首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
L E Dyck 《Life sciences》1989,45(11):993-999
In the rat brain, a number of receptors are linked to phospholipase C which catalyzes the hydrolysis of membrane inositol phospholipids; stimulation of alpha 1-adrenergic receptors, for example, increases polyphosphoinositide turnover, but stimulation of alpha 2-receptors does not. The hydrolysis of inositol phospholipids in rat cortical slices was investigated using a direct assay involving prelabeling these lipids with 3H-inositol and then measuring the formation of 3H-inositol phosphates in the presence of lithium ions. As expected, clonidine, an alpha 2-agonist, did not stimulate the formation of 3H-inositol phosphates; however, clonidine antagonized the ability of noradrenaline to stimulate 3H-inositol phosphate formation. This effect was not blocked by antagonists of alpha 2, 5HT2, H2, or muscarinic receptors. Clonidine did not affect carbachol-stimulated 3H-inositol phosphate formation.  相似文献   

2.
Abstract: Exposure of rat brain or parotid gland slices to muscarinic receptor agonists stimulates a phospholipase C that degrades inositol phospholipids. When tissue slices were labelled in vitro with [3H]inositol, this response could be monitored by measuring the formation of [3H]inositol phosphates. Accumulation of inositol 1,4-biphosphate in stimulated brain slices suggests that polyphosphonositides are the primary targets for phospholipase C activity. Li+ (10 m M ) in the medium completely blocked the hydrolysis of inositol 1-phosphate, partially inhibited inositol 1,4bisphosphate hydrolysis, but had no effect on the hydrolysis of inositol 1,4,5-trisphosphate by endogenous phosphatases. Muscarinic receptor pharmacology was studied by measuring the accumulation of [3H]inositol 1-phosphate in the presence of 10 m M Li+. In experiments on brain slices, the response to carbachol was antagonised by atropine with an affinity constant of approximately 8.79 ± 0.12. Dose-response curves to several muscarinic agonists were constructed using brain and parotid gland slices. The results are consistent with relatively direct coupling of low-affinity muscarinic receptors to inositol phospholipid breakdown in brain slices; full agonists were relatively more potent in the parotid gland compared with the brain. Explanations for these differences are suggested.  相似文献   

3.
A possible participation of polyphosphoinositide metabolism in the excitation-contraction coupling in heart was investigated. Isolated rat ventricles prelabelled with myo-[2-3H]inositol were stimulated by conditions that increase mechanical activity. Both noradrenaline and carbachol increased the basal level of IP3, IP2 and IP by the activation of alpha 1-adrenergic and muscarinic receptors, respectively. Electrical stimulation accelerated inositol lipid degradation by phospholipase C thus enhancing the IP3 level as compared to quiescent ventricles. It is proposed that IP3 may be involved in excitation-contraction coupling in cardiac tissue.  相似文献   

4.
Serotonin 5-HT1A receptors have been reported to be negatively coupled to muscarinic receptor-stimulated phosphoinositide turnover in the rat hippocampus. In the present study, we have investigated further the pharmacological specificity of this negative control and attempted to elucidate the mechanism whereby 5-HT1A receptor activation inhibits the carbachol-stimulated phosphoinositide response in immature or adult rat hippocampal slices. Various 5-HT1A receptor agonists were found to inhibit carbachol (10 microM)-stimulated formation of total inositol phosphates in immature rat hippocampal slices with the following rank order of potency (IC50 values in nM): 8-hydroxy-2-(di-n-propylamino)tetralin (8-OH-DPAT) (11) greater than ipsapirone (20) greater than gepirone (120) greater than RU 24969 (140) greater than buspirone (560) greater than 1-(m-trifluoromethylphenyl)piperazine (1,500) greater than methysergide (5,644); selective 5-HT1B, 5-HT2, and 5-HT3 receptor agonists were inactive. The potency of the 5-HT1A receptor agonists investigated as inhibitors of the carbachol response was well correlated (r = 0.92) with their potency as inhibitors of the forskolin-stimulated adenylate cyclase in guinea pig hippocampal membranes. 8-OH-DPAT (10 microM) fully inhibited the carbachol-stimulated formation of inositol di-, tris-, and tetrakisphosphate but only partially antagonized (-40%) inositol monophosphate production. The effect of 8-OH-DPAT on carbachol-stimulated phosphoinositide turnover was not prevented by addition of tetrodotoxin (1 microM), by prior destruction of serotonergic afferents, by experimental manipulations causing an increase in cyclic AMP levels (addition of 10 microM forskolin), or by changes in membrane potential (increase in K+ concentration or addition of tetraethylammonium). Prior intrahippocampal injection of pertussis toxin also failed to alter the ability of 8-OH-DPAT to inhibit the carbachol response. Carbachol-stimulated phosphoinositide turnover in immature rat hippocampal slices was inhibited by the protein kinase C activators phorbol 12-myristate 13-acetate (10 microM) and arachidonic acid (100 microM). Moreover, the inhibitory effect of 8-OH-DPAT on the carbachol response was blocked by 10 microM quinacrine (a phospholipase A2 inhibitor) but not by BW 755C (100 microM), a cyclooxygenase and lipoxygenase inhibitor. These results collectively suggest that 5-HT1A receptor activation inhibits carbachol-stimulated phosphoinositide turnover by stimulating a phospholipase A2 coupled to 5-HT1A receptors, leading to arachidonic acid release. Arachidonic acid could in turn activate a gamma-protein kinase C with as a consequence an inhibition of carbachol-stimulated phosphoinositide turnover. This inhibition may be the consequence of a phospholipase C phosphorylation and/or a direct effect on the muscarinic receptor.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

5.
Effects of Ca2+ on phosphoinositide breakdown in exocrine pancreas.   总被引:4,自引:3,他引:1       下载免费PDF全文
Recent studies have established that inositol 1,4,5-trisphosphate [I(1,4,5)P3] provides the link between receptor-regulated polyphosphoinositide hydrolysis and mobilization of intracellular Ca2+. Here, we report the effects of Ca2+ on inositol trisphosphate (IP3) formation from phosphatidylinositol bisphosphate (PIP2) catalysed by phospholipase C in intact and electrically permeabilized rat pancreatic acinar cells. In permeabilized cells, the Ca2+-mobilizing agonist caerulein stimulated [3H]IP3 formation when the free [Ca2+] was buffered at 140 nM, the cytosolic free [Ca2+] of unstimulated pancreatic acinar cells. When the free [Ca2+] was reduced to less than 10 nM, caerulein did not stimulate [3H]IP3 formation. Ca2+ in the physiological range stimulated [3H]IP3 formation and reduced the amount of [3H]PIP2 in permeabilized cells. The effects of Ca2+ and the receptor agonist caerulein were additive, but we have not established whether this reflects independent effects on the same or different enzymes. The effect of Ca2+ on [3H]IP3 formation by permeabilized cells was unaffected by inhibitors of the cyclo-oxygenase and lipoxygenase pathways of arachidonic acid metabolism; nor were the effects of Ca2+ mimicked by addition of arachidonic acid. These results suggest that the effects of Ca2+ on phospholipase C activity are not a secondary consequence of Ca2+ activation of phospholipase A2. Changes in free [Ca2+] (less than 10 nM-1.2 mM) did not affect the metabolism of exogenous [3H]I(1,4,5)P3 by permeabilized cells. In permeabilized cells, breakdown of exogenous [3H]IP3 to [3H]IP2 (inositol bisphosphate), and formation of [3H]IP3 in response to receptor agonists were equally inhibited by 2,3-bisphosphoglyceric acid. This suggests that the [3H]IP2 formed in response to receptor agonists is entirely derived from [3H]IP3. In intact cells, [3H]IP3 formation was stimulated when ionomycin was used to increase the cytosolic free [Ca2+]. However, a maximal concentration of caerulein elicited ten times as much IP3 formation as did the highest physiologically relevant [Ca2+]. We conclude that the major effect of receptor agonists on IP3 formation does not require an elevation of cytosolic free [Ca2+], although the increase in free [Ca2+] that normally follows IP3 formation may itself have a small stimulatory effect on phospholipase C.  相似文献   

6.
In rat brain slices the synthesis of [3H]phosphoinositides and the production of [3H]inositol monophosphate (IP1) induced by norepinephrine (NE) were inhibited by glutamate. Calcium concentrations were varied to test if these inhibitory effects of glutamate were mediated by a calcium-dependent process. Although reducing calcium or addition of the calcium antagonist verpamil reduced the inhibitory effects of glutamate, these results were equivocal because reduced calcium directly decreased agonist-induced [3H]phosphoinositide synthesis. The inhibitory effects of glutamate were mimicked by quisqualate in a dose-dependent manner, but none of a variety of excitatory amino acid receptor antagonists modified the inhibition caused by quisqualate. It is suggested that glutamate activates a quisqualate-sensitive receptor (for which an antagonist is not available) and causes inhibition of phosphoinositide hydrolysis mediated in part by a direct or indirect inhibitory effect of calcium on phosphoinositide synthesis. Modulatory effects of arachidonic acid were examined because glutamate and calcium can activate phospholipase A2. Arachidonic acid caused a rapid and dose-dependent inhibition of [3H]phosphoinositide synthesis and of NE-stimulated [3H]IP1 production. A similar inhibition of the response to carbachol also occurred. The inhibition caused by arachidonic acid was unchanged by addition of inhibitors of cyclooxygenase or lipoxygenase. Activation of phospholipase A2 with melittin caused inhibitory effects similar to those of arachidonic acid. Inhibitors of phospholipase A2 were found to impair phosphoinositide metabolism, likely due to their lack of specificity for phospholipase A2. Further studies were carried out in slices that were prelabelled with [3H]inositol in an attempt to separate modulatory effects on [3H]phosphoinositide synthesis and agonist-stimulated [3H]IP1 production. Several excitatory amino acid agonists inhibited NE-stimulated [3H]IP1 production. This inhibitory inter-action could be due to impaired synthesis of [3H]phosphoinositides because, even though the slices were prelabeled, addition of unlabelled inositol reduced NE-stimulated [3H]IP1 production, indicating that continuous regeneration of [3H]phosphoinositides is required. In contrast to the inhibitory effects of the excitatory amino acids, gamma-aminobutyric acid (GABA) enhanced the response to NE in cortical and hippocampal slices. GABA also enhanced the response to carbachol in hippocampal and striatal slices and to ibotenic acid in hippocampal slices. Baclofen potentiated the response to NE similarly to the effect of GABA and baclofen partially blocked the inhibitory effect of arachidonic acid but did not alter that of quisqualate.Abbreviations AMPA -amino-3-hydroxy-5-methyl-4-isoxazolepropionic - acid AP4 dl-2-amino-4-phosphonobutyric acid - BPB bromphenacyl bromide - BSA bovine serum albumin - CNQX 6-cyano-7-nitroquinoxaline-2,3-dione - DFMO -difluoromethylornithine - DIDS diisothiocyanotostilbene-2,2-disulfonic acid - EGTA ethyleneglycol-bis-N - N, N N-tetraacetic acid - GABA -aminobutyric acid - GDEE glutamate diethyl ether - -GG -glutamylglycine - IP1 inositol monophosphate - IP2 inositol bisphosphate - IP3 inositol trisphosphate - NDGA nordihydroguaiaretic acid - NE norepinephrine - NMDA N-methyl-d-aspartate  相似文献   

7.
Abstract: Different neurotransmitter receptor agonists [carbachol, serotonin, noradrenaline, histamine, endothelin-1, and trans -(1 S ,3 R )-aminocyclopentyl-1,3-dicarboxylic acid ( trans -ACPD)], known as stimuli of phospholipase C in brain tissue, were tested for phospholipase D stimulation in [32P]Pi-prelabeled rat brain cortical and hippocampal slices. The accumulation of [32P]phosphatidylethanol was measured as an index of phospholipase D-catalyzed transphosphatidylation in the presence of ethanol. Among the six neurotransmitter receptor agonists tested, only noradrenaline, histamine, endothelin-1, and trans -ACPD stimulated phospholipase D in hippocampus and cortex, an effect that was strictly dependent of the presence of millimolar extracellular calcium concentrations. The effect of histamine (EC50 18 µ M ) was inhibited by the H1 receptor antagonist mepyramine with a K i constant of 0.7 n M and was resistant to H2 and H3 receptor antagonists (ranitidine and tioperamide, respectively). Endothelin-1-stimulated phospholipase D (EC50 44 n M ) was not blocked by BQ-123, a specific antagonist of the ETA receptor. Endothelin-3 and the specific ETB receptor agonist safarotoxin 6c were also able to stimulate phospholipase D with efficacies similar to that of endothelin-1, and EC50 values of 16 and 3 n M , respectively. These results show that histamine and endothelin-1 stimulate phospholipase D in rat brain through H1 and ETB receptors, respectively.  相似文献   

8.
Rat hippocampal formation slices were prelabelled with [3H]inositol and stimulated with carbachol for times between 7 s and 3 min. The [3H]inositol metabolites in an acid extract of the slices were resolved with anion-exchange HPLC. Carbachol dramatically increased the concentration of [3H]inositol monophosphate, [3H]inositol bisphosphate (two isomers), [3H]inositol 1,3,4-trisphosphate, [3H]inositol 1,4,5-trisphosphate, and [3H]inositol 1,3,4,5-tetrakisphosphate. The levels of [3H]inositol 1,4,5-trisphosphate rose most rapidly; they were maximally elevated after only 7 s and declined toward control levels in 1 min followed by a more sustained elevation in levels for up to 3 min. When [3H]inositol 1,4,5-trisphosphate was incubated with hippocampal formation homogenates in an ATP-containing buffer it was very rapidly metabolised. After 5 min [3H]inositol 1,4-bisphosphate, [3H]inositol 1,3,4-trisphosphate, and [3H]inositol 1,3,4,5-tetrakisphosphate could be detected in the homogenates. Under similar experimental conditions [3H]inositol 1,3,4,5-tetrakisphosphate is metabolised to [3H]inositol 1,3,4-trisphosphate and an inositol bisphosphate isomer that is not [3H]inositol 1,4-bisphosphate. We conclude that like other tissues the primary event in the hippocampus following carbachol stimulation is the activation of phosphatidylinositol 4,5-bisphosphate selective phospholipase C.  相似文献   

9.
This paper describes a rapid and simple method for measuring CMP-phosphatidate (CMP-PA; CDP-diacylglycerol), providing a novel assay for inositol phospholipid metabolism. Rat cerebral-cortical slices labelled with [14C]cytidine were incubated with the muscarinic cholinergic agonist carbachol in the presence of various concentrations of LiCl; 10 mM-LiCl greatly enhanced the carbachol-stimulated formation of [14C]CMP-PA over a 60 min incubation period. The potentiation by Li+ was concentration-dependent, with a maximal enhancement at 3 mM and half-maximal enhancement at 0.6 mM-LiCl. The enhancement by Li+ could be reversed by incubation with myo-inositol; a maximal effect was observed with 10 mM-inositol. A similar, though smaller, enhancement of CMP-PA concentrations in the presence of LiCl was observed in slices stimulated with noradrenaline, 5-hydroxytryptamine and K+. The results are discussed in relation to previously observed effects of Li+ on inositol phospholipid metabolism.  相似文献   

10.
The plasma membrane expression and the phagocytic function of the C3b receptor (CR1) on human neutrophils (PMN) are under the control of cellular regulatory mechanisms, and phorbol esters are one class of agents that modulate both membrane expression and function. Phorbol esters also activate protein kinase C; however, the physiologic activation of protein kinase C is thought to be mediated by diacylglycerol. Diacylglycerols are generated during phosphatidyl inositol turnover, which is associated with a rise in intracellular calcium due to another product of polyphosphoinositide metabolism, inositol trisphosphate. We therefore studied the effects of synthetic diacylglycerols and calcium mobilization on CR1 function. In our experiments, treatment of neutrophils with two synthetic diacylglycerols, 1-oleoyl-2-acetoyl-sn-3-glycerol (OAG) and sn-1,2-dioctanoylglycerol, like phorbol esters, induced ligand-independent internalization of CR1. In contrast, the addition of exogenous phospholipase C had no effect on receptor internalization over the time course studied. OAG treatment also enabled neutrophils to specifically phagocytose via CR1. Calcium mobilization with the calcium ionophore A23187 (1 microM) had a synergistic effect on phorbol ester-induced internalization of CR1, but abrogated the phorbol ester enhancement of CR1-dependent phagocytosis. Both trimethoxybenzoate, the intracellular calcium antagonist, and chlorpromazine inhibited phorbol ester-induced internalization of CR1, whereas chelation of extracellular calcium did not. We conclude that activation of protein kinase C modulates the expression and function of CR1, and that calcium mobilization also influences these processes. We speculate that polyphosphoinositide turnover may be involved in the physiologic regulation of CR1.  相似文献   

11.
The effects of epidermal growth factor (EGF) on the metabolism of phosphatidic acid and phosphoinositides were examined using renal cortical slices labelled with either sodium [32P]orthophosphate or myo-[3H]inositol. EGF was found to increase the incorporation of phosphate into phosphatidic acid and phosphoinositides. This effect is not dependent on external calcium and is inhibited by 12-O-tetradecanoylphorbol 13-acetate (TPA). When phospholipids were prelabelled, EGF did not decrease the level of 32P in phosphatidic acid and phosphoinositides, and EGF did not affect the formation of inositol phosphates or the concentration of cAMP and cGMP in renal tissue. The results show that EGF stimulates the incorporation of phosphate into phosphatidic acid and phosphoinositides, but does not affect breakdown of phosphoinositides by phospholipase C in renal cortical slices.  相似文献   

12.
The metabolism of inositol-containing phospholipids during insulin secretion was studied in rat islets of Langerhans preincubated with [3H]inositol to label their phospholipids. Glucose (20 mM) caused a rapid breakdown of phosphatidylinositol 4,5-bisphosphate and phosphatidylinositol 4-phosphate and an accumulation of inositol trisphosphate and inositol bisphosphate. This effect was maximal at 60s, did not require the presence of extracellular Ca2+, and was abolished by mannoheptulose (15 mM), but not by noradrenaline (1 microM). Mannose (20 mM) and DL-glyceraldehyde (10 mM) produced similar effects to those of glucose, but galactose (20 mM) and KCl (30 mM) were without effect. These results are compatible with the hypothesis that an early event in the stimulus-secretion coupling mechanism in the pancreatic B-cell is the rapid breakdown of polyphosphoinositides catalysed by phospholipase C. Moreover, they suggest that the breakdown of polyphosphoinositides is linked to sugar metabolism in the B-cell. This observation is important, since it demonstrates that events in a cell other than plasma-membrane receptor occupancy can promote polyphosphoinositide hydrolysis.  相似文献   

13.
The effects of guanine nucleotides, thrombin, and platelet cytosol (100,000 X g supernatant) on the hydrolysis of polyphosphoinositides by phospholipase C was examined in isolated platelet membranes labeled with [3H]inositol. Guanosine 5'-(3-O-thio)triphosphate (GTP gamma S) (10 microM) caused a 2-fold stimulation of polyphosphoinositide hydrolysis, compared to background. GTP gamma S (10 microM) plus thrombin (1 unit/ml) stimulated the release of inositol triphosphate, inositol diphosphate, and inositol phosphate 500, 300, and 250%, respectively, compared to GTP gamma S alone. Cytosol prepared from unlabeled platelets slightly increased the release of inositol phosphates from [3H]inositol-labeled membranes. Addition of cytosol plus GTP gamma S (10 microM), however, resulted in a 300% enhancement of the release of inositol phosphates compared to membranes incubated with thrombin and GTP gamma S. The stimulatory effects of cytosol and GTP gamma S on polyphosphoinositide hydrolysis were also observed when membranes were replaced by sonicated lipid vesicles prepared from a total platelet lipid extract. These data suggest that PIP2 hydrolysis in platelets is catalyzed by a soluble phospholipase C which is regulated by a GTP-binding regulatory protein.  相似文献   

14.
Stimulation of inositol phospholipid hydrolysis by transmitter receptor agonists was measured in slices from hippocampus, cerebral cortex, and corpus striatum at various intervals after transient global ischemia in rats. Ischemia was induced through the four-vessel occlusion model. Stimulation of [3H]inositol monophosphate formation by excitatory amino acids was greatly enhanced in hippocampal slices prepared from ischemic rats at 24 h or 7 days after reperfusion. This potentiation was more evident using ibotenic acid and was also observed in cerebral cortex, but not in corpus striatum. This regional profile correlated with the pattern of ischemia-induced neuronal damage observed under our experimental conditions. The enhanced responsiveness to excitatory amino acids was always accompanied by an increase in both basal and norepinephrine-stimulated [3H]inositol monophosphate formation. In contrast, stimulation of [3H]inositol monophosphate formation by carbamylcholine was not modified in hippocampal or cortical slices from ischemic animals.  相似文献   

15.
Characterisation of receptor-mediated breakdown of inositol phospholipids in rat cortical slices has been performed using a direct assay which involves prelabelling with [3H]inositol. When slices were preincubated with [3H]inositol, lithium was found to greatly amplify the capacity of receptor agonists such as carbachol, noradrenaline, and 5-hydroxytryptamine to increase the amount of radioactivity appearing in the inositol phosphates. Using a large variety of agonists and antagonists it could be shown that cholinergic muscarinic, alpha 1-adrenoceptor, and histamine H1 receptors appear to be linked to inositol phospholipid breakdown in cortex. The large responses produced by receptor agonists allowed a clear discrimination between full and partial agonists as well as quantitative analysis of competitive antagonists for each receptor. Whereas carbachol and acetylcholine (in the presence of a cholinesterase inhibitor) were full agonists, oxotremorine and arecoline were only partial agonists. Very low concentrations of atropine shifted the carbachol dose-response curve to the right and allowed inhibition constants for the antagonist to be easily calculated. The nicotinic antagonist, mecamylamine, was ineffective. Noradrenaline adrenaline were full agonists at alpha 1-adrenoceptors, but phenylephrine and probably methoxamine were partial agonists. Prazosin, but not yohimbine, potently and competitively antagonised the noradrenaline inositol phospholipid response. Mepyramine but not cimetidine competitively antagonised the histamine response. These data provide strong confirmation for the potentiating effect of lithium on neurotransmitter inositol phospholipid breakdown and emphasise the ease with which functional responses at a number of cortical receptors can be characterised.  相似文献   

16.
Ibotenate, a rigid structural analogue of glutamate, markedly enhances the hydrolysis of membrane inositol phospholipids, as reflected by the stimulation of [3H]inositol monophosphate formation in rat hippocampal slices prelabeled with [3H]inositol and treated with Li+. Quisqualate, homocysteate, L-glutamate, and L-aspartate also induce a significant (albeit weaker) increase in [3H]inositol monophosphate formation, whereas N-methyl-D-aspartate, kainate, quinolinate, and N-acetylaspartylglutamate are inactive. The increase in [3H]inositol monophosphate formation elicited by the above-mentioned excitatory amino acids is potently and selectively antagonized by DL-2-amino-4-phosphonobutyric acid, a dicarboxylic amino acid receptor antagonist. These results suggest that, in the hippocampus, a class of dicarboxylic amino acid recognition sites is coupled with phospholipase C, the enzyme that catalyzes the hydrolysis of membrane inositol phospholipids.  相似文献   

17.
Eighty-three percent of polyphosphoinositide-specific phospholipase C activity was recovered in a cytosolic fraction after nitrogen cavitation of turkey erythrocytes. This activity has been purified approximately 50,000-fold when compared to the starting cytosol with a yield of 1.7-5.0%. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis of the phospholipase C preparation revealed a major polypeptide of 150 kDa. The specific activity of the purified enzyme was 6.7-14.0 mumol/min/mg of protein with phosphatidylinositol 4,5-bisphosphate or phosphatidylinositol 4-phosphate as substrate. Phospholipase C activity was markedly dependent on the presence of Ca2+. The phospholipase C showed an acidic pH optimum (pH 4.0). At neutral pH, noncyclic inositol phosphates were the major products formed by the phospholipase C, while at pH 4.0, substantial formation of inositol 1:2-cyclic phosphate derivatives occurred. Properties of the purified 150-kDa turkey erythrocyte phospholipase C were compared with the approximately 150-kDa phospholipase C-beta and -gamma isoenzymes previously purified from bovine brain (Ryu, S. H., Cho, K. S., Lee, K. Y., Suh, P. G., and Rhee, S. G. (1987) J. Biol. Chem. 262, 12511-12518). The turkey erythrocyte phospholipase C differed from the two mammalian phospholipases with respect to the effect of sodium cholate on the rate of polyphosphoinositide hydrolysis observed. Moreover, when presented with dispersions of pure inositol lipids, phospholipases C-beta and -gamma displayed comparable maximal rates of polyphosphoinositide and phosphatidylinositol hydrolysis. By contrast, the turkey erythrocyte phospholipase C displays a marked preference for polyphosphoinositide substrates.  相似文献   

18.
Phosphorylation of cardiac sarcolemma proteins under stimulation of M-receptors by agonist carbacholine used to stimulate phosphatidylinositide cycle, was investigated in the isolated, rabbit heart perfused with 32Pi. Carbacholine (10(-7) stimulates the polyphosphoinositide metabolism which is expressed in the activated incorporation of 32P from [gamma-32P]ATP in polyphosphoinositide as well as in the increased content of the labelled inositol trisphosphate released through phosphatidylinositol-4,5-bisphosphate break-down by phospholipase C. The diacylglycerol produced simultaneously with inositol triphosphate as a second messenger activates the protein kinase C. This was confirmed by considerable activation of phosphorylation sarcolemma proteins-substrates of protein kinase C, with Mr 94, 87, 78, 51 and 46 kDa.  相似文献   

19.
Glucocorticoids inhibited the zymosan-induced formation of inositol phosphates in macrophages. No inhibition was observed with progesterone. Inhibitors of protein (cycloheximide) and RNA (actinomycin D) synthesis exhibited similar inhibitory effects. The activity of phospholipase C in subcellular fractions was not altered by hormone treatment of the cells. However, the incorporation of inositol into membrane lipids was reduced by dexamethasone. These data indicate that glucocorticoids are able to inhibit the formation of inositol phosphates; the effect of the hormone is rather due to an inhibition of the incorporation of inositol in membrane lipids than to an inhibition of phospholipase C. The anti-inflammatory action of glucocorticoids may, therefore, also be attributed to their effect on the polyphosphoinositide cycle and inositol phosphate-mediated processes.  相似文献   

20.
The intracellular concentrations of polyphosphoinositides and inositol phosphates were determined, and their role in growth factor-initiated cell division was investigated in a Chinese hamster ovary cell inositol auxotroph (CHO-K1-Ins). Metabolic labeling experiments during inositol starvation of CHO-K1-Ins cells showed that 1) the lipid-linked inositol component was maintained at the expense of the soluble inositol pool, 2) the decreasing cellular content of phosphatidylinositol was replaced by phosphatidylglycerol, and 3) the concentrations of inositol polyphosphates and polyphosphoinositides were conserved at the expense of inositol and phosphatidylinositol. These data show that homeostatic mechanisms exist for the maintenance of the polyphosphoinositide and inositol phosphate pools at the expense of inositol and phosphatidylinositol. The addition of alpha-thrombin to growth-arrested (serum-starved) CHO-K1-Ins cells stimulated the incorporation of [3H]thymidine into DNA to the same extent as that observed following serum readdition. gamma-Thrombin was also an effective mitogen, but active site-inhibited alpha-thrombin was not. Both alpha- and gamma-thrombin, but not catalytic site-inhibited alpha-thrombin, initiated phosphatidylinositol turnover in vivo and increased phosphatidylinositol 4,5-bisphosphate phospholipase C activity in vitro. Serum and insulin were potent CHO-K1-Ins cell mitogens, but neither triggered phosphatidylinositol turnover in vivo nor activated phospholipase C in vitro. The activation of phospholipase C plays a determinant role in thrombin-initiated cell cycle progression in Chinese hamster ovary cells, although other growth factor-signaling pathways exist that are independent of polyphosphoinositide catabolism.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号