首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Protein products of the bithorax complex in Drosophila   总被引:49,自引:0,他引:49  
R A White  M Wilcox 《Cell》1984,39(1):163-171
A sequence from the Ubx 5' exon in the bithorax complex of Drosophila melanogaster was expressed as a fusion protein in bacteria. This protein was used to raise rabbit antisera and monoclonal antibodies. These antibodies detect antigens that, on protein blots and by immunofluorescence on whole mounts of imaginal discs, show the predicted segmental distribution of Ubx products. These products are predominantly, if not totally, localized in the cell nucleus. In the embryonic nervous system nuclei are labeled from the second thoracic segment to the eighth abdominal segment. There is no labeling in homozygous Df bxd100 embryos.  相似文献   

2.
3.
4.
In the work reported here we have analyzed the role of the GAGA factor [encoded by the Trithorax-like (Trl) gene] in the enhancer-blocking activity of Frontabdominal-7 (Fab-7), a domain boundary element from the Drosophila melanogaster bithorax complex (BX-C). One of the three nuclease hypersensitive sites in the Fab-7 boundary, HS1, contains multiple consensus-binding sequences for the GAGA factor, a protein known to be involved in the formation and/or maintenance of nucleosome-free regions of chromatin. GAGA protein has been shown to localize to the Fab-7 boundary in vivo, and we show that it recognizes sequences from HS1 in vitro. Using two different transgene assays we demonstrate that GAGA-factor-binding sites are necessary but not sufficient for full Fab-7 enhancer-blocking activity. We show that distinct GAGA sites are required for different enhancer-blocking activities at different stages of development. We also show that the enhancer-blocking activity of the endogenous Fab-7 boundary is sensitive to mutations in the gene encoding the GAGA factor Trithorax-like.  相似文献   

5.
Summary We have studied the influence of some mutations in the bithorax complex on the observed synapsis dependent phenotype of the genotypes Cbx 1Ubx1/+ and bx 34e/Ubx1. The effect of these mutations is similar to that introduced by disruption of pairing or by the z a mutation. Among the bx mutations, we find that bx 8 behaves differently from most other bx mutations in its influence on the synapsis dependent phenotype. This observation induced us to map the position of bx 8 with respect to other bx mutations; we find that it maps between bx 34e and bx 3. We show how some of the observations reported here can be fitted into a model of activation of the bithorax complex proposed by one of us.  相似文献   

6.
7.
8.
The homeotic Abdominal-B (Abd-B) gene expression depends on a modular cis-regulatory region divided into discrete functional domains (iab) that control the expression of the gene in a particular segment of the fly. These domains contain regulatory elements implicated in both initiation and maintenance of homeotic gene expression and elements that separate the different domains. In this paper we have performed an extensive analysis of the iab-6 regulatory region, which regulates Abd-B expression at abdominal segment A6 (PS11), and we have characterized two new polycomb response elements (PREs) within this domain. We report that PREs at Abd-B cis-regulatory domains present a particular chromatin structure which is nuclease accessible all along Drosophila development and both in active and repressed states. We also show that one of these regions contains a dCTCF and CP190 dependent activity in transgenic enhancer-blocking assays, suggesting that it corresponds to the Fab-6 boundary element of the Drosophila bithorax complex.  相似文献   

9.
We have constructed double and triple mutant combinations for the Ubx, abd-A and Abd-B genes of the bithorax complex and have examined the homeotic transformations they produce in the larval and adult patterns. Embryos hemizygous for the triple combination exhibit a metameric pattern consisting of parasegments 5-12 being transformed into parasegment 4. In addition, parasegment 13 develops like a mixture of parasegment 3 and 4, and parasegment 14 is abnormal. The same phenotype is displayed by embryos homozygous for DfP9, lacking all the BX-C DNA, >300 kb. This result strongly supports the notion that the BX-C contains only three genes which account for all the developmental functions of the complex. The phenotypes of the different double combinations also support the same view; the Ubx abd-a comthoracic and several abdominal functions. The abd-A Abd-B combination exhibits the same phenotype of DpP10 DfP9, lacking all the abdominal functions except those specific for A1. Our results also indicate that each BX-C gene becomes active autonomously regardless of the presence or functional state of the other BX-C genes.  相似文献   

10.
11.
12.
Boĭkova TV  Orlando V  Lupo R  Bogachev SS 《Genetika》2005,41(11):1467-1479
The bithorax (BX) complex of Drosophila is a complex polygenic region with a multifactorial system of regulation. One of the levels of the regulatory system of the BX complex is its association with the nuclear skeleton structures through a specific interaction of the M/SAR DNA with the nuclear matrix proteins. In the present work, M/SAR elements were mapped on the molecular-genetic map of the region. All of the elements examined were found to colocalize with regulatory elements and form clusters that restrict/bracket the genetically active domains. All M/SAR DNA revealed was shown to bins specifically to the purified Drosophila melanogaster lamin.  相似文献   

13.
14.
A relatively large number of genes have been described that are required for the normal spatial expression of the genes of the bithorax complex. Most of these regulators appear to act negatively and are required to prevent indiscriminate expression of bithorax complex (BX-C) functions. In this report we examine five negative BX-C regulators to determine whether these are maternally expressed in germ-line derived cells. The genes studied include Additional sex combs (Asx), Polycomblike (Pcl), Sex comb extra (Sce), Sex comb on midleg (Scm), and lethal(4)29 [l(4)29]. The maternal germ-line dependent expression of each of these genes is assessed by comparison of zygotes from mothers whose functional germ cells carry no wild-type alleles to zygotes from mothers whose germ cells contain one wild-type allele. Because mutant alleles of each of the genes studied are recessive lethals, mosaic females with homozygous or hemizygous mutant germ lines were produced by pole cell transplantation. The results demonstrate that all of the negative regulators tested are expressed in the maternal germ line and all play important roles in the regulation of BX-C activities during embryogenesis. The absence of maternally supplied products from all of the genes studied except l(4)29 can be largely or completely compensated for by the activity in the zygote of a paternally contributed wild-type allele. It is argued that, with the exception of l(4)29, the genes studied in this report are qualitatively similar in function to the previously described BX-C regulators Pc, esc, and sxc. The available evidence indicates that genes within this group have functions that are not restricted to the regulation of genes that control segmental identity.  相似文献   

15.
The anterobithorax and bithorax mutations of the bithorax complex.   总被引:26,自引:11,他引:15       下载免费PDF全文
M Peifer  W Bender 《The EMBO journal》1986,5(9):2293-2303
  相似文献   

16.
Homoeotic mutations of the bithorax complex cause segmental transformations. The genes in which these mutations occur are good candidates for genes that are involved in determination. The determination system in imaginal discs must have at least two functions. One is a cell heredity function that is responsible for maintaining the determined state during growth and development. A second is the expression of the determined state (e.g., different imaginal discs have different morphologies). The homoeotic mutations of the bithorax complex could be affecting either of these two functions. I have found that when posterior haltere disc cells, that are transformed by the mutation postbithorax so that they form wing cuticle in situ, regenerate anterior structures, these structures are anterior wing. This is the same result as that seen when wild-type posterior-wing disc cells regenerate anterior structures. On the other hand, when anterior haltere disc cells transformed by the mutation bithorax3, so that they produce wing cuticle in situ, regenerate, they produce posterior haltere structures. This is unlike wild-type anterior-wing disc cells, which regenerate posterior-wing structures. From these results, I conclude that bithorax3 affects the expression of the determined state and postbithorax affects the cell heredity of determination.  相似文献   

17.
18.
Summary We have studied the course of the operculum line in the larval hypoderm of several bithorax complex mutants of Drosophila melanogaster. The bifurcation of the line, a characteristic of the first abdominal segment in wild-type (A1), can also appear in the metathoracic (T3) and other abdominal segments (A2, A3) depending on mutations within the bithorax complex. Therefore, we concluded that the course of the operculum line and thus the shape of the operculum is not determined by a suprasegmental gradient of positional information but by the functional state of the genes of the bithorax complex in each metamere. The dorsal and ventral branches of the operculum line react differently, the dorsal branch being more sensitive to the effect of loss of function mutations (bxd, iab-2 k), the ventral branch more affected by gain of function mutations (Hab). In some cases the effects of the mutations on the operculum line differed from those in the adult, suggesting a difference in sensitivity of larval hypodermal cells and histoblast cells to the functional gene products of the bithorax complex.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号