhanced 35S promoter. In contrast, GFP measurements from total leaf extracts determined that leaves infiltrated with the TMV-based replicon produced ca. 7-fold less GFP than the control construct. These apparently contradictory results can be explained by the low infectivity of the TMV-based replicon as it was found that the number of foci expressing GFP produced in leaves agroinfiltrated with the TMV-based replicon was ca. 66-fold lower than produced by the control.  相似文献   

20.
Nuclear localization of enhanced green fluorescent protein homomultimers   总被引:4,自引:0,他引:4  
The green fluorescent protein (GFP) and its variants are used in many studies to determine the subcellular localization of other proteins by analyzing fusion proteins. The main problem for nuclear localization studies is the fact that, to some extent, GFP translocates to the nucleus on its own. Because the nuclear import could be due to unspecific diffusion of the relatively small GFP through the nuclear pores, we analyzed the localization of multimers of a GFP variant, the enhanced GFP (EGFP). By detecting the fluorescence of the expressed proteins in gels after nonreducing SDS-PAGE, we demonstrate the integrity of the expressed proteins. Nevertheless, even EGFP homotetramers and homohexamers are found in the nuclei of the five analyzed mammalian cell lines. The use of fusion constructs of small proteins with multimeric EGFP alone, therefore, is not adequate to prove nuclear import processes. Fusion to tetrameric EGFP in combination with a careful quantification of the fluorescence intensities in the nucleus and cytoplasm might be sufficient in many cases to identify a significant difference between the fusion protein and tetrameric EGFP alone to deduce a nuclear localization signal.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号