首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This study extended findings of others related to the fatigue resistance of maximum voluntary knee extension contractions performed eccentrically on an isokinetic dynamometer. Twelve subjects performed either 75 unilateral isokinetic concentric MVCs or 75 unilateral isokinetic eccentric MVCs at 30 degrees s(-1). A uniquely-configured dynamometer provided the opportunity to describe the effect of the concentric or eccentric fatigue protocol on the concentric or eccentric MVC force of the contralateral limb, which was not involved in the fatigue protocol, immediately following the conclusion of the fatigue protocol. Eccentric MVC of the eccentrically fatigued group decreased significantly (13%, p = 0.001) although the decrease was significantly smaller than that of the concentric MVC of the concentrically fatigued group (39%). Concentric MVC of the contralateral limb was unaffected following the concentric fatigue protocol but the eccentric MVC of the contralateral limb increased 11% (p = 0.028) following the eccentric fatigue protocol. These results suggest that eccentric MVCs are not resistant to fatigue but do follow a different time course than fatigue induced with concentric contractions. The extent to which eccentrically performed MVCs fatigue may reflect the influence of protocol parameters such as the isokinetic speed, the number of repetitions, the criteria by which the protocol is terminated and the subject selection. However, the explanations for why eccentric MVCs fatigue to such a smaller extent necessitate further systematic investigation including electrophysiologic methods, as do the results relative to the contralateral leg. Both results can be considered within the framework of current thought about the disparate nature of nervous system control of eccentric contractions.  相似文献   

2.
NOBEL  PARK S.; CUI  MUYI 《Annals of botany》1992,70(6):485-491
Attached 2-month-old roots of the succulent plant, Opuntia ficus-indica,shrank 0.4% radially during periods of maximal transpirationunder wet conditions. In contrast, reversible decreases in diameterof nearly 20% occurred for these roots as their ambient waterpotential () in the vapour phase decreased from –0.01to –10 MPa over 8 d, the changes being slightly more rapidat 40 °C than at 10 °C. Such substantial diameter changesbecame progressively less with root age, from a 43% decreasein diameter at 3 weeks to a 6% decrease at 12 months Root shrinkagewas slight when was decreased from –0.01 to –0.3MPa, the latter being similar to the root water potential.As was further decreased from –0.3 to –10 MPa,water movement out of cortical cells caused considerable rootshrinkage. The root hydraulic conductivity (Lp) decreased only30 to 60% for a change in from –0.01 to –10 MPacompared with a decrease of over 106-fold for the soil hydraulicconductivity over this range. The overall conductivity of thesoil, the root-soil air gap, and the root was predicted to bedominated by Lp for soil above –0.3 MPa. As simulatedsoil decreased below –0.3 MPa, the root-soil air gap initiallybecame the primary limiter of water loss from the roots. Below–5 MPa for 1-month-old roots and below –2 MPa for12-month-old roots, the soil became the main limiter of waterloss. Thus, water uptake from wet soils apparently was mainlycontrolled by root properties Water loss to drying soils wascontrolled by the development of a root-soil air gap aroundshrinking roots during the initial phase of soil drying andby the reduction of the soil hydraulic conductivity at evenlower soil. Root diameter, root hydraulic conductivity, root-soil air gap, soil hydraulic conductivity  相似文献   

3.
The tropical epiphytic cacti Epiphyllum phyllanthus and Rhipsalis baccifera experience extreme variations in soil moisture due to limited soil volumes and episodic rainfalls. To examine possible root rectification, whereby water uptake from a wet soil occurs readily but water loss to a dry soil is minimal, responses of root hydraulic conductivity (Lp) to soil drying and rewetting were investigated along with the underlying anatomical changes. After 30 d of soil drying, Lp decreased 50%–70% for roots of both species, primarily because increased suberization of the periderm reduced radial conductivity. Sheaths composed of soil particles, root hairs, and mucilage covered young roots and helped reduce root desiccation. Axial (xylem) conductance increased during drying due to vessel differentiation and maturation, and drought-induced embolism was relatively low. Within 4 d of rewetting, Lp for roots of both species attained predrought values; radial conductivity increased for young roots due to the growth of new branch roots initiated during drying and for older roots due to the development of radial breaks in the periderm. The decreases in Lp during drought reduced plant water loss to a dry soil, and yet maximal water uptake and transpiration occurred within a few days of rewetting, helping these epiphytes to take advantage of episodic rainfalls in a moist tropical forest.  相似文献   

4.
The contrasting hydraulic properties of wheat (Triticum aestivum), narrow-leafed lupin (Lupinus angustifolius), and yellow lupin (Lupinus luteus) roots were identified by integrating measurements of water flow across different structural levels of organization with anatomy and modeling. Anatomy played a major role in root hydraulics, influencing axial conductance (Lax) and the distribution of water uptake along the root, with a more localized role for aquaporins (AQPs). Lupin roots had greater Lax than wheat roots, due to greater xylem development. Lax and root hydraulic conductance (Lr) were related to each other, such that both variables increased with distance from the root tip in lupin roots. Lax and Lr were constant with distance from the tip in wheat roots. Despite these contrasting behaviors, the hydraulic conductivity of root cells (Lpc) was similar for all species and increased from the root surface toward the endodermis. Lpc was largely controlled by AQPs, as demonstrated by dramatic reductions in Lpc by the AQP blocker mercury. Modeling the root as a series of concentric, cylindrical membranes, and the inhibition of AQP activity at the root level, indicated that water flow in lupin roots occurred primarily through the apoplast, without crossing membranes and without the involvement of AQPs. In contrast, water flow across wheat roots crossed mercury-sensitive AQPs in the endodermis, which significantly influenced Lr. This study demonstrates the importance of examining root morphology and anatomy in assessing the role of AQPs in root hydraulics.  相似文献   

5.
We studied the possibility whether the initiation of secondary roots is regulated by the air-filled porosity in soil, i.e. the availability of oxygen in the soil. Maize plants were grown in long PVC tubes (1 m long and 12 cm diameter) and were unwatered for different numbers of days so that variations of soil water content with depth were achieved on the same date with plants at the same age. The plants were harvested when their root systems were established in the whole soil column and watering had been withheld for 0, 15, 20, 25 days. A decrease of soil water content was significantly correlated with an increase of air-filled porosity in soil. The number of secondary lateral roots from segments of primary adventitious roots increased dramatically when soil water content decreased from field capacity to about 0.05 g water g-1 dried soil. The total dried mass of roots at different soil depths was also positively correlated with soil air-filled porosity. It was observed that the elongation of the initiated secondary roots responded differently to the variations of soil air-filled porosity. The length of secondary roots increased initially when the soil was dried from field capacity to 0.18 g g-1 dried soil (water potential at about−0.2 MPa, air-filled porosity 0.26 cm3 cm-3), but was drastically reduced when the soil was dried further. Obviously elongation of secondary roots was inhibited when soil water potential began to deviate substantially from an optimum value. The present results suggested that the initiation of secondary roots was greatly promoted by the increase of air-filled soil porosity, i.e. availability of oxygen. This conclusion was further verified in a separate experiment where solution-cultured maize seedlings were subjected to different aeration treatments. An obvious increase in secondary root initiation was found in plants which were aerated with normal air (21% O2) than in plants which were either not aerated or aerated with 5% O2 air. ei]Section editor: B E Clothier  相似文献   

6.
This study investigates the dynamic and resting intramuscular pressures associated with eccentric and concentric exercise of muscles in a low-compliance compartment. The left and righ leg anterior compartments of eight healthy males (ages 22-32 yr) were exercised by either concentric or eccentric contractions of the same load (400 submaximal contractions at constant rate, 20/min for 20 min at a load corresponding to 15% of individual maximal dorsiflexion torque). Tissue fluid pressures were measured with the slit-catheter technique before, during, and after the exercise. Average peak intramuscular pressure generated during eccentric exercise (236 mmHg) was significantly greater than during concentric exercise (157 mmHg, P less than 0.001). Peak isometric contraction pressure in the eccentrically exercised compartment was significantly higher both within 20 min postexercise and on the second postexercise day (P less than 0.001). Resting pressure 2 days postexercise was significantly higher on the eccentrically exercised side (10.5 mmHg) compared with the concentrically exercised (4.4 mmHg, P less than 0.05). The ability to sustain tension during postexercise isometric contractions was impaired on the "eccentric" side. Soreness was exclusively experienced in the eccentrically exercised muscles. We conclude that eccentric exercise causes significant intramuscular pressure elevation in the anterior compartment, not seen following concentric exercise, and that this may be one of the factors associated with development of delayed muscle soreness in a tight compartment.  相似文献   

7.
Lengthening (eccentric) muscle contractions are characterized by several unusual properties that may result in unique skeletal muscle adaptations. In particular, high forces are produced with very little energy demand. Eccentrically trained muscles gain strength, but the specific nature of fiber size and composition is poorly known. This study assesses the structural and functional changes that occur to normal locomotor muscle after chronic eccentric ergometry at training intensities, measured as oxygen uptake, that do not influence the muscle when exercised concentrically. Male subjects trained on either eccentric or concentric cycle ergometers for 8 wk at a training intensity starting at 54% and ending at 65% of their peak heart rates. The isometric leg strength increased significantly in the eccentrically trained group by 36%, as did the cross-sectional area of the muscle fiber by 52%, but the muscle ultrastructure remained unchanged. There were no changes in either fiber size, composition, or isometric strength in the concentrically trained group. The responses of muscle to eccentric training appear to be similar to resistance training.  相似文献   

8.
Water movement to and from a root depends on the soil hydraulicconductivity coefficient (Lsoil), the distance across any root-soilair gap, and the hydraulic conductivity coefficient of the root(LP). After analytical equations for the effective conductanceof each part of the pathway are developed, the influences ofsoil drying on the soil water potential and Lsoil are describedduring a 30 d period for a loamy sand in the field. The influencesof soil drying on LP for three desert succulents, Agave deserti,Ferocactus acanthodes, and Opuntia ficus-indica, are also describedfor a 30 d period. To quantify the effects of soil drying onthe development of a root-soil air gap, diameters of 6-week-oldroots of the three species were determined at constant watervapour potentials of –1.0 MPa and –10 MPa as wellas with the water vapour potential decreasing at the same rateas soil drying during a 30 d period. The shrinkage observedfor roots initially 2·0 mm in diameter averaged 19% duringthe 30d period. The predominant limiting factor for water movementwas LP of the root for the first 7 d of soil drying, the root-soilair gap for the next 13 d, and Lsoil thereafter. Compared withthe ease of water uptake from a wet soil, the decrease in conductancesduring soil drying, especially the decrease in Lsoil causedthe overall conductance to decrease by 3 x 103-fold during the30 d period for the three species considered, so relativelylittle water was lost to the dry soil. Such rectifier-like behaviourof water movement in the soil-root system resulted primarilyfrom changes in Lsoil and, presumably, is a general phenomenonamong plants, preventing water loss during drought but facilitatingwater uptake after rainfall. Key words: Agave deserti, Ferocactus acanthodes, Opuntia ficus-indica, rectification, soil water potential, water movement  相似文献   

9.
The anchorage of winter wheat, Triticum aestivum L., is providedby a cone of rigid coronal roots which emerge from around thestem base. During root lodging this cone rotates at its windwardedge below the soil surface, the soil inside the cone movingas a block and compressing the soil beneath. A theoretical modelof anchorage suggested that lodging resistance should be dependenton the diameter of the root-soil cone, coronal root bendingstrength and soil shear strength. We tested the predictions of the anchorage model by carryingout two series of experiments. In the first, varieties of contrastinglodging resistances were artificially lodged. The moment requiredto rotate plants into the soil, the diameter of the root-soilcone, and the bending strength of the coronal roots were recorded.The lodging moment was correlated with the size of the soilcone, as predicted. Generally, differences in anchorage strengthbetween varieties were due to differences in root-soil conediameter, although coronal root strength was also important. A second series of tests was carried out using model plantsanchored by plastic discs. The behaviour of the models duringartificial lodging supported the anchorage model; the forceresisting lodging was similar to that of plants with root-soilcones of the same size and the resisting force was dependenton the soil strength. These results suggest that root lodging resistance might beimproved by increasing both the angle of spread and the bendingstrength of the coronal roots. Key words: Anchorage, root-soil cone, coronal roots, lodging, wheat  相似文献   

10.
The purpose of this study was to investigate the force-producing characteristics of boys aged 13 years in relation to fatigue of elbow flexor muscles. Maximal voluntary force in elbow flexion was measured before and after a muscle endurance test (MET) by using an isokinetic dynamometer isometrically, concentrically and eccentrically at three velocities, i.e. 0.21, 0.52, and 1.05 rad · s–1. The MET consisted of maximal concentric and eccentric muscle actions performed alternately at 0.52 rad · s–1 for 50 consecutive trials. Muscle cross-sectional area (CSA) of elbow flexor muscles (biceps brachii and brachialis) was measured by a B-mode ultrasound apparatus. Although eccentric force showed significantly higher values than concentric force during MET, there was no significant difference in the rate of decline in force between the two actions. There was no significant difference in the rate of decline in force after MET for each velocity and muscle action. Isometric, concentric and eccentric force before MET was significantly related to muscle CSA whereas, after MET, concentric force significantly correlated with muscle CSA but there was no significant correlation between muscle CSA and isometric or eccentric force. From our study, it is therefore suggested that in development to maturity, isometric, concentric and eccentric force decrease at the same rate with advancing muscle fatigue; however, there might be differences among muscle actions in facors affecting force development.  相似文献   

11.
根系作为植物与土壤物质交换和养分循环的桥梁,长期以来一直是生态学研究的热点。于2017年7月植物生长季,对长白山模拟11年氮(N)沉降控制试验样地的白桦(Betula platyphylla)山杨(Populus davidiana)天然次生林进行了根系采样,并利用根序法研究了根系形态特征和解剖结构对不同梯度N添加处理的响应,旨在探求两物种根系之间潜在生态联系。本试验共设置了三个N添加梯度,分别为对照(CK,0 g N m~(-2 )a~(-1))、低N处理(T_L,2.5 g N m~(-2 )a~(-1))和高N处理(T_H,5.0 g N m~(-2 )a~(-1))。研究结果如下:1)T_L显著抑制白桦和山杨前三级细根皮层厚度的生长。白桦通过增加皮层细胞直径(一级根增加了72.77%,二级根增加了53.22%,三级根增加了39.96%)但减少皮层层数来降低皮层厚度,而山杨主要通过皮层细胞直径的减少(一级根下降了40.80%,二级根下降了28.17%)来降低其皮层厚度。2)T_H显著抑制山杨前三级细根生长。主要通过增加皮层厚度(一级根增加了68.78%,二级根增加了50.81%,三级根增加了88.53%)以及降低导管横截面积来抑制吸收养分,从而达到影响生长的目的。3)白桦T_H相比于T_L细根直径呈抑制生长状态。其主要通过抑制中柱直径(一级根下降了17.61%,二级根下降了16.89%,三级根下降了20.62%)的生长来实现。以上结果表明,在同一立地条件下,白桦和山杨的细根对不同浓度N沉降的响应方式不同。  相似文献   

12.
The importance of aquaporins for root hydraulic conductance (LP) was investigated along roots of the desert succulent Agave deserti in wet, dry and rewetted soil. Water channel activity was inferred from HgCl2‐induced reductions of LP that were reversible by 2‐mercaptoethanol. Under wet conditions, HgCl2 reduced LP for the distal root region by 50% and for the root region near the shoot base by 36% but did not affect LP for the mid‐root region. For all root regions, LP decreased by 30–60% during 10 d in drying soil and was not further reduced by HgCl2. After soil rewetting, LP increased to pre‐drying values and was again reduced by HgCl2 for the distal and the basal root regions but not the mid‐root region. For the distal region, water channels in the epidermis/exodermis made a disproportionately large contribution to radial hydraulic conductance of the intact segment; for the basal region, water channel activity was highest in the cortex and endodermis. The role of water channels was greatest in tissues in which cells were metabolically active both in the distal root region, where new apical growth occurs in wet soil, and in the basal region, which is the most likely root region to intercept light rainfall.  相似文献   

13.
Variations in hydraulic conductivity (LP) and the underlying anatomical and morphological changes were investigated for main root-lateral root junctions of Agave deserti and Ferocactus acanthodes under wet, dry, and rewetted soil conditions. During 21 d of drying, LP and radial conductivity (LR) increased threefold to fivefold at junctions of both species. The increase in LR was accompanied by the formation of an apoplastic pathway for radial water movement from the surface of the junction to the stele for A. deserti and by the rupture of periderm by emerging primordia of secondary lateral roots for F. acanthodes. During 7 d of rewetting, LR decreased for junctions of A. deserti, as apoplastic water movement was not apparent, but LR was unchanged for F. acanthodes. Axial conductance (Kh) decreased during drying for both species, largely because of embolism related to the degradation of unlignified cell wall areas in tracheary elements at the root junction. The resulting apertures in the cell walls of such elements would admit air bubbles at pressure differences of only 0.12-0.19 MPa. Rewetting restored Kh for both species, but not completely, due to blockage of xylem elements by tyloses. About 40% of the primary lateral roots of the monocotyledon A. deserti abscised during 21 d of drying. For the dicotyledon F. acanthodes, which can form new conduits in its secondary xylem, only 10% of the primary lateral roots abscised during 21 d of drying, consistent with the much greater frequency of lateral roots that persist during drought in the field compared with the case for the sympatric A. deserti.  相似文献   

14.
Partitioning of 14C was assessed in sweet chestnut seedlings (Castanea sativa Mill.) grown in ambient and elevated atmospheric [CO2] environments during two vegetative cycles. The seedlings were exposed to 14CO2 atmosphere in both high and low [CO2] environments for a 6-day pulse period under controlled laboratory conditions. Six days after exposure to 14CO2, the plants were harvested, their dry mass and the radioactivity were evaluated. 14C concentration in plant tissues, root-soil system respiratory outputs and soil residues (rhizodeposition) were measured. Root production and rhizodeposition were increased in plants growing in elevated atmospheric [CO2]. When measuring total respiration, i.e. CO2 released from the root/soil system, it is difficult to separate CO2 originating from roots and that coming from the rhizospheric microflora. For this reason a model accounting for kinetics of exudate mineralization was used to estimate respiration of rhizospheric microflora and roots separately. Root activity (respiration and exudation) was increased at the higher atmospheric CO2 concentration. The proportion attributed to root respiration accounted for 70 to 90% of the total respiration. Microbial respiration was related to the amount of organic carbon available in the rhizosphere and showed a seasonal variation dependent upon the balance of root exudation and respiration. The increased carbon assimilated by plants grown under elevated atmospheric [CO2] stayed equally distributed between these increased root activities. ei]H Lambers  相似文献   

15.
Livesley  S.J.  Gregory  P.J.  Buresh  R.J. 《Plant and Soil》2000,227(1-2):149-161
Complementarity in the distribution of tree and crop root systems is important to minimise competition for resources whilst maximising resource use in agroforestry systems. A field study was conducted on a kaolinitic Oxisol in the sub-humid highlands of western Kenya to compare the distribution and dynamics of root length and biomass of a 3-year-old Grevillea robusta A. Cunn. ex R. Br. (grevillea) tree row and a 3-year-old Senna spectabilis DC. (senna) hedgerow grown with Zea mays L. (maize). Tree roots were sampled to a 300 cm depth and 525 cm distance from the tree rows, both before and after maize cropping. Maize roots were sampled at two distances from the tree rows (75–150 cm and 450–525 cm) to a maximum depth of 180 cm, at three developmental stages. The mean root length density (Lrv) of the trees in the upper 15 cm was 0.55 cm cm−3 for grevillea and 1.44 cm cm−3 for senna, at the start of the cropping season. The Lrv of senna decreased at every depth during the cropping season, whereas the Lrv of grevillea only decreased in the crop rooting zone. The fine root length of the trees decreased by about 35% for grevillea and 65% for senna, because of maize competition, manual weeding, seasonal senescence or pruning regime (senna). At anthesis, the Lrv of maize in the upper 15 cm was between 0.8 and 1.5 cm cm−3. Maize root length decreased with greater proximity to the tree rows, potentially reducing its ability to compete for soil resources. However, the specific root length (m g−1) of maize was about twice that of the trees, so may have had a competitive uptake advantage even when tree root length was greater. Differences in maize fine root length and biomass suggest that competition for soil resources and hence fine root length may have been more important for maize grown with senna than grevillea. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

16.
毛竹细根分布特征研究   总被引:1,自引:0,他引:1  
为了解毛竹(Phyllostachys edulis)细根的分布规律,对不同水平距离和土层深度0~1 mm和1~2 mm细根的生物量、比根长、组织密度和根长密度进行了分析。结果表明,随着毛竹年龄的增加,细根生物量和根长密度先上升后降低,根组织密度先降低后升高,比根长呈降低的趋势。细根生物量和根长密度以距竹秆60 cm处最大,根组织密度以20 cm处最大,比根长在40 cm处最大,但他们在距竹秆不同距离间的差异不显著。细根生物量以10~20 cm土层最大,根组织密度以20~30 cm土层最大,细根生物量、比根长、组织密度和根长密度在不同土层间的差异不显著。与1~2 mm细根相比,0~1 mm细根生物量和根组织密度更小,比根长和根长密度更大。因此,毛竹年龄对细根生长具有显著的影响,1年生毛竹有最大的比根长和较大的根组织密度,具有更强的资源利用率。毛竹细根在一定的土层范围内呈均匀分布状态,可更有效地利用特定区域的水肥资源。  相似文献   

17.
Water uptake by plant roots is a main process controlling water balance in field profiles and vital for agro-ecosystem management. Based on the sap flow measurements for maize plants (Zea mays L.) in a field under natural wet- and dry-soil conditions, we studied the effect of vertical root distribution on root water uptake and the resulted changes of profile soil water. The observations indicate that depth of the most densely rooted soil layer was more important than the maximum rooting depth for increasing the ability of plants to cope with the shortage of water. Occurrence of the most densely rooted layer at or below 30-cm soil depth was very conducive to maintaining plant water supply under the dry-soil conditions. In the soil layers colonized most densely by roots, daytime effective soil water saturation (S e) always dropped dramatically due to the high-efficient local water depletion. Restriction of the rooting depth markedly increased the difference of S e between the individual soil layers particularly under the dry-soil conditions due likely to the physical non-equilibrium of water flow between the layers. This study highlights the importance of root distribution and pattern in regulating soil water use and thereby improving endurance of plants to seasonal droughts for sustainable agricultural productivity.  相似文献   

18.
The possible link between stomatal conductance (gL), leaf water potential ( Ψ L) and xylem cavitation was studied in leaves and shoots of detached branches as well as of whole plants of Laurus nobilis L. (Laurel). Shoot cavitation induced complete stomatal closure in air‐dehydrated detached branches in less than 10 min. By contrast, a fine regulation of gL in whole plants was the consequence of Ψ L reaching the cavitation threshold ( Ψ CAV) for shoots. A pulse of xylem cavitation in the shoots was paralleled by a decrease in gL of about 50%, while Ψ L stabilized at values preventing further xylem cavitation. In these experiments, no root signals were likely to be sent to the leaves from the roots in response to soil dryness because branches were either detached or whole plants were growing in constantly wet soil. The stomatal response to increasing evaporative demand appeared therefore to be the result of hydraulic signals generated during shoot cavitation. A negative feedback link is proposed between gL and Ψ CAV rather than with Ψ L itself.  相似文献   

19.
为了探究不同水分条件下喀斯特地区分布不均、厚薄不一土壤小生境对禾本科草本植物生长的影响,用3种不同深度的容器(对照深度CK,深土D和浅土S)两两组合为6种复合容器(CK-CK、CK-S、CK-D、D-D、S-D和S-S)以实现容器分区,研究了黑麦草的根系生长、生物量积累及其分配特征。结果表明:1)在水分充足(W_0)条件下,组合了浅土容器和深土容器的处理中,黑麦草的根系生长(根长、根直径、根表面积和根生物量)均低于对照容器(CK-CK),且有浅土容器的组合处理(S-S,S-D,CK-S)受抑制程度大于有深土容器的组合处理(CK-D,D-D);当水分含量降低后,即中水(W_1)和低水(W_2)条件下,有深土容器的组合[D-D和(或)CK-D]根系生长与对照相比显著增加,而有浅土容器的组合[S-S和(或)CK-S]根系生长与对照相比显著降低。2)对比同一处理不同容器分区中黑麦草生长指标发现,在水分充足情况下,深土容器和浅土容器均会抑制植物生长,而当水分减少,S区根系生长被严重抑制,但D区根系增长优势明显。3)水分充足条件下,根冠比未受到显著影响;当水分降低时,组合了深土容器的处理根冠比均有升高的趋势,组合了浅土容器的处理根冠比有降低趋势。由此可见,不同土壤生境带来的物理空间限制会影响植物根系生长和生物量积累与分配,但水分的减少会改变根系生长及生物量积累对不同土壤生境的响应:在水分充足时,土壤物理空间是影响根系生长和生物量积累与分配的主要因子,黑麦草主要发展浅层根系。而当水分减少时,黑麦草根系在浅层土壤中无法获取供给生长代谢活动的足量水分,更倾向于将有限的有机物分配给根,通过根系伸长、表面积和体积增大、直径增粗等策略加强水分吸收,从而增强对干旱的抗逆性,提高对土壤和水分异质性的适应。  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号