首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Nck is a ubiquitously expressed, primarily cytosolic adapter protein consisting of one SH2 domain and three SH3 domains. It links receptor and nonreceptor tyrosine kinases to actin cytoskeleton reorganizing proteins. In T lymphocytes, Nck is a crucial component of signaling pathways for T cell activation and effector function. It recruits actin remodeling proteins to T cell receptor (TCR)‐associated activation clusters and thereby initiates changes in cell polarity and morphology. Moreover, Nck is crucial for the TCR‐induced mobilization of secretory vesicles to the cytotoxic immunological synapse. To identify the interactome of Nck in human T cells, we performed a systematic screen for interaction partners in untreated or pervanadate‐treated cells. We used GST fusion proteins containing full length Nck, the combined SH3 domains or the individual SH3 and SH2 domains to precipitate putative Nck interactors from cellular lysates. Protein bands were excised from gels, processed by tryptic in‐gel digestion and analyzed by mass spectrometry. Using this approach, we confirmed previously established interactions (e.g., with Slp76, CD3ε, WASP, and WIPF1) and identified several novel putative Nck‐binding proteins. We subsequently verified the SH2 domain binding to the actin‐binding protein HIP55 and to FYB/ADAP, and the SH3‐mediated binding to the nuclear proteins SFPQ/NONO. Using laser scanning microscopy, we provide new evidence for a nuclear localization of Nck in human T cells. Our data highlight the fundamental role of Nck in the TCR‐to‐cytoskeleton crosstalk and point to yet unknown nuclear functions of Nck also in T lymphocytes.  相似文献   

2.
Nck proteins are essential Src homology (SH) 2 and SH3 domain-bearing adapters that modulate actin cytoskeleton dynamics by linking proline-rich effector molecules to tyrosine kinases or phosphorylated signaling intermediates. Two mammalian pathogens, enteropathogenic Escherichia coli and vaccinia virus, exploit Nck as part of their infection strategy. Conflicting data indicate potential differences in the recognition specificities of the SH2 domains of the isoproteins Nck1 (Nckalpha) and Nck2 (Nckbeta and Grb4). We have characterized the binding specificities of both SH2 domains and find them to be essentially indistinguishable. Crystal structures of both domains in complex with phosphopeptides derived from the enteropathogenic E. coli protein Tir concur in identifying highly conserved, specific recognition of the phosphopeptide. Differential peptide recognition can therefore not account for the preference of either Nck in particular signaling pathways. Binding studies using sequentially mutated, high affinity phosphopeptides establish the sequence variability tolerated in peptide recognition. Based on this binding motif, we identify potential new binding partners of Nck1 and Nck2 and confirm this experimentally for the Arf-GAP GIT1.  相似文献   

3.
The process generally termed signal transduction involves the coordinated relay of information from extracellular cues to intracellular effectors, subsequently leading to a specified cellular response. The formation of multimeric protein complexes is a critical step in the activation of most intracellular signal transduction cascades. In many cases, these processes are initiated by a family of molecules consisting of protein association motifs known as src homology 2 and 3 (SH2 and SH3) domains. This review focuses on a group of proteins within this family that lack intrinsic enzymatic functions and consist almost entirely of SH2 and SH3 domains. Termed “adaptors,” these proteins serve to physically bridge activated cell surface receptors to various intracellular signal transduction pathways. Here, I briefly summarize current knowledge concerning the various adaptor proteins and place a particular emphasis on Nck. Various data are discussed which collectively support a role for Nck in the regulation of multiple intracellular signaling events. BioEssays 20:913–921, 1998. © 1998 John Wiley & Sons, Inc.  相似文献   

4.
Signalling proteins such as phospholipase C-gamma (PLC-gamma) or GTPase-activating protein (GAP) of ras contain conserved regions of approximately 100 amino acids termed src homology 2 (SH2) domains. SH2 domains were shown to be responsible for mediating association between signalling proteins and tyrosine-phosphorylated proteins, including growth factor receptors. Nck is an ubiquitously expressed protein consisting exclusively of one SH2 and three SH3 domains. Here we show that epidermal growth factor or platelet-derived growth factor stimulation of intact human or murine cells leads to phosphorylation of Nck protein on tyrosine, serine, and threonine residues. Similar stimulation of Nck phosphorylation was detected upon activation of rat basophilic leukemia RBL-2H3 cells by cross-linking of the high-affinity immunoglobulin E receptors (Fc epsilon RI). Ligand-activated, tyrosine-autophosphorylated platelet-derived growth factor or epidermal growth factor receptors were coimmunoprecipitated with anti-Nck antibodies, and the association with either receptor molecule was mediated by the SH2 domain of Nck. Addition of phorbol ester was also able to stimulate Nck phosphorylation on serine residues. However, growth factor-induced serine/threonine phosphorylation of Nck was not mediated by protein kinase C. Interestingly, approximately fivefold overexpression of Nck in NIH 3T3 cells resulted in formation of oncogenic foci. These results show that Nck is an oncogenic protein and a common target for the action of different surface receptors. Nck probably functions as an adaptor protein which links surface receptors with tyrosine kinase activity to downstream signalling pathways involved in the control of cell proliferation.  相似文献   

5.
6.
A murine embryonic cDNA library was screened for potential substrates of the Src family kinase, Lyn, using a phosphorylation-screening strategy. One cDNA that we identified encodes Dok-related protein (DokR), a protein with homology to p62(dok) (Dok), and members of the insulin receptor substrate-1 family of proteins. Analysis of murine tissue extracts with DokR-specific antisera revealed that DokR protein is expressed at highest levels in lymphoid tissues. Co-expression of a FLAG epitope-tagged form of DokR (FLAG-DokR) with Lyn in embryonic kidney 293T cells resulted in constitutive phosphorylation of FLAG-DokR on tyrosine residues and consequential physical association with RasGTPase-activating protein (GAP) and the Nck adaptor protein. Stimulation of BaF/3 hematopoietic cells co-expressing the epidermal growth factor (EGF) receptor tyrosine kinase and FLAG-DokR with EGF also induced phosphorylation of FLAG-DokR and promoted its association with GAP. Immunoprecipitation experiments using DokR-specific antibodies revealed an interaction between endogenous DokR and a 150-kDa protein that is tyrosine-phosphorylated in EGF-stimulated BaF/3 cells. The molecular basis of the interactions involving DokR with GAP and Nck was investigated using a novel glutathione S-transferase fusion protein binding assay and/or site-directed mutagenesis. Tandem SH2-binding sites containing Tyr-276 and Tyr-304 were shown to mediate binding of DokR to GAP, whereas Tyr-351 mediated the binding of DokR to Nck. These results suggest that DokR participates in numerous signaling pathways.  相似文献   

7.
Coaggregation of Fc gamma RIIB1 with B cell Ag receptors (BCR) leads to inhibition of BCR-mediated signaling via recruitment of Src homology domain 2 (SH2)-containing phosphatases. In vitro peptide binding experiments using phosphotyrosine-containing sequences derived from the immunoreceptor tyrosine-based inhibitory motif (ITIM) known to mediate Fc gamma RIIB1 effects suggest that the receptor uses SH2-containing inositol phosphatase (SHIP) and SH2-containing phosphotyrosine phosphatase (SHP)-1, as well as SHP-2 as effectors. In contrast, coimmunoprecipitation studies of receptor-effector associations suggest that the predominant Fc gamma RIIB1 effector protein is SHIP. However, biologically significant interactions may be lost in such studies if reactants' dissociation rates (Kd) are high. Thus, it is unclear to what extent these assays reflect the relative recruitment of SHIP, SHP-1, and SHP-2 to the receptor in vivo. As an alternative approach to this question, we have studied the effects of ectopically expressed SHIP, SHP-1, or SHP-2 SH2-containing decoy proteins on Fc gamma RIIB1 signaling. Results demonstrate the SHIP is the predominant intracellular ligand for the phosphorylated Fc gamma RIIB1 ITIM, although the SHP-2 decoy exhibits some ability to bind Fc gamma RIIB1 and block Fc receptor function. The SHIP SH2, while not affecting Fc gamma RIIB1 tyrosyl phosphorylation, blocks receptor-mediated recruitment of SHIP, SHIP phosphorylation, recruitment of p52 Shc, phosphatidylinositol 3,4,5-trisphosphate hydrolysis, inhibition of mitogen-activated protein kinase activation, and, albeit more modestly, Fc gamma RIIB1 inhibition of Ca2+ mobilization. Taken together, results implicate ITIM interactions with SHIP as a major mechanism of Fc gamma RIIB1-mediated inhibitory signaling.  相似文献   

8.
Various small fragments bearing phosphate, phosphonate or phosphonic acid moieties have been prepared through parallel synthesis and their binding potencies evaluated on the Src SH2 protein using a BIAcore assay. This provided us insight into the requirement of the Src SH2 pTyr binding pocket and some promising small ligands have been characterised.  相似文献   

9.
BACKGROUND: SH2/SH3 adaptor proteins play a critical role in tyrosine kinase signaling pathways, regulating essential cell functions by increasing the local concentration or altering the subcellular localization of downstream effectors. The SH2 domain of the Nck adaptor can bind tyrosine-phosphorylated proteins, while its SH3 domains can modulate actin polymerization by interacting with effectors such as WASp/Scar family proteins. Although several studies have implicated Nck in regulating actin polymerization, its role in living cells is not well understood. RESULTS: We used an antibody-based system to experimentally modulate the local concentration of Nck SH3 domains on the plasma membrane of living cells. Clustering of fusion proteins containing all three Nck SH3 domains induced localized polymerization of actin, including the formation of actin tails and spots, accompanied by general cytoskeletal rearrangements. All three Nck SH3 domains were required, as clustering of individual SH3 domains or a combination of the two N-terminal Nck SH3 domains failed to promote significant local polymerization of actin in vivo. Changes in actin dynamics induced by Nck SH3 domain clustering required the recruitment of N-WASp, but not WAVE1, and were unaffected by downregulation of Cdc42. CONCLUSIONS: We show that high local concentrations of Nck SH3 domains are sufficient to stimulate localized, Cdc42-independent actin polymerization in living cells. This study provides strong evidence of a pivotal role for Nck in directly coupling ligand-induced tyrosine phosphorylation at the plasma membrane to localized changes in organization of the actin cytoskeleton through a signaling pathway that requires N-WASp.  相似文献   

10.
The Src homology (SH) region 2 binds to phosphorylated tyrosine residues and SH3 domains may interact with cytoskeletal molecules and GTPase-activating proteins for Rho/Rac proteins (the small GTP-binding proteins related to Ras). The recently cloned Ash/Grb-2 protein, a 25-28 kDa molecule composed entirely of SH2 and SH3 domains, is a mammalian homolog of the Caenorhabditis elegans Sem-5 protein, which communicates between a receptor protein tyrosine kinase and a Ras protein. In the present study the function of Ash/Grb-2 was investigated by microinjecting cells with an anti-Ash antibody. The antibody abolished both S phase entry and the reorganization of actin assembly to ruffle formation upon stimulation with epidermal growth factor (EGF) and platelet-derived growth factor (PDGF). On the other hand, anti-Ash antibody had no effect on S phase entry or actin stress fiber formation induced by either serum or lysophosphatidic acid. Since the induction of DNA synthesis, ruffle induction and stress fiber formation involve a function of Ras, Rac activation and Rho activation respectively, the findings strongly suggest that Ash plays a critical role in the signaling of both pathways downstream from growth factor receptors to Ras and Rac. Consistent with this, Ash co-precipitated with EGF receptor from EGF-stimulated cells. Other proteins of approximately 21, 29, 135 and 160 kDa were also detected in the anti-Ash antibody immunoprecipitates, suggesting a role of Ash as a linker molecule in signal transduction downstream of growth factor receptors.  相似文献   

11.
SH2 and SH3 adapter proteins connect cell surface tyrosine kinases to intracellular signaling networks. For instance, the SH3-SH2-SH3 adapter Grb2 links receptor tyrosine kinases to the Ras pathway. Nck, composed of three SH3 domains and one SH2 domain, represents a two-gene (alpha and beta) family in mammals. Nckalpha and Nckbeta are expressed in the same cells and appear to have distinct signaling specificity. Studies show that Nck plays a role in cell mitogenesis and morphogenesis. The former uses Ras-dependent and Ras-independent pathways. The latter appears to coordinate with the Cdc42/Rac>PAK1/WASp>actin cytoskeleton pathway. Understanding the specificity of Nckalpha and Nckbeta signal transduction will provide answers for the previously often conflicting observations.  相似文献   

12.
The negative regulation of T- or B-cell antigen receptor signaling by CD5 was proposed based on studies of thymocytes and peritoneal B-1a cells from CD5-deficient mice. Here, we show that CD5 is constitutively associated with phosphotyrosine phosphatase activity in Jurkat T cells. CD5 was found associated with the Src homology 2 (SH2) domain containing hematopoietic phosphotyrosine phosphatase SHP-1 in both Jurkat cells and normal phytohemagglutinin-expanded T lymphoblasts. This interaction was increased upon T-cell receptor (TCR)-CD3 cell stimulation. CD5 co-cross-linking with the TCR-CD3 complex down-regulated the TCR-CD3-increased Ca2+ mobilization in Jurkat cells. In addition, stimulation of Jurkat cells or normal phytohemagglutinin-expanded T lymphoblasts through TCR-CD3 induced rapid tyrosine phosphorylation of several protein substrates, which was substantially diminished after CD5 cross-linking. The CD5-regulated substrates included CD3zeta, ZAP-70, Syk, and phospholipase Cgammal but not the Src family tyrosine kinase p56(lck). By mutation of all four CD5 intracellular tyrosine residues to phenylalanine, we found the membrane-proximal tyrosine at position 378, which is located in an immunoreceptor tyrosine-based inhibitory (ITIM)-like motif, crucial for SHP-1 association. The F378 point mutation ablated both SHP-1 binding and the down-regulating activity of CD5 during TCR-CD3 stimulation. These results suggest a critical role of the CD5 ITIM-like motif, which by binding to SHP-1 mediates the down-regulatory activity of this receptor.  相似文献   

13.
We have constructed a series of mutants with deletion, linker insertion, and point mutations in the v-crk oncogene of avian sarcoma virus CT10. The v-crk gene contains no apparent catalytic domain, but does contain two blocks of homology to putative regulatory domains, termed SH2 and SH3, found in a variety of proteins implicated in signal transduction. Infection with CT10 causes a dramatic increase in the level of tyrosine phosphorylation of several cellular proteins. We found that mutation of either the SH2 or SH3 domain of v-crk reduced or eliminated transforming activity, whereas mutation of regions outside the conserved domains had no effect. Deletion of amino-terminal gag sequences caused a partial loss of transforming activity and a change in subcellular distribution of the crk protein. In all cases, there was an absolute correlation between increased cellular phosphotyrosine and transformation.  相似文献   

14.
Liu J  Li M  Ran X  Fan JS  Song J 《Biochemistry》2006,45(23):7171-7184
Human Nck2 (hNck2) is a 380-residue adapter protein consisting of three SH3 domains and one SH2 domain. Nck2 plays a pivotal role in connecting and integrating signaling networks constituted by transmembrane receptors such as ephrinB and effectors critical for cytoskeletonal dynamics and remodeling. In this study, we aimed to determine the NMR structures and dynamic properties of the hNck2 SH3 domains and to define their ligand binding preferences with nine proline-rich peptides derived from Wire, CAP-1, CAP-2, Prk, Wrch1, Wrch2, and Nogo. The results indicate (1) the first hNck2 SH3 domain is totally insoluble. On the other hand, although the second and third hNck2 SH3 domains adopt a conserved SH3 fold, they exhibit distinctive dynamic properties. Interestingly, the third SH3 domain has a far-UV CD spectrum typical of a largely unstructured protein but exhibits {1H}-15N steady-state NOE values larger than 0.7 for most residues. (2) The HSQC titrations revealed that the two SH3 domains have differential ligand preferences. The second SH3 domain seems to prefer a consensus sequence of APx#PxR, while the third SH3 domain prefers PxAPxR. (3) Several high-affinity bindings were identified for hNck2 SH3 domains by isothermal titration calorimetry. In particular, the binding of SH3-3 with the Nogo-A peptide was discovered and shown to exhibit a Kd of 5.7 microM. Interestingly, of the three SH3-binding motifs carried by Wrch1, only the middle one was capable of binding SH3-2. Our results provide valuable clues for further functional investigations into the Nck2-mediated signaling networks.  相似文献   

15.
Protein engineering through directed evolution is an effective way to obtain proteins with novel functions with the potential applications as tools for diagnosis or therapeutics. Many natural proteins have undergone directed evolution in vitro in the test tubes in the laboratories worldwide, resulting in the numerous protein variants with novel or enhanced functions. we constructed here an SH2 variant library by randomizing 8 variable residues in its phosphotyrosine (pTyr) binding pocket. Selection of this library by a pTyr peptide led to the identification of SH2 variants with enhanced affinities measured by EC50. Fluorescent polarization was then applied to quantify the binding affinities of the newly identified SH2 variants. As a result, three SH2 variants, named V3, V13 and V24, have comparable binding affinities with the previously identified SH2 triple‐mutant superbinder. Biolayer Interferometry assay was employed to disclose the kinetics of the binding of these SH2 superbinders to the phosphotyrosine peptide. The results indicated that all the SH2 superbinders have two‐orders increase of the dissociation rate when binding the pTyr peptide while there was no significant change in their associate rates. Intriguingly, though binding the pTyr peptide with comparable affinity with other SH2 superbinders, the V3 does not bind to the sTyr peptide. However, variant V13 and V24 have cross‐reactivity with both pTyr and sTyr peptides. The newly identified superbinders could be utilized as tools for the identification of pTyr‐containing proteins from tissues under different physiological or pathophysiological conditions and may have the potential in the therapeutics.  相似文献   

16.
Mammalian Nck1 and Nck2 are closely related adaptor proteins that possess three SH3 domains, followed by an SH2 domain, and are implicated in coupling phosphotyrosine signals to polypeptides that regulate the actin cytoskeleton. However, the in vivo functions of Nck1 and Nck2 have not been defined. We have mutated the murine Nck1 and Nck2 genes and incorporated beta-galactosidase reporters into the mutant loci. In mouse embryos, the two Nck genes have broad and overlapping expression patterns. They are functionally redundant in the sense that mice deficient for either Nck1 or Nck2 are viable, whereas inactivation of both Nck1 and Nck2 results in profound defects in mesoderm-derived notochord and embryonic lethality at embryonic day 9.5. Fibroblast cell lines derived from Nck1(-/-) Nck2(-/-) embryos have defects in cell motility and in the organization of the lamellipodial actin network. These data suggest that the Nck SH2/SH3 adaptors have important functions in the development of mesodermal structures during embryogenesis, potentially linked to a role in cell movement and cytoskeletal organization.  相似文献   

17.
A cDNA clone encoding a novel, widely expressed protein (called growth factor receptor-bound protein 2 or GRB2) containing one src homology 2 (SH2) domain and two SH3 domains was isolated. Immunoblotting experiments indicate that GRB2 associates with tyrosine-phosphorylated epidermal growth factor receptors (EGFRs) and platelet-derived growth factor receptors (PDGFRs) via its SH2 domain. Interestingly, GRB2 exhibits striking structural and functional homology to the C. elegans protein sem-5. It has been shown that sem-5 and two other genes called let-23 (EGFR like) and let-60 (ras like) lie along the same signal transduction pathway controlling C. elegans vulval induction. To examine whether GRB2 is also a component of ras signaling in mammalian cells, microinjection studies were performed. While injection of GRB2 or H-ras proteins alone into quiescent rat fibroblasts did not have mitogenic effect, microinjection of GRB2 together with H-ras protein stimulated DNA synthesis. These results suggest that GRB2/sem-5 plays a crucial role in a highly conserved mechanism for growth factor control of ras signaling.  相似文献   

18.
The binding of tyrosine phosphorylated targets by SH2 domains is required for propagation of many cellular signals in higher eukaryotes; however, the determinants of phosphotyrosine (pTyr) recognition by SH2 domains are not well understood. In order to identify the attributes of pTyr required for high affinity interaction with SH2 domains, the binding of the SH2 domain of the Src kinase (Src SH2 domain) to a dephosphorylated peptide, a phosphoserine-containing peptide, and the amino acid pTyr was studied using titration calorimetry and compared with the binding of a high affinity tyrosyl phosphopeptide. The dephosphorylated peptide and the phosphoserine containing peptide both bind extremely weakly to the Src SH2 domain (DeltaGo (dephosphorylated)=-3.6 kcal/mol, DeltaGo (phosphoserine) >-3.7 kcal/mol); however, the DeltaGo value of pTyr binding is more favorable (-4.7 kcal/mol, or 50 % of the entire binding free energy of a high affinity tyrosyl phosphopeptide). These results indicate that both the phosphate and the tyrosine ring of the pTyr are critical determinants of high affinity binding. Alanine mutagenesis was also used to evaluate the energetic contribution to binding of ten residues located in the pTyr-binding site. Mutation of the strictly conserved Arg betaB5 resulted in a large increase in DeltaGo (DeltaDeltaGo=3.2 kcal/mol) while elimination of the other examined residues each resulted in a significantly smaller (DeltaDeltaGo<1.4 kcal/mol) reduction in affinity, indicating that Arg betaB5 is the single most important determinant of pTyr recognition. However, mutation of Cys betaC3, a residue unique to the Src SH2 domain, surprisingly increased affinity by eightfold (DeltaDeltaGo=-1.1 kcal/mol). Using a double mutant cycle analysis, it was revealed that residues of the pTyr-binding pocket are not coupled to the peptide residues C-terminal to the pTyr. In addition, comparison of each residue's DeltaDeltaGo value upon mutation with that residue's sequence conservation among SH2 domains revealed only a modest correlation between a residue's energetic contribution to pTyr recognition and its conservation throughout evolution. The results of this investigation highlight the importance of a single critical interaction, the buried ionic bond between the phosphate of the pTyr and Arg betaB5 of the SH2 domain, driving the binding of SH2 domains to tyrosine phosphorylated targets.  相似文献   

19.
D Cussac  M Frech    P Chardin 《The EMBO journal》1994,13(17):4011-4021
Phosphotyrosine peptide binding to Grb2 induces tryptophan fluorescence changes in the Src homology 2 (SH2) domain. Affinities are in the nanomolar range, the Shc peptide having the highest affinity, followed by peptides mimicking Grb2 binding sites on EGF and HGF receptors, the putative sites on insulin and IGF-1 receptors having much lower affinities. Proline-rich peptide binding to the SH3 domains induces fluorescence changes mainly in the C-terminal SH3. Affinities are in the micromolar range, the highest affinity peptides mimicking the first proline-rich motif of the Sos C-terminus. Additional residues before this PVPPPVPP motif provide a minor contribution to the binding, but the two residues after this motif are important and may contribute to specificity. The affinity of each SH3 for each proline-rich motif is too low to account for the high stability of the Grb2-Sos complex, suggesting that Grb2 recognizes other structural features in the Sos C-terminus. Binding of a phosphotyrosine peptide to the SH2 has no effect on the SH3s. Thus the binding of Grb2 to a receptor or to an associated protein phosphorylated on tyrosines is unlikely to activate the exchange factor activity of Sos through a conformational change transmitted from the SH2 to the SH3 domains.  相似文献   

20.
SHIP2 is a phosphatidylinositol 3,4,5-trisphosphate (PtdIns(3,4,5)P(3)) 5-phosphatase which contains motifs susceptible to mediate protein-protein interaction. Using yeast two-hybrid, GST-pulldown, and coimmunoprecipitation studies, we isolated the CAP cDNA as a specific partner of SHIP2 proline-rich domain and showed by GST-pulldown experiments that the interaction took place with the SH3C of CAP. The interaction was not modulated in COS-7 cells stimulated by EGF neither in CHO cells overexpressing the insulin receptor in the presence or absence of insulin stimulation. We also showed that SHIP2 was able to coimmunoprecipitate with endogenous c-Cbl protein in the absence of CAP and with the insulin receptor in CHO-IR cell extracts. The presence of SHIP2 in a complex around the insulin receptor could account for the very specific increase in insulin sensitivity of SHIP2 knock-out mice.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号