首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Sessile invertebrate coelobite communities attached to the walls and roof of cavities in coralgal reefs on the annular rim of the Bermuda platform near North Rock (4 sites) and in the algal cup reef tract on the south shore (3 sites) have been studied by belt photo-transects and direct sampling. Irradiance measurements reveal a light gradient which appears to exert a strong influence on the composition, relative coverage and zonation of the attached biotic communities. Two main communities are recognised from cluster analysis and relative areal coverage data. Near the cavity entrances is a community dominated by crustose coralline algae, with subsidiary ascidians, demosponges, bryozoans and Foraminifera. Species richness is high and there is total biotic coverage of walls and roof. This community grades laterally into an exclusively animal community characterised by encrusting sponges and Foraminifera, with subsidiary bryozoans and unidentified branching organisms. Coverage varies from 100% to 30%, the substrate often exhibiting high micro-relief from the branching growth forms of the Foraminifera. Species richness is high at North Rock sites, less so on the south shore. The distribution of coelobite species is compared with that described from previous studies in Bermuda, Grand Cayman and Madagascar.  相似文献   

2.
Sea temperatures were normal in Bermuda during 1987, when Bermuda escaped the episodes of coral bleaching which were prevalent throughout the Caribbean region. Survey transecs in 1988 on 4–6 m reefs located on the rim margin and on a lagoonal patch reef revealed bleaching only of zoanthids between May and July. Transect and tow surveys in August and September revealed bleaching of several coral species;Millepora alcicornis on rim reefs was the most extensively affected. The frequency of bleaching in this species,Montastrea annularis and perhapsDiploria labyrinthiformis was significantly higher on outer reefs than on inshore reefs. This bleaching period coincided with the longest period of elevated sea temperatures in Bermuda in 38 years (28.9–30.9°C inshore, >28° offshore). By December, when temperatures had returned to normal, bleaching of seleractinians continued, but bleaching ofM. alcicornis on the outer reefs was greatly reduced. Our observations suggest that corals which normally experience wide temperature ranges are less sensitive to thermal stress, and that high-latitude reef corals are sensitive to elevated temperatures which are within the normal thermal range of corals at lower latitudes.  相似文献   

3.
Synopsis Fish assemblages at an artificial reef site, a natural reef site and a sandy-mud bottom site, on the shelf (depth 130 m) off Iwate Prefecture, northern Japan, were surveyed by using a bottom trammel net from May 1987 to March 1993. A total of 12 173 fishes of 48 species were recorded. Physiculus maximowiczi was dominant and comprised 69% of the total numerical abundance. Total fish number was lowest in March at all the 3 sites when P. maximowiczi migrated to deeper and warmer waters. Assemblage equitability and species diversity also varied seasonally in accordance with the abundance fluctuation of P. maximowiczi. P. maximowiczi, Alcichthys alcicornis and Hexagrammos otakii were more abundant at the artificial reef and natural reef sites, while Dexistes rikuzenius and Hemitripterus villosus were more abundant at the sandy-mud bottom site; total fish abundance was largest at the artificial reef site mainly due to the large number of P. maximowiczi. Species richness was similar among sites, but equitability, and consequently species diversity, was lowest at the artificial reef site. The main effect of the artificial reef seemed the attraction of P. maximowiczi from nearby bottoms, especially from natural rocky reefs; its large abundance determined the structure of the artificial reef fish community.  相似文献   

4.
The major faunistic and floristic components occupying space on the coral reefs of the northern Gulf of Eilat (Red Sea) are stony corals, soft corals and benthic algae. The percent living coverage of the three components and the relative abundance of the different species of each component were studied by line transects, on the reef flats and the upper forereef zones of nine localities. A wider and higher range of living coverage values of stony corals were recorded at the upper fore-reef zones (18.30–49.09%) compared with the reef flats (5.50–31.66%) at the different stations. The most abundant stony corals on the reef flats areCyphastrea microphthalma, Stylophora pistillata, Favia favus, Porites lutea, Platygyra lamellina and the hydrozoanMillepora dichotoma. The fire coralM. dichotoma dominates the upper fore-reef zone in most of the stations. The average percent living coverage of soft corals on the reef flats ranged between 0.20 and 17.06%, and on the upper fore-reef zones between 1.68 and 15.13%. Seventy percent of the total living coverage of the soft coral community is contributed by 2 to 3 species. They tend to form large monospecific carpets, such as those composed ofSinularia sp.,Sarcophyton glaucum andLobophytum pauciflorum. The common benthic algae on the coral reef studied occur as turfs or macroscopic noncalcareous algae. They play a significant role in occupying space, especially on the reef flats. The most abundant algae recorded in all localities are the turfsSphacelaria tribuloides, Jania sp. and the macroscopic non-calcareous algaeTurbinaria elatensis andColpomenia sinuosa. Comparison between reef flats and upper fore-reef zones, in terms of average living cover of stony corals, shows that the variation among the reef flats is grater than the variation among the upper fore-reef zones. However, there is no significant variation in the average living coverage of soft corals between these two zones. Annual living-coverage values of algae on the reef flats are significantly higher than those of the upper fore-reef zones. Extremely low tides occurring periodically but unpredictably at Eilat cause mass mortality of the benthic communities on the reef flats reopening new spaces for settlement. The coexistence of stony corals, soft corals and algae on the reef ecosystem is due to different biological properties of each component. Opportunistic life histories of certain stony corals and most algae enable quick colonization of newly opened spaces. Lack of predators, high tolerance against abiotic factors and ability to form large aggregates of colonies are suggested as possible factors supporting the existence of soft corals in shallow water. Biological factors such as competition, predation and grazing pressure play an increasingly important role in controlling space utilization by the components studied with the advancement of succession.  相似文献   

5.
Tsutomu Nakazawa 《Facies》2001,44(1):183-210
Summary The Carboniferous-Permian (Visean-Midian) Omi Limestone in the Akiyoshi Terrane, central Japan is a large carbonate unit developed on a seamount in the Panthalassa Ocean. As the seamount subsided during Carboniferous and Permian time, the carbonate deposition at the top of a seamount was almost continous. Terrigenous siliciclastic sediments are absent, because the seamount was situated in an open-ocean setting. The lower part of this seamount-type limestone records a nearly continuous Carboniferous reef succession. Sedimentary facies in the Carboniferous part of the Omi Limestone are generally highly diverse, but their diversity varies in each age. The Upper Carboniferous part consists of highly diversified facies including fore reef, reef front, reef crest, sand shoal, and lagoon facies, while a simple facies assemblage, composed only of fore reef, reef front, and sand shoal facies, occurs in the Lower Carboniferous. The Carboniferous reef succession consists of four phases characterized, in ascending order, by the coralbryozoan-crinoid community, problematic skeletal organism-microencruster community, chaetetid-microencruster community, and calcareous algal community. The first phase, comprising the coral-bryozoan-crinoid community, occurs in theEndothyra spp. Zone to theEostaffella kanmerai Zone (Visean to Serpukhovian). This community acted only as sediment-bafflers and/or contributors. The second phase, represented by the problematic skeletal organism-microencruster community, is developed in theMillerella sp. Zone to theAkiyoshiella ozawai Zone (Bashkirian to lowermost Moscovian), and the third phase, comprising the chaetetid-microencruster community, occurs in the overlyingFusulinella biconica Zone (Lower Moscovian). These two communities are characterized by highly diversified reef-building organisms that had the ability to build rigid frameworks. Calcareous algae and incertae sedis such asHikorocodium, solenoporaceans and phylloid algae characterize the fourth phase, which occurs in theBeedeina sp. Zone (Upper Moscovian). The changes of the reef communities were sucessive for a long period of more than 40 m.y., and each community was distributed in various environments. In addition, the continuous subsidence of the isolated seamount resulted in environmental stability. These properties indicate that this succession represents the biotic evolution of reef-building organisms. The problematic skeletal organism-microencruster community and chaetetid-microencruster community of the Late Carboniferous formed wave-resistant and rigid frameworks along with abundant submarine cements. The growth of these reef frameworks resulted in the formation of highly diversified sedimentary facies comparable to those of a modern reef complex. Such reefs are also recognized in the seamount-type Akiyoshi Limestone, but rare on Carboniferous Pangean shelves. Therefore, the formation of these types of reefs appear to be characteristic of open-ocean seamount settings, which differed from epicontinental shelf settings in having no siliciclastic input, being exposed to relatively strong openocean waves and swells, and probably more environmental stability resulting from the relatively continuous subsidence of the seamount.  相似文献   

6.
 Fringing reef development is limited around 22° S along the inner Great Barrier Reef, although there is substantial development north and south of this latitude. This study examined the relationships among coral communities and the extent of reef development. Reefs were examined to determine coral composition, colony abundance, colony size and growth form between the latitudes 20°S and 23°S. Major reef framework builders (scler- actinian genus Acropora and families Faviidae and Poritidae) dominated reefs north and south of 22°S, but declined significantly at 22°S where foliose and encrusting corals (Turbinaria and Montipora spp.) were most common. Porites spp. were present at 22° S but had encrusting morphologies. Consistently high turbidity at this latitude, caused by a 10 m tidal range and strong tidal flows, resuspends silts from the shallow shelf, and appears to have precluded reef development throughout the Holocene, by limiting the abundance, stunting the growth, and shortening the life expectancies of reef framework corals. The distinctions between ‘natural’ and ‘human-induced’ degradation may be interpreted on the basis of the relationship between Holocene development and current benthic community longevity. A mismatch between substantial past reef building capacity (a broad and/or thick reef) and non-existent or limited present reef-building capacity could signify anything from a long-period, natural cycle to an unprecedented deterioration in ecosystem function caused by human influence. Accepted: 29 July 1996  相似文献   

7.
A quantitative survey of a submerged barrier reef was undertaken in Barbados, West Indies, over a two year period (1971–73). Photo-line transects were employed to obtain coverage data on corals and other benthic organisms. Light, sedimentation, currents, oxygen, temperature and salinity were also monitored. Results indicate corals cover about 30 per cent of the bottom with living colonies; another 7 per cent is contributed by other zoobenthos. The most abundant coral species are Montastrea annularis, M. cavernosa and Siderastrea siderea, each contributing between 4 and 5 per cent of bottom cover. Light is the only physical factor monitored that correlated significantly with biomass; sedimentation may have a secondary effect. Most of the barrier reef is composed of mixed coral associations forming a biologically accommodated community. Comparisons are made between the barrier reef in Barbados and deeper reefs in Jamaica and Curacao. Reefs are, in the main, similar but coral species and community structure differences do occur.  相似文献   

8.
Living foraminifera were examined on both sides of the barrier reef across a section situated on the north-west part of the high island of Moorea (Society Archipelago, French Polynesia). In all, 87 species were found: 62 in the back-reef area (fringing reef, channel and barrier reef) and 72 on the outer slope; 47 were common to both zones. This study points out the importance of substrates in the distribution pattern of foraminifera. The sediments are essentially inhabited by epipsammitic species, whereas algae are colonized mainly by free-living foraminifera: miliolids in the back-reef area; rotaliids in the outer slope. Free-living individuals are much less abundant in the fringing reef, channel and inner part of the barrier reef than in the other parts of the study area. The two major groups on the two sides of the barrier reef are very different in size, test building and probably nutritional modes. In the back-reef area, epipsammitic taxa, mainly composed of small agglutinated species, dominate the fauna; in the outer slope large calcareous symbiotic Amphistegina are the major components of the living association (50 to 70%).  相似文献   

9.
 Coralline-algal frameworks from Atol das Rocas reefs were sampled along windward and leeward transects, and multivariate statistical analysis was used to investigate the composition and community structure of the encrusting community. The following components of the reefs were identified in slabbed and polished reef blocks sampled along each transect: encrusting coralline algae dominated by Porolithon cf. pachydermum, vermetid gastropods, Homotrema rubrum, acervulinid foraminiferans, molluscs, corals, polychaete tubes, clionid sponge borings, polychaete/sipunculid borings, cemented sediments, and growth cavities. Q-mode cluster analysis correctly classified 78% of all windward samples and 69% of all leeward samples, and R-mode separated reef components adapted to high wave energy environments from those adapted to low wave energy. Separate classification and ordination of samples from each transect indicate that seriation breakdown occurs in the windward reef between 25 and 45 m from the reef front. In the leeward reef between 75 and 90 m from the leeward reef front, seriation breakdown was not found to be significant. These results confirm that seriation (zonation) is best developed in the windward reef, as has been documented in coral-dominated reefs. Accepted: 28 February 2000  相似文献   

10.
Territorial damselfish are important herbivores on coral reefs because they can occupy a large proportion of the substratum and modify the benthic community to promote the cover of food algae. However, on coastal coral reefs damselfish occupy habitats that are often dominated by unpalatable macroalgae. The aim of this study was to examine whether damselfish can maintain distinctive algal assemblages on a coastal reef that is seasonally dominated by Sargassum (Magnetic Island, Great Barrier Reef). Here, three abundant species (Pomacentrus tripunctatus, P. wardi and Stegastes apicalis) occupied up to 60% of the reef substrata. All three species promoted the abundance of food algae in their territories. The magnitudes of the effects varied among reef zones, but patterns were relatively stable over time. Damselfish appear to readily co-exist with large unpalatable macroalgae as they can use it as a substratum for promoting the growth of palatable epiphytes. Damselfish territories represent patches of increased epiphyte load on macroalgae, decreased sediment cover, and enhanced cover of palatable algal turf.  相似文献   

11.
Despite more than 60 yr of coral reef research using scuba diving, mesophotic coral ecosystems (MCEs) between 30 and 150 m depth remain largely unknown. This study represents the first underwater visual census of reef fish communities in the Greater Caribbean on MCEs at depths up to 80 m in Bermuda and 130 m in Curaçao. Sampling was performed using mixed-gas closed-circuit rebreathers. Quantitative data on reef fish communities were obtained for four habitats: coral reefs (45–80 m), rhodolith beds (45–80 m), ledges (85–130 m) and walls (85–130 m). A total of 38 species were recorded in Bermuda and 66 in Curaçao. Mesophotic reef fish communities varied significantly between the two localities. MCEs in Bermuda had lower richness and abundance, but higher biomass than those in Curaçao. Richness, abundance and biomass increased with depth in Bermuda, but decreased in Curaçao. A high turnover of species was found among depth strata and between Bermuda and other Caribbean upper MCEs (45–80 m), indicating that depth was an important driver of community structure at all localities. However, local and evolutionary factors (habitat and endemism) are likely the main factors shaping communities in isolated locations such as Bermuda. High fishing pressure is evident in both localities, as total biomass of apex predators was generally low, and thus may be driving a “refugia” scenario in Bermuda, as the abundance and biomass of macro-carnivores increased with depth and distance from the coast.  相似文献   

12.
Since the bleaching event of 1998, the development of the reef flat and upper reef slope on a Maldivian reef (the Komandoo house reef; Komandoo Island, Lhaviyani atoll or Fadiffolu atoll) is under detailed observation. We quantitatively recorded specific losses, re-colonisation by coral larvae on transects on the reef flat and on dead Acropora tables at the reef slope and regeneration of partly damaged large Porites and Diploastrea—colonies over the period from 1999 to 2004. The detrimental effects on the reef structure by bioerosion and hydrodynamics, as well as the overall status of the reef community were qualitatively assessed. Recruitment soon after the bleaching was more pronounced than in the following years, Pavona varians being a main constituent. The temporal re-colonisation pattern points at an emergency spawning of local Scleractinia just prior to the bleaching, whereas a sharp decrease of young settlers in 2001 and 2002 confirms a reduction of fertile colonies. The dominant species in the coral community shifted from acroporids and pocilloporids to agariciids. The skeletal deposition of recovering Diploastrea heliopora was equivalent to that before the bleaching, but much less than that of neighbouring Porites lobata colonies. The slow and scattered formation of new reef substance, which would structurally strengthen the reef, is however outweighed by the collapse of dead protruding and spacious colonies (e.g., Acropora tables). Six years after the bleaching, the formerly three-dimensional structure of the reef flat and upper reef slope presents as a levelled field of rubble, only partly consolidated by incrusting corals. Considering the recurrence of bleaching events (1987, 1998) and the results of the present study, one may assume a cascading deterioration of the status of the reef for the future.  相似文献   

13.

The southern Persian/Arabian Gulf experiences extreme seasonal temperature variation (> 20 °C) making it among the most hostile reef environments on Earth. Previous anecdotal evidence has suggested that seasonal temperature changes may influence regional reef fish assemblages, but to date research has been limited. To examine the influence of temperature on reef fish abundance and composition, we performed visual surveys in summer and in winter over three years at three reefs in the southern Gulf (Dhabiya, Saadiyat and Ras Ghanada). Overall abundance of fishes was 40% higher in summer than in winter, and multivariate analyses showed strong and significant differences in overall seasonal community structure, consistent at all sites and across all years. Seasonal differences were largely driven by nine of the 30 observed species, which together accounted for 70% of the divergence in community structure between summer and winter. Of these nine species, Lutjanus ehrenbergii, Lutjanus fulviflamma, Plectorhinchus sordidus and Abudefduf vaigiensis were significantly more abundant in summer, Parupeneus margaritatus and Acanthopagrus bifasciatus, were significantly more common on reefs in winter. We discuss these changes in terms of seasonal physiological and ecological constraints, and explore the implications of these changes on the functional ecology of reef fishes in this thermally variable and extreme environment.

  相似文献   

14.
The abundance and productivity of benthic microalgae in coral reef sediments are poorly known compared with other, more conspicuous (e.g. coral zooxanthellae, macroalgae) primary producers of coral reef habitats. A survey of the distribution, biomass, and productivity of benthic microalgae on a platform reef flat and in a cross-shelf transect in the southern Great Barrier Reef indicated that benthic microalgae are ubiquitous, abundant (up to 995.0 mg chlorophyll (chl) a m–2), and productive (up to 110 mg O2 m–2 h–1) components of the reef ecosystem. Concentrations of benthic microalgae, expressed as chlorophyll a per surface area, were approximately 100-fold greater than the integrated water column concentrations of microalgae throughout the region. Benthic microalgal biomass was greater on the shallow water platform reef than in the deeper waters of the cross-shelf transect. In both areas the benthic microalgal communities had a similar composition, dominated by pennate diatoms, dinoflagellates, and cyanobacteria. Benthic microalgal populations were potentially nutrient-limited, based on responses to nitrogen and phosphorus enrichments in short-term (7-day) microcosm experiments. Benthic microalgal productivity, measured by O2 evolution, indicated productive communities responsive to light and nutrient availability. The benthic microalgal concentrations observed (92–995 mg chl a m–2) were high relative to other reports, particularly compared with temperate regions. This abundance of productive plants in both reef and shelf sediments in the southern Great Barrier Reef suggests that benthic microalgae are key components of coral reef ecosystems.Communicated by Environmental Editor, B.C. Hatcher  相似文献   

15.
In this paper, the relationship between reef building (accretion) and depth in an optimal inter-island channel environment in Hawaii is analyzed. For accretion, the growth rate of Porites lobata is used as a proxy for the reef community, because it is the most abundant and dominant species of reef building coral in Hawaii. Optimal growth of P. lobata occurs at a depth of 6 m, below which both growth rate and abundance decrease with increasing depth. A lower depth limit for this species is found at about 80–100 m, yet reef accretion ceases at ~50 m depth. Below 50 m, rates of bio-erosion of colony holdfasts equal or exceed the growth of basal attachments, causing colonies to detach from the bottom. Continued bio-erosion further erodes and dislodges colonies leading to their breakdown and ultimately to the formation of coralline rubble and sand. Thus, within this channel environment in Hawaii, a threshold for reef building exists at ~ 50 m depth, where coral accretion is interrupted by bio-erosion. Conceptually viewed, this depth horizon is analogous to a vertical Darwin Point, although quite narrow in space and time. More importantly, it explains the history of reef morphology in the Au’au Channel where a chronological hiatus exists at a depth near 50 m. This hiatus separates shallower modern growth (about 100 years or less) from the deeper reef which is all due to accretion during the early Holocene or Pleistocene epochs.  相似文献   

16.
On a section between Bermuda and Puerto Rico, in March/April 1981 Anguilla sp. larvae abundance and hydrographic conditions were studied. The small larvae (<7 mm Tl) occurred south of 30° N at the subtropical thermal front and showed peak abundance at 26° N. At 23° N larvae of all size groups became less abundant. North-south extention of the spawning area was greater than described in the literature. A considerable net avoidance of the larvae during daylight hauls was observed. Lengths of both Anguilla species increased from the north to the peak abundance area in the south and for A. anguilla also from east to west. Patches with about the fifty fold larvae abundance compared with the surrounding area could be identified. Deeper occurrence of the smallest larvae (Tl = 4 and 5 mm) compared with older larvae, found in earlier studies could be stated.  相似文献   

17.
Summary Anin situ Oxfordian patch reef from the Süntel hills (florigemma-Bank, Korallenoolith, NW-Germany) is described. It is composed of an autochthonous reef core overlain by a ‘parautochthonous’ biostrome. The exposed reefal area amounts to about 20 m in lateral and up to 4 m in vertical direction. Nearly all major marine reefal fossil associations from the Tethyal realm are present. In the reef core two facies can be distinguished: (1)Thamnasteria dendroidea thicket facies and (2) thrombolite facies. The first facies is composed of a thin branched autochthonous coral thicket mainly constructed ofTh. dendroidea colonies with only a minor portion ofStylosmilia. Frequently, theTh. dendroidea branches laterally coalesce bridge-like forming a delicate initial framework which was subsequently reinforced by thick microbial coatings, that make up approximately 80% of the rock volume. This facies is an excellent example for microbialite binding in reefal architecture. Additionally, several generations of micromorphic and partly cryptic encrusting organisms settled on theTh. dendroidea branches and microbialite crusts. They successively overgrow each other and fill the space between the coral branches in the thicket forming a characteristic community replacement sequence. Initial colonization of theThamnasteria dendroidea took place on an oncoidic/bioclastic hardground. During this early phase of reefal development, microbialites also played an important role in stabilizing and binding the reef body. The thrombolite facies (2) occupying nearly the same volume of the reef body as facies type (1) consists of a thrombolitic microbialitic limestone which fills the interstice between the coral colonies. It shows a considerably lower faunal diversity than theTh. dendroidea facies. Numerous cavities are interspersed in the thrombolithe and are almost completely filled with dolomitized allomicrite. In contrast, microbialite and allomicrite adjacent to the reef core rarely reveal any dolomitized areas. Above the reef core, mostly toppledSolenopora jurassica thalli occur together with a few massiveIsastrea colonies forming a parautochthnous biostrome. They are inhabited by a low diverse assemblage of encrusting organisms. Microbialites are only rarely present in this biostromal unit. The patch reef is developed within a lagoonal limemud facies both separated by a sharp interface. In contrast, continuous facies transition exists between theSolenopora biostrome and adjacent deposits which are characterized by micritic to pelmicritic limestone sometimes with lenses of oncoids. Debris derived from the patch reef is only sporadically intercalated in the reef surrounding lagoonal sediments. Gastropods, bivalves, and dasycladalean algae dominate the lagoonal biota. Up-section following theSolenopora biostrome nerinean gastropods become the most abundant species amounting to a ‘Nerinea-bed’. This horizon moderately elevates above the patch reef indicating, that is arose above the surrounding sea floor forming a relief. The patch reef established on a secondary hardground probably released by a minor transgression and a nondepositional regime. It grew up on a well-illuminated sea floor only a few meters below sea level. Only a low background sedimentation rate and modest water circulation are assumed during reefal growth. These features characterize an open marine lagoon. A subsequent shallowing upwards trend caused emergence of the early lithifiedflorigemma-Bank sediments. In the following erosional phase the reef core,Solenopora biostrome and ‘Nerinea-bed’ were sharply cut. Paleokarst phenomena (karst solution of the rocks, selective leaching of the aragonitic corals) truncate the surface of theflorigemma-Bank. Released by a transgressive sea level, the paleokarst surface is densely inhabited by marine boring and encrusting organisms (oysters, serpulids). Karst cavities are filled with an oncoid-bearing bioclastic limestone with a large portion of siliciclastics. Theflorigemma-Bank is overlain by the reddish bioclastic sandstone of the ‘Zwischenfl?zregion’.  相似文献   

18.
Oyster reef restoration has become a principal strategy for ameliorating the loss of natural Crassostrea virginica populations and increasing habitat provision. In 2014, a large‐scale, high‐relief, 23‐ha subtidal C. virginica reef was restored at the historically productive Half Moon Reef in Matagorda Bay, TX, using concrete and limestone substrates. Encrusting and motile fauna were sampled seasonally until 17 months postrestoration at the restored reef and at adjacent unrestored sites. Restored oysters developed rapidly and were most abundant 3 months postrestoration, with subsequent declines possibly due to interacting effects of larval settlement success on new substrate versus post‐settlement mortality due to competitors and predators. Oyster densities were 2× higher than in a restored oyster population in Chesapeake Bay that was reported to be the largest reestablished metapopulation of native oysters in the world. Resident fauna on the restored reef were 62% more diverse, had 433% greater biomass, and comprised a distinct faunal community compared to unrestored sites. The presence of three‐dimensional habitat was the most important factor determining resident faunal community composition, indicating that substrate limitation is a major hindrance for oyster reef community success in Texas and other parts of the Gulf of Mexico. There were only minor differences in density, biomass, and diversity of associated fauna located adjacent (13 m) versus distant (150 m) to the restored reef. The two substrate types compared had little influence on oyster recruitment or faunal habitat provision. Results support the use of reef restoration as a productive means to rebuild habitat and facilitate faunal enhancement.  相似文献   

19.

Gut microbiota play a fundamental role in the nutrition of many vertebrate herbivores through foregut and hindgut fermentation of plant carbohydrates. Some species of marine herbivorous fishes contain moderate to high levels of short-chain fatty acids in the hindgut, indicating the importance of hindgut fermentation. Herbivorous fish hindgut microbiota are diverse and can vary with geographic location, but data on the scale of geographic variation involving a few km of separation are limited. Here, we used the 16S rRNA gene to describe community composition of the gut microbiota of the herbivorous species Kyphosus vaigiensis and K. cinerascens collected in the vicinity of Lizard Island, northern Great Barrier Reef, Australia, in 2011 and 2017. Microbiota community structure differed between posterior hindgut sections, host species, sampling years and two mid-shelf and outer reef locations approximately 20 km apart. Hindgut bacterial community composition varied remarkably between mid-shelf and outer reef locations, and among individual fish on the mid-shelf reef. In both fish species, the most abundant phyla were Pseudomonadota, Bacillota and Bacteroidota, followed by Spirochaetota, Thermodesulfobacteriota and Verrucomicrobiota. There were no clear differences between the host species in terms of the relative abundance and composition of bacterial genera in outer reef samples. In contrast, the dominant genera differed between mid-shelf samples of K. cinerascens and K. vaigiensis, being Endozoicomonas-like (Pseudomonadota) and Brevinema (Spirochaetota), respectively. Endozoicomonas are emerging as important symbionts in many marine hosts worldwide and are thought to be important in the coral sulphur cycle. Differences in microbiota composition were not associated with variation in fish condition, suggesting that the different microbial taxa perform equivalent functional roles.

  相似文献   

20.
Planktonic larvae of the serpulid polychaete Spirobranchus giganteus, an obligate associate of live coral, were tested for preferences for materials diffusing from natural substrates. Choices offered were Acropora prolifera, a very abundant coral on the Heron Island reef flat; Palauastraea ramosa, a less abundant coral, dead coral rubble and a glass tube as a control. Larval life is approximately 12 days. The larvae tested were 1–4 days old. Adults of S. giganteus occur commonly on A. prolifera and much less frequently on P. ramosa. Experiments were designed to prevent contact between larvae and substrate. Larvae preferred A. prolifera over P. ramosa, rubble and the control. There was no preference expressed between the control and P. ramosa or the control and rubble. A preference by young S. giganteus larvae for a substance diffusing from coral, acting together with a known positive phototaxis, may be adaptive in that it may help to maintain larvae in surface waters over the reef and in the vicinity of a specific coral until they are old enough to settle.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号