首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
We have investigated the target choice of the related transposable elements Tc1 and Tc3 of the nematode C. elegans. The exact locations of 204 independent Tc1 insertions and 166 Tc3 insertions in an 1 kbp region of the genome were determined. There was no phenotypic selection for the insertions. All insertions were into the sequence TA. Both elements have a strong preference for certain positions in the 1 kbp region. Hot sites for integration are not clustered or regularly spaced. The orientation of the integrated transposon has no effect on the distribution pattern. We tested several explanations for the target site preference. If simple structural features of the DNA (e.g. bends) would mark hot sites, we would expect the patterns of the two related transposons Tc1 and Tc3 to be similar; however we found them to be completely different. Furthermore we found that the sequence at the donor site has no effect on the choice of the new insertion site, because the insertion pattern of a transposon that jumps from a transgenic donor site is identical to the insertion pattern of transposons jumping from endogenous genomic donor sites. The most likely explanation for the target choice is therefore that the primary sequence of the target site is recognized by the transposase. However, alignment of the Tc1 and Tc3 integration sites does not reveal a strong consensus sequence for either transposon.  相似文献   

3.
Although chromosomal segregation at meiosis I is the critical process for genetic reassortment and inheritance, little is known about molecules involved in this process in metazoa. Here we show by utilizing double-stranded RNA (dsRNA)-mediated genetic interference that novel protein kinases (Ce-CDS-1 and Ce-CDS-2) related to Cds1 (Chk2) play an essential role in meiotic recombination in Caenorhabditis elegans. Injection of dsRNA into adult animals resulted in the inhibition of meiotic crossing over and induced the loss of chiasmata at diakinesis in oocytes of F(1) animals. However, electron microscopic analysis revealed that synaptonemal complex formation in pachytene nuclei of the same progeny of injected animals appeared to be normal. Thus, Ce-CDS-1 and Ce-CDS-2 are the first example of Cds1-related kinases that are required for meiotic recombination in multicellular organisms.  相似文献   

4.
5.
The nematode Caenorhabditis elegans provides numerous experimental advantages for developing an integrative molecular understanding of physiological processes and has proven to be a valuable model for characterizing Ca(2+) signaling mechanisms. This review will focus on the role of Ca(2+) release activated Ca(2+) (CRAC) channel activity in function of the worm gonad and intestine. Inositol 1,4,5-trisphosphate (IP(3))-dependent oscillatory Ca(2+) signaling regulates contractile activity of the gonad and rhythmic posterior body wall muscle contraction (pBoc) required for ovulation and defecation, respectively. The C. elegans genome contains a single homolog of both STIM1 and Orai1, proteins required for CRAC channel function in mammalian and Drosophila cells. C. elegans STIM-1 and ORAI-1 are coexpressed in the worm gonad and intestine and give rise to robust CRAC channel activity when coexpressed in HEK293 cells. STIM-1 or ORAI-1 knockdown causes complete sterility demonstrating that the genes are essential components of gonad Ca(2+) signaling. Knockdown of either protein dramatically inhibits intestinal cell CRAC channel activity, but surprisingly has no effect on pBoc, intestinal Ca(2+) oscillations or intestinal ER Ca(2+) store homeostasis. CRAC channels thus do not play obligate roles in all IP(3)-dependent signaling processes in C. elegans. Instead, we suggest that CRAC channels carry out highly specialized and cell specific signaling roles and that they may function as a failsafe mechanism to prevent Ca(2+) store depletion under pathophysiological and stress conditions.  相似文献   

6.
Modern proteomics approaches include techniques to examine the expression, localization, modifications, and complex formation of proteins in cells. In order to address issues of protein function in vitro using classical biochemical and biophysical approaches, high-throughput methods of cloning the appropriate reading frames, and expressing and purifying proteins efficiently are an important goal of modern proteomics approaches. This process becomes more difficult as functional proteomics efforts focus on the proteins from higher organisms, since issues of correctly identifying intron-exon boundaries and efficiently expressing and solubilizing the (often) multi-domain proteins from higher eukaryotes are challenging. Recently, 12,000 open-reading-frame (ORF) sequences from Caenorhabditis elegans have become available for functional proteomics studies [Nat. Gen. 34 (2003) 35]. We have implemented a high-throughput screening procedure to express, purify, and analyze by mass spectrometry hexa-histidine-tagged C. elegans ORFs in Escherichia coli using metal affinity ZipTips. We find that over 65% of the expressed proteins are of the correct mass as analyzed by matrix-assisted laser desorption MS. Many of the remaining proteins indicated to be "incorrect" can be explained by high-throughput cloning or genome database annotation errors. This provides a general understanding of the expected error rates in such high-throughput cloning projects. The ZipTip purified proteins can be further analyzed under both native and denaturing conditions for functional proteomics efforts.  相似文献   

7.
8.
In C. elegans, tra-2 mRNA nuclear export is controlled by a 3'UTR element, the TRE. In the absence of TRA-1, the TRE retains tra-2 mRNA in the nucleus. The binding of TRA-1 to the 3'UTR overcomes this retention resulting in export of a TRA-1/tra-2 mRNA complex. Here, we find that, unlike most mRNAs, tra-2 mRNA exits the nucleus via an alternative pathway to NXF-1 that requires CRM1 activity. Inhibition of export by NXF-1 depends upon the TRE, CeNXF-2, CeREF-1, and CeREF-2. Removal of the TRE or any one of these factors results in export of tra-2 by NXF-1. NXF-2 and REF-1 specifically bind the TRE, suggesting that they directly control tra-2 mRNA export. Furthermore, choice of proper export pathway affects tra-2 translational control. Therefore, tra-2 mRNA export is highly regulated and plays an important role in development by regulating the activity of tra-2 mRNA in the cytoplasm.  相似文献   

9.
Autosomal dominant polycystic kidney disease (ADPKD) strikes 1 in 1000 individuals and often results in end-stage renal failure. Mutations in either PKD1 or PKD2 account for 95% of all cases [1-3]. It has recently been demonstrated that polycystin-1 and polycystin-2 (encoded by PKD1 and PKD2, respectively) assemble to form a cation channel in vitro [4]. Here we determine that the Caenorhabditis elegans PKD1 and PKD2 homologs, lov-1 [5] and pkd-2, act in the same pathway in vivo. Mutations in either lov-1 or pkd-2 result in identical male sensory behavioral defects. Also, pkd-2;lov-1 double mutants are no more severe than either of the single mutants, indicating that lov-1 and pkd-2 act together. LOV-1::GFP and PKD-2::GFP are expressed in the same male-specific sensory neurons and are concentrated in cilia and cell bodies. Cytoplasmic, nonnuclear staining in cell bodies is punctate, suggesting that one pool of PKD-2 is localized to intracellular membranes while another is found in sensory cilia. In contrast to defects in the C. elegans autosomal recessive PKD gene osm-5 [6-8], the cilia of lov-1 and pkd-2 single mutants and of lov-1;pkd-2 double mutants are normal as judged by electron microscopy, demonstrating that lov-1 and pkd-2 are not required for ultrastructural development of male-specific sensory cilia.  相似文献   

10.
Heterogeneous nuclear ribonucleoprotein‐M (hnRNP‐M) is an abundant nuclear protein that binds to pre‐mRNA and is a component of the spliceosome complex. A direct interaction was detected in vivo between hnRNP‐M and the human spliceosome proteins cell division cycle 5‐like (CDC5L) and pleiotropic regulator 1 (PLRG1) that was inhibited during the heat‐shock stress response. A central region in hnRNP‐M is required for interaction with CDC5L/PLRG1. hnRNP‐M affects both 5′ and 3′ alternative splice site choices, and an hnRNP‐M mutant lacking the CDC5L/PLRG1 interaction domain is unable to modulate alternative splicing of an adeno‐E1A mini‐gene substrate.  相似文献   

11.
A novel cadmium-inducible gene, cdr-1, was previously identified and characterized in the nematode Caenorhabditis elegans and found to mediate resistance to cadmium toxicity. Subsequently, six homologs of cdr-1 were identified in C. elegans. Here, we describe two homologs: cdr-4, which is metal inducible, and cdr-6, which is noninducible. Both cdr-4 and cdr-6 mRNAs contain open reading frames of 831 nt and encode predicted 32-kDa integral membrane proteins, which are similar to CDR-1. cdr-4 expression is induced by arsenic, cadmium, mercury, and zinc exposure as well as by hypotonic stress. In contrast, cdr-6 is constitutively expressed at a high level in C. elegans, and expression is not affected by these stressors. Both cdr-4 and cdr-6 are transcribed in postembryonic pharyngeal and intestinal cells in C. elegans. In addition, cdr-4 is transcribed in developing embryos. Like CDR-1, CDR-4 is targeted to intestinal cell lysosomes in vivo. Inhibition of CDR-4 and/or CDR-6 expression does not render C. elegans more susceptible to cadmium toxicity; however, there is a significant decrease in their lifespan in the absence of metal. Although nematodes in which CDR-4 and/or CDR-6 expression is knocked down accumulate fluid in the pseudocoelomic space, exposure to hypertonic conditions did not significantly affect growth or reproduction in these nematodes. These results suggest that CDR expression is required for optimal viability but does not function in osmoregulation.  相似文献   

12.
In Caenorhabditis elegans, germ cells develop as spermatids in the larva and as oocytes in the adult. Such fundamentally different gametes are produced through a fine-tuned balance between feminizing and masculinizing genes. For example, the switch to oogenesis requires repression of the fem-3 mRNA through the mog genes. Here we report on the cloning and characterization of the sex determination gene mog-2. MOG-2 is the worm homolog of spliceosomal protein U2A′. We found that MOG-2 is expressed in most nuclei of somatic and germ cells. In addition to its role in sex determination, mog-2 is required for meiosis. Moreover, MOG-2 binds to U2B″/RNP-3 in the absence of RNA. We also show that MOG-2 associates with the U2 snRNA in the absence of RNP-3. Therefore, we propose that MOG-2 is a bona fide component of the U2 snRNP. Albeit not being required for general pre-mRNA splicing, MOG-2 increases the splicing efficiency to a cryptic splice site that is located at the 5′ end of the exon.  相似文献   

13.
Control of 3' splice site choice in vivo by ASF/SF2 and hnRNP A1.   总被引:3,自引:0,他引:3  
Y Bai  D Lee  T Yu    L A Chasin 《Nucleic acids research》1999,27(4):1126-1134
  相似文献   

14.
BACKGROUND: The ubiquitin-proteasome pathway of proteolysis controls the abundance of specific regulatory proteins. The SCF complex is a type of ubiquitin-protein ligase (E3) that contributes to this pathway in many biological systems. In yeast and mammals, the SCF complex consists of common components, including Skp1, Cdc53/Cul1, and Rbx1, as well as variable components known as F-box proteins. Whereas only one functional Skp1 gene is present in the human genome, the genome of Caenorhabditis elegans has now been shown to contain at least 21 Skp1-related (skr) genes. The biochemical properties, expression, and function of the C. elegans SKR proteins were examined. RESULTS: Of the 17 SKR proteins examined, eight (SKR-1, -2, -3, -4, -7, -8, -9, and -10) were shown to interact with C. elegans CUL1 by yeast two-hybrid analysis or a coimmunoprecipitation assay in mammalian cells. Furthermore, SKR proteins exhibited diverse binding specificities for C. elegans F-box proteins. The tissue specificity of expression of the CUL1-interacting SKR proteins was also varied. Suppression of skr-1 or skr-2 genes by double-stranded RNA interference resulted in embryonic death, whereas that of skr-7, -8, -9, or -10 was associated with slow growth and morphological abnormalities. CONCLUSIONS: The multiple C. elegans SKR proteins exhibit marked differences in their association with Cullins and F-box proteins, in tissue specificity of expression, and in phenotypes associated with functional suppression by RNAi. At least eight of the SKR proteins may, like F-box proteins, act as variable components of the SCF complex in C. elegans.  相似文献   

15.
The nematode Caenorhabditis elegans responds to overcrowding and scarcity of food by arresting development as a dauer larva, a nonfeeding, long-lived, stress-resistant, alternative third-larval stage. Previous work has shown that mutations in the genes daf-2 (encoding a member of the insulin receptor family) and age-1 (encoding a PI 3-kinase) result in constitutive formation of dauer larvae (Daf-c), increased adult longevity (Age), and increased intrinsic thermotolerance (Itt). Some daf-2 mutants have additional developmental, behavioral, and reproductive defects. We have characterized in detail 15 temperature-sensitive and 1 nonconditional daf-2 allele to investigate the extent of daf-2 mutant defects and to examine whether specific mutant traits correlate with each other. The greatest longevity seen in daf-2 mutant adults was approximately three times that of wild type. The temperature-sensitive daf-2 mutants fell into two overlapping classes, including eight class 1 mutants, which are Daf-c, Age, and Itt, and exhibit low levels of L1 arrest at 25.5 degrees. Seven class 2 mutants also exhibit the class 1 defects as well as some or all of the following: reduced adult motility, abnormal adult body and gonad morphology, high levels of embryonic and L1 arrest, production of progeny late in life, and reduced brood size. The strengths of the Daf-c, Age, and Itt phenotypes largely correlated with each other but not with the strength of class 2-specific defects. This suggests that the DAF-2 receptor is bifunctional. Examination of the null phenotype revealed a maternally rescued egg, L1 lethal component, and a nonconditional Daf-c component. With respect to the Daf-c phenotype, the dauer-defective (Daf-d) mutation daf-12(m20) was epistatic to daf-2 class 1 alleles but not the severe class 2 alleles tested. All daf-2 mutant defects were suppressed by the daf-d mutation daf-16(m26). Our findings suggest a new model for daf-2, age-1, daf-12, and daf-16 interactions.  相似文献   

16.
17.
We have cloned two novel Caenorhabditis elegans dopamine receptors, DOP-3 and DOP-4. DOP-3 shows high sequence homology with other D2-like dopamine receptors. As a result of alternative splicing, a truncated splice variant of DOP-3, DOP-3nf, was produced. Because of the in-frame insertion of a stop codon in the third intracellular loop, DOP-3nf lacks the sixth and seventh transmembrane domains that are found in the full-length DOP-3 receptor. Reporter gene assay showed that DOP-3 attenuates forskolin-stimulated cAMP formation in response to dopamine stimulation, whereas DOP-3nf does not. When DOP-3 was coexpressed with DOP-3nf, the ability to inhibit forskolin-stimulated cAMP formation was reduced. DOP-4 shows high sequence homology with D1-like dopamine receptors unique to invertebrates, which are distinct from mammalian D1-like dopamine receptors. Reporter gene assay showed that DOP-4 stimulates cAMP accumulation in response to dopamine stimulation. These two receptors provide new opportunities to understand dopaminergic signaling at the molecular level.  相似文献   

18.
The molecular machinery that mediates sperm-egg interactions at fertilization is largely unknown. We identify two partially redundant egg surface LDL receptor repeat-containing proteins (EGG-1 and EGG-2) that are required for Caenorhabditis elegans fertility in hermaphrodites, but not males. Wild-type sperm cannot enter the morphologically normal oocytes produced by hermaphrodites that lack egg-1 and egg-2 function despite direct gamete contact. Furthermore, we find that levels of meiotic maturation/ovulation and sperm migratory behavior are altered in egg-1 mutants. These observations suggest an unexpected regulatory link between fertilization and other events necessary for reproductive success. egg-1 and egg-2 are the result of a gene duplication in the nematode lineage leading to C. elegans. The two closely related species C. briggsae and C. remanei encode only a single egg-1/egg-2 homolog that is required for hermaphrodite/female fertility. In addition to being the first identified egg components of the nematode fertilization machinery, the egg-1 and egg-2 gene duplication could be vital with regards to maximizing C. elegans fecundity and understanding the evolutionary differentiation of molecular function and speciation.  相似文献   

19.
20.
Thioredoxin reductase (TrxR) is a member of the pyridine nucleotide-disulfide reductase family, which mainly functions in the thioredoxin system. TrxR is found in all living organisms and exists in two major ubiquitous isoenzymes in higher eukaryotic cells; One is cytosolic and the other mitochondrial. Mitochondrial TrxR functions to protect mitochondria from oxidative stress, where reactive oxidative species are mainly generated, while cytosolic TrxR plays a role to maintain optimal oxido-reductive status in cytosol. In this study, we report differential physiological functions of these two TrxRs in C. elegans. trxr-1, the cytosolic TrxR, is highly expressed in pharynx, vulva and intestine, whereas trxr-2, the mitochondrial TrxR, is mainly expressed in pharyngeal and body wall muscles. Deficiency of the non-selenoprotein trxr-2 caused defects in longevity and delayed development under stress conditions, while deletion mutation of the selenoprotein trxr-1 resulted in interference in acidification of lysosomal compartment in intestine. Interestingly, the acidification defect of trxr-1(jh143) deletion mutant was rescued, not only by selenocystein-containing wild type TRXR-1, but also cysteine-substituted mutant TRXR-1. Both trxr-1 and trxr-2 were up-regulated when worms were challenged by environmental stress such as heat shock. These results suggest that trxr-1 and trxr-2 function differently at organismal level presumably by their differential sub-cellular localization in C. elegans.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号