首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We have discovered an artificial DNA enzyme that mimics the first step of RNA splicing. In vitro selection was used to identify DNA enzymes that ligate RNA. One of the new DNA enzymes carries out splicing-related catalysis by specifically recognizing an unpaired internal adenosine and facilitating attack of its 2'-hydroxyl onto a 5'-triphosphate. This reaction forms 2',5'-branched RNA and is analogous to the first step of in vivo RNA splicing, in which a ribozyme cleaves itself with formation of a branched intermediate. Unlike a natural ribozyme, the new DNA enzyme has no 2'-hydroxyl groups to aid in the catalytic mechanism. Our finding has two important implications. First, branch-site adenosine reactivity seems to be mechanistically favored by nucleic acid enzymes. Second, hydroxyl groups are not obligatory components of nucleic acid enzymes that carry out biologically related catalysis.  相似文献   

2.
Clustered Regularly Interspaced Short Palindromic Repeat (CRISPR)-based technology has revolutionized the field of biomedicine with broad applications in genome editing, therapeutics and diagnostics. While a majority of applications involve the RNA-guided site-specific DNA or RNA cleavage by CRISPR enzymes, recent successes in nucleic acid detection rely on their collateral and non-specific cleavage activated by viral DNA or RNA. Ranging in enzyme composition, the mechanism for distinguishing self- from foreign-nucleic acids, the usage of second messengers, and enzymology, the CRISPR enzymes provide a diverse set of diagnosis tools in further innovations. Structural biology plays an important role in elucidating the mechanisms of these CRISPR enzymes. Here we summarize and compare structures of three types of CRISPR enzymes used in nucleic acid detection captured in their respective functional forms and illustrate the current understanding of their activation mechanism.  相似文献   

3.
4.
DNA and RNA ligases: structural variations and shared mechanisms   总被引:1,自引:0,他引:1  
DNA and RNA ligases join 3' OH and 5' PO4 ends in polynucleotide substrates using a three-step reaction mechanism that involves covalent modification of both the ligase enzyme and the polynucleotide substrate with AMP. In the past three years, several polynucleotide ligases have been crystallized in complex with nucleic acid, providing the introductory views of ligase enzymes engaging their substrates. Crystal structures for two ATP-dependent DNA ligases, an NAD+-dependent DNA ligase, and an ATP-dependent RNA ligase demonstrate how ligases utilize the AMP group and their multi-domain architectures to manipulate nucleic acid structure and catalyze the end-joining reaction. Together with unliganded crystal structures of DNA and RNA ligases, a more comprehensive and dynamic understanding of the multi-step ligation reaction mechanism has emerged.  相似文献   

5.
In some preparations of DNA dependent RNA polymerase a new enzymatic activity has been found which catalyzes the condensation of two pyrophosphate molecules, liberated in the process of RNA synthesis, to one molecule of orthophosphate and one molecule of Mg (or Mn) - chelate complex with trimetaphosphate. This activity can also cooperate with DNA-polymerase, on condition that both enzymes originate from the same cells. These results point to two general conclusions. First, energy is conserved in the overall process of nucleic acid synthesis and turnover, so that the process does not require an energy influx from the cell's general resources. Second, the synthesis of nucleic acids is catalyzed by a complex enzyme system which contains at least two separate enzymes, one responsible for nucleic acid polymerization and the other for energy conservation via pyrophosphate condensation.  相似文献   

6.
The retroviral integrase superfamily (RISF) comprises numerous important nucleic acid‐processing enzymes, including transposases, integrases and various nucleases. These enzymes are involved in a wide range of processes such as transposition, replication and repair of DNA, homologous recombination, and RNA‐mediated gene silencing. Two out of the four enzymes that are encoded by the human immunodeficiency virus—RNase H1 and integrase—are members of this superfamily. RISF enzymes act on various substrates, and yet show remarkable mechanistic and structural similarities. All share a common fold of the catalytic core and the active site, which is composed primarily of carboxylate residues. Here, I present RISF proteins from a structural perspective, describing the individual members and the common and divergent elements of their structures, as well as the mechanistic insights gained from the structures of RNase H1 enzyme complexes with RNA/DNA hybrids.  相似文献   

7.
The functionality of DNA, RNA and proteins is altered dynamically in response to physiological and pathological cues, partly achieved by their modification. While the modification of proteins with ADP-ribose has been well studied, nucleic acids were only recently identified as substrates for ADP-ribosylation by mammalian enzymes. RNA and DNA can be ADP-ribosylated by specific ADP-ribosyltransferases such as PARP1–3, PARP10 and tRNA 2′-phosphotransferase (TRPT1). Evidence suggests that these enzymes display different preferences towards different oligonucleotides. These reactions are reversed by ADP-ribosylhydrolases of the macrodomain and ARH families, such as MACROD1, TARG1, PARG, ARH1 and ARH3. Most findings derive from in vitro experiments using recombinant components, leaving the relevance of this modification in cells unclear. In this Survey and Summary, we provide an overview of the enzymes that ADP-ribosylate nucleic acids, the reversing hydrolases, and the substrates’ requirements. Drawing on data available for other organisms, such as pierisin1 from cabbage butterflies and the bacterial toxin–antitoxin system DarT–DarG, we discuss possible functions for nucleic acid ADP-ribosylation in mammals. Hypothesized roles for nucleic acid ADP-ribosylation include functions in DNA damage repair, in antiviral immunity or as non-conventional RNA cap. Lastly, we assess various methods potentially suitable for future studies of nucleic acid ADP-ribosylation.  相似文献   

8.
DNA and a large proportion of RNA are antiparallel duplexes composed of an unvarying phosphosugar backbone surrounding uniformly stacked and highly similar base pairs. How do the myriad of enzymes (including ribozymes) that perform catalysis on nucleic acids achieve exquisite structure or sequence specificity? In all DNA and RNA polymerases and many nucleases and transposases, two Mg2+ ions are jointly coordinated by the nucleic acid substrate and catalytic residues of the enzyme. Based on the exquisite sensitivity of Mg2+ ions to the ligand geometry and electrostatic environment, we propose that two-metal-ion catalysis greatly enhances substrate recognition and catalytic specificity.  相似文献   

9.
10.
Summary Studies on the activity of peroxidase and polyphenoloxidase enzymes and synthesis of RNA and DNA were conducted on two vegetable crops viz. okra (Abelmoschus esculantus) and Spongegourd (Luffa cylindrtca) grown at five salinity (3 to 18 mmhos/cm) in sand culture with half Hoagland nutrient solution. The activity of these enzymes and synthesis of RNA and DNA decreased with the increase of salt concentration in the leaf at the flowering stage as well as in the fruit of these crops. A close relationship was observed with the reduction in crop growth and enzymic activity, and synthesis of RNA and DNA in saline conditions. The activity of the enzymes and synthesis of nucleic acids seems to depend upon the specificity of the enzyme, salt tolerance behaviour of the crop and effective salinity at the root zone.  相似文献   

11.
Thermophilic viruses represent a novel source of genetic material and enzymes with great potential for use in biotechnology. We have isolated a number of thermophilic viruses from geothermal areas in Iceland, and by combining high throughput genome sequencing and state of the art bioinformatics we have identified a number of genes with potential use in biotechnology. We have also demonstrated the existence of thermostable counterparts of previously known bacteriophage enzymes. Here we describe a thermostable RNA ligase 1 from the thermophilic bacteriophage RM378 that infects the thermophilic eubacterium Rhodothermus marinus. The RM378 RNA ligase 1 has a temperature optimum of 60–64°C and it ligates both RNA and single-stranded DNA. Its thermostability and ability to work under conditions of high temperature where nucleic acid secondary structures are removed makes it an ideal enzyme for RNA ligase-mediated rapid amplification of cDNA ends (RLM-RACE), and other RNA and DNA ligation applications.  相似文献   

12.
Detailed biochemical characterization of nucleic acid enzymes is fundamental to understanding nucleic acid metabolism, genome replication and repair. We report the development of a rapid, high-throughput fluorescence capillary gel electrophoresis method as an alternative to traditional polyacrylamide gel electrophoresis to characterize nucleic acid metabolic enzymes. The principles of assay design described here can be applied to nearly any enzyme system that acts on a fluorescently labeled oligonucleotide substrate. Herein, we describe several assays using this core capillary gel electrophoresis methodology to accelerate study of nucleic acid enzymes. First, assays were designed to examine DNA polymerase activities including nucleotide incorporation kinetics, strand displacement synthesis and 3′-5′ exonuclease activity. Next, DNA repair activities of DNA ligase, flap endonuclease and RNase H2 were monitored. In addition, a multicolor assay that uses four different fluorescently labeled substrates in a single reaction was implemented to characterize GAN nuclease specificity. Finally, a dual-color fluorescence assay to monitor coupled enzyme reactions during Okazaki fragment maturation is described. These assays serve as a template to guide further technical development for enzyme characterization or nucleoside and non-nucleoside inhibitor screening in a high-throughput manner.  相似文献   

13.
14.
15.
Today, many nucleic acid enzymes are used in gene therapy and gene regulations. However, no simple assay methods to evaluate enzymatic activities, with which we judge the enzyme design, have been reported. Here, we propose a new simple competition assay for nucleic acid enzymes of different types to evaluate the cleaving efficiency of a target RNA molecule, of which the recognition sites are different but overlapped. Two nucleic acid enzymes were added to one tube to make a competition of these two enzymes for one substrate. The assay was used on two ribozymes, hammerhead ribozyme and hairpin ribozyme, and a DNA-enzyme. We found that this assay method is capable of application to those enzymes, as a powerful tool for the selection and designing of RNA-cleaving enzymes.  相似文献   

16.
Simian-virus-40 large-T-antigen-catalyzed DNA and RNA unwinding reactions   总被引:3,自引:0,他引:3  
Simian virus 40 large T antigen is a helicase separating the complementary strands of double-stranded DNA in the presence of hydrolyzable ATP and of double-stranded RNA in the presence of non-ATP nucleotides (GTP, CTP or UTP). We have constructed partially single-stranded nucleic acid substrates consisting of RNA or DNA strands hydrogen bonded to either RNA or DNA complements. We found that ATP is utilized as a cofactor for the T-antigen-catalyzed unwinding reaction when the substrates contain overhanging single-stranded DNA, regardless of whether the double-stranded region is DNA or hybrid DNA.RNA. Conversely, non-ATP nucleotides are used when the overhanging single strand is RNA. Based on these and additional findings, we propose that the bound nucleic acid induces a conformational change in T antigen resulting in a proper orientation of both nucleic acid and nucleotide relative to the active center of the ATPase/helicase domain of the enzyme. The implications of our conclusion for the roles which T antigen may play in vivo are discussed.  相似文献   

17.
Human RNase H1 contains an N-terminal domain known as dsRHbd for binding both dsRNA and RNA/DNA hybrid. We find that dsRHbd binds preferentially to RNA/DNA hybrids by over 25-fold and rename it as hybrid binding domain (HBD). The crystal structure of HBD complexed with a 12 bp RNA/DNA hybrid reveals that the RNA strand is recognized by a protein loop, which forms hydrogen bonds with the 2'-OH groups. The DNA interface is highly specific and contains polar residues that interact with the phosphate groups and an aromatic patch that appears selective for binding deoxyriboses. HBD is unique relative to non-sequence-specific dsDNA- and dsRNA-binding domains because it does not use positive dipoles of alpha-helices for nucleic acid binding. Characterization of full-length enzymes with defective HBDs indicates that this domain dramatically enhances both the specific activity and processivity of RNase H1. Similar activity enhancement by small substrate-binding domains linked to the catalytic domain likely occurs in other nucleic acid enzymes.  相似文献   

18.
Using sensitive structure similarity searches, we identify a shared alpha+beta fold, RAGNYA, principally involved in nucleic acid, nucleotide or peptide interactions in a diverse group of proteins. These include the Ribosomal proteins L3 and L1, ATP-grasp modules, the GYF domain, DNA-recombination proteins of the NinB family from caudate bacteriophages, the C-terminal DNA-interacting domain of the Y-family DNA polymerases, the uncharacterized enzyme AMMECR1, the siRNA silencing repressor of tombusviruses, tRNA Wybutosine biosynthesis enzyme Tyw3p, DNA/RNA ligases and related nucleotidyltransferases and the Enhancer of rudimentary proteins. This fold exhibits three distinct circularly permuted versions and is composed of an internal repeat of a unit with two-strands and a helix. We show that despite considerable structural diversity in the fold, its representatives show a common mode of nucleic acid or nucleotide interaction via the exposed face of the sheet. Using this information and sensitive profile-based sequence searches: (1) we predict the active site, and mode of substrate interaction of the Wybutosine biosynthesis enzyme, Tyw3p, and a potential catalytic role for AMMECR1. (2) We provide insights regarding the mode of nucleic acid interaction of the NinB proteins, and the evolution of the active site of classical ATP-grasp enzymes and DNA/RNA ligases. (3) We also present evidence for a bacterial origin of the GYF domain and propose how this version of the fold might have been utilized in peptide interactions in the context of nucleoprotein complexes.  相似文献   

19.
20.
PARP enzymes create ADP-ribose modifications to regulate multiple facets of human biology, and some prominent PARP family members are best known for the nucleic acid interactions that regulate their activities and functions. Recent structural studies have highlighted PARP interactions with nucleic acids, in particular for PARP enzymes that detect and respond to DNA strand break damage. These studies build on our understanding of how DNA break detection is linked to the catalysis of ADP-ribose modifications, provide insights into distinct modes of DNA interaction, and shed light on the mechanisms of PARP inhibitor action. PARP enzymes have several connections to RNA biology, including the detection of the genomes of RNA viruses, and recent structural work has highlighted how PARP13/ZAP specifically targets viral genomes enriched in CG dinucleotides.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号