首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
DNA microarrays have been used to study the expression of thousands of genes at the same time in a variety of cells and tissues. The methods most commonly used to label probes for microarray studies require a minimum of 20 microg of total RNA or 2 microg of poly(A) RNA. This has made it difficult to study small and rare tissue samples. RNA amplification techniques and improved labeling methods have recently been described. These new procedures and reagents allow the use of less input RNA, but they are relatively time-consuming and expensive. Here we introduce a technique for preparing fluorescent probes that can be used to label as little as 1 microg of total RNA. The method is based on priming cDNA synthesis with random hexamer oligonucleotides, on the 5' ends of which are bases with free amino groups. These amine-modified primers are incorporated into the cDNA along with aminoallyl nucleotides, and fluorescent dyes are then chemically added to the free amines. The method is simple to execute, and amine-reactive dyes are considerably less expensive than dye-labeled bases or dendrimers.  相似文献   

2.
Lau WK  Chiu SK  Ma JT  Tzeng CM 《BioTechniques》2002,33(3):564, 566-564, 570
The application of microarray analysis to gene expression from limited tissue samples has not been very successful because of the poor signal qualityfrom the genes expressed at low levels. Here we discussed the use of catalyzed reporter deposition (CARD) technology to amplify signals from limited RNA samples on nylon membrane cDNA microarray. When the input RNA level was greater than 10 microg, the genes expressed at high levels did not amplify in proportion to those expressed at low levels. Compared to conventional colorimetric detection, the CARD method requires less than 10% of the total RNA used for amplification of signal displayed onto a nylon membrane cDNA microarray. Total RNA (5-10 microg), as one can extract from a limited amount of specimen, was determined to produce a linear correlation between the colorimetric detection and CARD methods. Beyond this range, it can cause a nonlinear amplification of highly expressed and low-abundance genes. These results suggest that when amplification is needed for any applications using the CARD method, including DNA microarray experiments, precaution has to be taken in the amount of RNA used to avoid skew amplification and thus misleading conclusions.  相似文献   

3.
4.
5.
6.
RNA amplification strategies for cDNA microarray experiments   总被引:5,自引:0,他引:5  
  相似文献   

7.
8.
We describe here a protocol for the representative amplification of global mRNAs from typical single mammalian cells to provide a template for high-density oligonucleotide microarray analysis. A single cell is lysed in a tube without purification and first-strand cDNAs are synthesized using a poly(dT)-tailed primer. Unreacted primer is specifically eliminated by exonuclease treatment and second strands are generated with a second poly(dT)-tailed primer after poly(dA) tailing of the first-strand cDNAs. The cDNAs are split into four tubes, which are independently directionally amplified by PCR, and then recombined. The amplified products (approximately 100 ng) show superior representation and reproducibility of original gene expression, especially for genes expressed in more than 20 copies per cell, compared with those obtained by a conventional PCR protocol, and can effectively be used for quantitative PCR and EST analyses. The cDNAs are then subjected to another PCR amplification with primers bearing the T7 promoter sequence. The resultant cDNA products are gel purified, amplified by one final cycle and used for isothermal linear amplification by T7 RNA polymerase to synthesize cRNAs for microarray hybridization. This protocol yields cDNA templates sufficient for more than 80 microarray hybridizations from a single cell, and can be completed in 5-6 days.  相似文献   

9.
10.
11.
High-fidelity mRNA amplification for gene profiling   总被引:31,自引:0,他引:31  
The completion of the Human Genome Project has made possible the comprehensive analysis of gene expression, and cDNA microarrays are now being employed for expression analysis in cancer cell lines or excised surgical specimens. However, broader application of cDNA microarrays is limited by the amount of RNA required: 50-200 microg of total RNA (T-RNA) and 2-5 microg poly(A) RNA. To broaden the use of cDNA microarrays, some methods aiming at intensifying fluorescence signal have resulted in modest improvement. Methods devoted to amplifying starting poly(A) RNA or cDNA show promise, in that detection can be increased by orders of magnitude. However, despite the common use of these amplification procedures, no systematic assessment of their limits and biases has been documented. We devised a procedure that optimizes amplification of low-abundance RNA samples by combining antisense RNA (aRNA) amplification with a template-switching effect (Clonetech, Palo Alto, CA). The fidelity of aRNA amplified from 1:10,000 to 1:100,000 of commonly used input RNA was comparable to expression profiles observed with conventional poly(A) RNA- or T-RNA-based arrays.  相似文献   

12.
13.
14.
15.
We have modified and optimized PCR-based differential display for efficient identification and isolation of genes whose expression patterns are correlated with changes in growth, development, physiology, and/or environmental response. This protocol is general in nature and can be applied for analysis of virtually any plant tissues from which several μg of total RNA can be extracted. We report here the use of tomato fruit ripening as a model system in which to test and optimize differential display in plants. Specifically, mRNA from ripe, early breaker, mature green, and ethylene-treated mature green tomato fruit were examined to identify and distinguish non-ethylene-inducible from ethylene-inducible genes related to ripening. DNA-free total RNA was utilized as template for synthesis of first-strand complementary DNA using each of 12 possible 5′-T11 XY-3′ anchor primers (X=A, C, or G; Y=A, C, G, or T). PCR amplification products of the resulting cDNA populations were generated via use of random primers in combination with the corresponding anchor primer employed for cDNA synthesis. We demonstrate that degenerative anchor primers are useful for making representative cDNA populations, but are not effective for representative display-PCR. cDNA, resulting from degenerative anchor primer synthesis, yielded substantially fewer ripening-related display-PCR products when amplified with the same degenerative anchor primer employed in cDNA synthesis, versus the corresponding set of specific anchor primers. Amplification products specific to ripe fruit cDNA were isolated directly from display gels, reamplified, cloned, and confirmed for ripening-related gene expression via RNA gel-blot analysis.  相似文献   

16.
17.
18.
利用大肠杆菌mRNA中存在的一定程度的poly(A)现象,利用oligo(dT)与poly(A)特异结合的特性,纯化并逆转录mRNA,并应用RD-PCR双方法获得了170多条大肠杆菌poly(A)化mRNA的基因片段,利用这些片段打印成基因芯片,以供后续大肠杆菌的基因表达研究。  相似文献   

19.
20.
We have developed a new DNA chip whose substrate has a unique minute columnar array structure made of plastic. The DNA chip exhibits ultrahigh sensitivity, up to 100-fold higher than that of reference DNA chips, which makes it possible to monitor gene expression profiles even with very small amounts of RNA (0.1-0.01 microg of total RNA) without amplification. Differential expression ratios obtained with the new DNA chip were validated against those obtained with quantitative real-time PCR assays. This novel microarray technology would be a powerful tool for monitoring gene expression profiles, especially for clinical diagnosis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号