首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The rate of cell loss in irradiated RIF-1, EMT6, KHJJ, B16 and KHT tumours was studied using the 125IUdR loss technique. Administration of 125IUdR preceded localized tumour irradiation by 2 days. Loss of tumour radioactivity was measured for 6–8 days after irradiation. the blood flow to some tumours was occluded during, and for 30 min following, injection of the label to measure the amount of radioactivity entering the tumour as a result of reutilization of label from the gut epithelia and influx of labelled host cells. Irradiation did not significantly alter the amount of radioactivity entering these clamped tumours during the 8–10 days after injection of 125IUdR. This permitted comparison of irradiated and control groups based on the loss of radioactivity from the non-occluded tumours. Irradiation of RIF-1, EMT6, KHJJ or B16 tumours with doses of 600, 1400, 2400 or 4400 rads produced no significant increase in the rate of loss of tumour radioactivity. This suggested that, in the population of labelled cells, cell lysis following irradiation proceeded slowly. In contrast, KHT tumours showed a significant increase in loss rate following each radiation dose, although the increase was dose-independent. In all tumour systems, the constant rate of cell loss after radiation appeared to coincide with published reports of tumour growth responses after irradiation. the present data suggest that the manner of expression of radiation-induced cell killing results from the cellular proliferative status, i.e. whether a cell is cycling or non-cycling.  相似文献   

2.
The injectable anesthetic etomidate and a clip that facilitates hyperthermia by water bath immersion (the "Gibbs clip") were evaluated for their suitability with subcutaneous flank RIF-1 tumors in C3H/HeJ mice. For tumors between 100 and 250 mg (mean, 160 mg), etomidate at 40 mg kg-1 ip did not significantly increase the radiobiologic hypoxic fraction (RHF); as calculated from an in vitro assay after treatment in vivo the RHF increased from 0.06 (95% C.I.:0.03-0.13) to 0.08 (0.04-0.16). In contrast, for larger tumors (270-650 mg; mean, 400 mg) etomidate increased the RHF from 0.08 (0.04-0.17) to 0.28 (0.14-0.60). Holding 250-mg-or-less tumors 3-mm laterally away from the flank in an X-ray jig did not significantly reduce tumor blood flow as inferred from the clearance rates of Xe, but the RHF of 0.15 (0.08-0.26) was significantly (P less than 0.05) greater than the RHF in unanesthetized mice, although not the RHF in anesthetized mice. The Gibbs clip, which folded skin around a tumor to enhance thermal conduction from a water bath, did not impair the increase in tumor blood flow in response to the cardiovascular arousal associated with exposure to a hyperthermic stimulus. Intratumor temperature was within 0.25 degrees C of bath temperature 3 min after the tumor and clip were immersed, but only when rectal temperatures were at 37 degrees C or above; tumor blood flow increased intratumor temperature gradients by 0.10 degrees C for each 1.5 degrees C that the body temperature was below 37 degrees C.  相似文献   

3.
Hypoxic cells in human tumours probably contribute to the failure of radiotherapy in some sites. Changes in the oxygen carrying capacity of the blood, such as in anaemia, have been shown to influence tumour response. The effect of acute and chronic changes in haematocrit on the radiosensitivity of three mouse tumours (EMT6, KHT and RIF-1) were studied. Alterations in haematocrit were achieved by bleeding followed by retransfusion. When radiation was preceded immediately by an acute reduction in haematocrit (anaemia), radiosensitivity was markedly reduced in each tumour. An acute rise in haematocrit (polycythaemia) increased or decreased X-ray sensitivity depending on its severity. The optimum haematocrit for maximum sensitivity was always found to be at a level 5-10 per cent above normal. When the time between induction of anaemia and irradiation was increased, simulating a progressively longer duration of anaemia, marked changes in radiosensitivity of all the tumours were observed. A short duration of anaemia resulted in a resistant tumour with each cell line, but the resistance was gradually lost as the anaemia was prolonged, even though no recovery in haematocrit occurred. The rate of recovery to normal radiosensitivity varied from 24 to 72 hours in the different tumours. Therefore, only haematocrit changes which occurred within 1-3 days of a dose of radiation affect the radiosensitivity of these tumours.  相似文献   

4.
We have developed exchange transfusion methods to alter the hematocrit of tumour-bearing mice. The effects of anaemia and its correction by blood transfusion on the radiosensitivity of two mouse tumours (SCCVII/St and RIF-1) were studied using excision, in vivo/in vitro assay. An acute reduction in haematocrit caused a high degree of radioresistance equivalent to an increase in the hypoxic fractions by factors of 10 (SCCVII/St) and 30 (RIF-1). As the duration of the anaemia was prolonged, radioresistance was lost until within about 6 h normal radiosensitivity was observed even though the anaemia persisted. The restoration of the normal haematocrit by red blood cell transfusion after 24 h of anaemia caused increased radiosensitivity equivalent to a reduction in the hypoxic fraction by factors of 5 (SCCVII/St) and 10 (RIF-1), but again the effect was transient and normal radiosensitivity was re-established within 24-48 h of retransfusion. Measurements of 14C misonidazole (MISO) binding to RIF-1 tumours after these procedures indicated changes in the number of hypoxic cells which were qualitatively almost identical to those using the cell survival endpoint, leading us to believe that changes in oxygenation were responsible for the altered radiosensitivity. We feel that transfusion procedures could be used to advantage in the radiotherapy of some cancers.  相似文献   

5.
Perchloric acid extracts of radiation-induced fibrosarcoma (RIF-1) tumors grown in mice have been analyzed by multinuclear NMR spectroscopy and by various chromatographic methods. This analysis has permitted the unambiguous assignment of the 31P resonances observed in vivo to specific phosphorus-containing metabolites. The region of the in vivo spectra generally assigned to sugar phosphates has been found in RIF-1 tumors to contain primarily phosphorylethanolamine and phosphorylcholine rather than glycolytic intermediates. Phosphocreatine was observed in extracts of these tumor cells grown in culture as well as in the in vivo spectra, indicating that at least some of the phosphocreatine observed in vivo arises from the tumor itself and not from normal tissues. In the 31P-NMR spectra of the perchloric acid extract, resonances originating from purine and pyrimidine nucleoside di- and triphosphate were resolved. HPLC analyses of the nucleotide pool indicate that adenine derivatives were the most abundant components, but other nucleotides were present in significant amounts. The 1H and 13C resonance assignments of the majority of metabolites present in RIF-1 extracts have also been made. Of particular importance is the ability to observe lactate, the levels of which may provide a noninvasive measure of glycolysis in these cells in both the in vitro states. In addition, the aminosulfonic acid, taurine, was found in high levels in the tumor extracts.  相似文献   

6.
Perchloric acid extracts of radiation-induced fibrosarcoma (RIF-1) tumors grown in mice have been analyzed by multinuclear NMR spectroscopy and by various chromatographic methods. This analysis has permitted the unambiguous assignment of the 31P resonances observed in vivo to specific phosphorus-containing metabolites. The region of the in vivo spectra generally assigned to sugar phosphates has been found in RIF-1 tumors to contain primarily phosphorylethanolamine and phosphorylcholine rather than glycolytic intermediates. Phosphocreatine was observed in extracts of these tumor cells grown in culture as well as in the in vivo spectra, indicating that at least some of the phosphocreatine observed in vivo arises from the tumor itself and not from normal tissues. In the 31P-NMR spectra of the perchloric acid extract, resonances originating from purine and pyrimidine nucleoside di- and triphosphate were resolved. HPLC analyses of the nucleotide pool indicate that adenine derivatives were the most abundant components, but other nucleotides were present in significant amounts. The 1H and 13C resonance assignments of the majority of metabolites present in RIF-1 extracts have also been made. Of particular importance is the ability to observe lactate, the levels of which may provide a noninvasive measure of glycolysis in these cells in both the in vivo and in vitro states. In addition, the aminosulfonic acid, taurine, was found in high levels in the tumor extracts.  相似文献   

7.
J C Lin  C W Song 《Radiation research》1990,124(2):171-177
Hydralazine is a peripheral vasodilator used as an antihypertensive agent. Hydralazine has been reported to potentiate tumor damage by hyperthermia as well as by hypoxic-cell-specific drugs through the reduction of tumor blood flow and pO2. In the present study, we investigated the changes in blood perfusion caused by hydralazine in S.C. RIF-1 tumors and normal tissues in C3H mice using the 86Rb uptake technique and laser Doppler flowmetry. The tumor blood flow was decreased significantly by an intravenous administration of 0.5-10.0 mg/kg hydralazine, as determined by both uptake of 86Rb and laser Doppler flowmetry. The tumor pO2 was also decreased significantly by the injection of hydralazine. On the other hand, the uptake of 86Rb was increased significantly in the skin and muscle by hydralazine. The changes seen in the skin and muscle after injection of hydralazine as assessed by laser Doppler flowmetry were similar to those assessed by uptake of 86Rb, indicating a significant increase in blood circulation in these tissues. Uptake of 86Rb remained unchanged in the kidney and decreased in the liver and spleen in the presence of hydralazine in a dose-dependent manner at 0.5-10.0 mg/kg. The decline in uptake of 86Rb in normal tissues strongly suggests that hydralazine decreases the blood flow in these normal tissues. Thus the recent proposal to use hydralazine to increase the antitumor activity of heat or certain drugs needs to be reexamined.  相似文献   

8.
BACKGROUND: AQ4N is metabolised in hypoxic cells by cytochrome P450s (CYPs) to the cytotoxin AQ4. Most solid tumours are known to contain regions of hypoxia whereas levels of CYPs have been found to vary considerably. Enhancement of CYP levels may be obtained using gene-directed enzyme prodrug therapy (GDEPT). We have therefore examined the potential of a CYP2B6-mediated GDEPT strategy to enhance the anti-tumour effect of the combination of AQ4N with radiation or cyclophosphamide (CPA). METHODS: In vitro and in vivo transient transfection of human CYP2B6 +/- CYP reductase (CYPRED) was investigated in RIF-1 mouse tumours. Efficacy in vitro was assessed using the alkaline comet assay (ACA). In vivo, the time to reach 4x the treatment volume (quadrupling time; VQT) was used as the end point. RESULTS: When CYP2B6 was transfected into RIF-1 cells and treated with AQ4N under hypoxic conditions there was a significant increase in DNA damage (measured by the ACA) compared with non-transfected cells. In vivo, a single intra-tumoural injection of a CYP2B6 vector construct significantly enhanced tumour growth delay in combination with AQ4N (100 mg/kg) and 10 Gy X-rays. AQ4N (100 mg/kg) and CPA (100 mg/kg) with CYP2B6 and CYPRED also enhanced tumour growth delay; this effect became significant when the schedule was repeated 14 days later (p = 0.0197). CONCLUSIONS: The results show the efficacy of a CYP2B6-mediated GDEPT strategy for bioreduction of AQ4N; this may offer an additional approach to target radiation- and chemo-resistant hypoxic tumours that should enhance overall tumour control.  相似文献   

9.
Spectral changes in human hepatic tumours and possible systemic effects of tumour on host liver were assessed by 31P amnd 1H in vitro NMR spectroscopy. The 1H and 31P spectra from liver tumour biopsies showed significant elevation in phosphoethanolamine, phosphocholine, taurine, citrate, alanine, lactate and glycine, and significant reduction in GPE (glycerophosphoethanolamine), GPC (glycerophosphocholine), creatine and threonine compared to histologically normal tissue. 31P-NMR spectra obtained from histologically normal tissue within tumour-bearing livers showed significant elevation in phosphoethanolamine and phosphocholine compared to data from liver biopsies from nontumour-bearing patients (pancreatitis). These results suggest that alterations in membrane metabolism in host liver can be detected by 31P-NMR.  相似文献   

10.
For the assessment of 31P-NMR spectroscopic data, phospholipid precursors (phosphorylethanolamine (PE) and phosphocholine) and catabolites (glycerophosphorylethanolamine (GPE) and glycerophosphorylcholine (GPC)), as well as adenosine phosphates were chemically determined in regenerating rat liver. The data were compared with those obtained by in vivo and in vitro 31P-NMR spectroscopies. Chemical assay revealed a significant increase of PE and a decrease of GPE, GPC and ATP in hepatectomy group compared to sham operation group. The values obtained by in vitro NMR were in good agreements with those of chemical assay, but significant differences between the two groups were observed only in PE and inorganic phosphate (Pi). Noticeable increase in PME was not detected by in vivo 31P-NMR spectroscopy, although the increase of PE was about 2.5-times that of the control and its constitution ratio to the whole phosphomonoester (PME) was less than 15%. On the other hand, in vivo NMR showed a large phosphodiester (PDE) peak occupying approx. 40% of the total phosphorus signal, while the contribution of its constituents, GPE and GPC was about 5% found by both chemical assay and in vitro NMR. The PDE peak in in vivo NMR seemed to reflect the membrane phospholipid itself rather than its catabolites. A slight decrease of phosphoenergetic level in regenerating rat-liver was commonly suggested by all three analytical methods.  相似文献   

11.
1H- and 31P-NMR spectroscopy has been applied to rats carrying implanted tumours in vivo, and used to observe simultaneous changes in intracellular pH (pHi) and lactate concentration during the stimulatory action of vasoactive intestinal polypeptide (VIP). A maximal decrease in pHi to a mean of 0.29 units below basal values was recorded. At the same time, 11 min after VIP, a maximal increase in tumour lactate was found, with a mean value of 150% of the basal concentration. The magnitude of these changes was compatible with in vitro measurements of basal lactate concentration and buffering capacity made on the same tumour line. It is concluded that VIP stimulates glycolysis by the tumour cells, resulting in an accumulation of lactate and a consequent fall in pHi.  相似文献   

12.
The composition of LB broth (tryptone, yeast extract and NaCl) was investigated by 1H,31P-NMR spectroscopy, FPLC and gel electrophoresis. An unexpected finding was the high level of 2'3'-cyclic nucleotides, detected by characteristic 31P-NMR resonances in the region 20-21 ppm, originating from the yeast component. 31P-NMR resonances for cyclic nucleotides were observed during the autolysis of Saccharomyces cerevisiae cells, and in model reactions of RNase with RNA.  相似文献   

13.
本文报告H~ 能诱导心磷脂由双层排列转变为六角形Ⅱ相.含心磷脂的多层脂囊泡的~(31)P中核磁共振谱显示高场峰低场肩的双层排列特点,当pH降到2时,~(31)P核磁共振谱表现为低场峰高场肩的六角形Ⅱ相特点,表明H~ 对心磷脂多形性转变的诱导作用.用oxonol-V作为探剂.H~ 可使结合在人工脂膜上的oxonl-V的吸收峰红移和光吸收增加,表明心磷脂的六角形Ⅱ相在人工脂膜上具有H~ 的载体特性,易化H~ 的跨膜转运.  相似文献   

14.
(1) High-resolution 31P-NMR was used to study the environment of the phosphoserine residues of the phosphoproteins, alpha s1-casein B, beta-casein A2 and beta-casein C. For reference purposes 31P-NMR spectra of phosvitin and ovalbumin were also collected. (2) 31P resonances were assigned to specific phosphoserine residues as a result of comparisons of the high-resolution 31P-NMR spectra for alpha s1- and beta-caseins and for peptide fragments of these proteins obtained by cyanogen bromide and trypsin cleavage. (3) Measurements of the enhancement of the relaxation rate for water protons (1H) on addition of Mn2+ to alpha s1-casein B and to a fragment alpha s1-CN3, obtained by cyanogen bromide cleavage, gave approximate pK values for the binding groups and suggest the possibility of a conformational change induced by varying the concentration of divalent cation.  相似文献   

15.
The process of biological membrane fusion can be analysed by topological methods. Mathematical analysis of the fusion process of vesicles indicated two significant facts: the formation of an inner, transient structure (hexagonal phase - H(II)) and a translocation of some lipids within the membrane. This shift had a vector character and only occurred from the outer to the inner layer. Model membrane composed of phosphatidylcholine (PC), phosphatidylethanolamine (PE) and phosphatidylserine (PS) was studied. (31)P- and (1)H-NMR methods were used to describe the process of fusion. (31)P-NMR spectra of multilamellar vesicles (MLV) were taken at various temperatures and concentrations of Ca(2+) ions (natural fusiogenic agent). A (31)P-NMR spectrum with the characteristic shape of the H(II) phase was obtained for the molar Ca(2+)/PS ratio of 2.0. During the study, (1)H-NMR and (31)P-NMR spectra for small unilamellar vesicle (SUV), which were dependent on time (concentration of Pr(3+) ions was constant), were also recorded. The presence of the paramagnetic Pr(3+) ions permits observation of separate signals from the hydrophilic part of the inner and outer lipid bilayers. The obtained results suggest that in the process of fusion translocation of phospholipid molecules takes place from the outer to the inner layer of the vesicle and size of the vesicles increase. The NMR study has showed that the intermediate state of the fusion process caused by Ca(2+) ions is the H(II) phase. The experimental results obtained are in agreement with the topological model as well.  相似文献   

16.
The molecular organization as well as the composition of the phospholipids in cytochrome c oxidase preparations (bovine heart) were investigated by 31P-nuclear magnetic resonance. In the so-called 'lipid-rich' preparation the lipids were found to form a fluid bilayer around the enzyme since the 31P-NMR spectrum was characteristic of a fast, axially symmetric motion of the phosphate groups with a chemical shift anisotropy of delta sigma = -45 ppm. In contrast, the 'lipid-depleted' cytochrome c oxidase gave rise to a broader spectrum where the motion of the phospholipids was no longer axially symmetric. Nevertheless, the total width of the spectrum was still considerably narrower than observed for immobilized phospholipids in solid crystals. Both enzyme preparations were dissolved in 1% detergent solution and used for high-resolution 31P-NMR spectroscopy. Narrow lines of about 20 Hz linewidth were obtained for both types of enzyme preparations, and well-resolved resonances could be assigned to cardiolipin, phosphatidylethanolamin and phosphatidylcholine. The major differences between lipid-rich and lipid-depleted cytochrome c oxidase were the absolute amount of phospholipid associated with the protein and the relative contribution of the individual lipid classes to the 31P-NMR spectrum. For lipid-rich cytochrome c oxidase about 130 molecules phospholipid were bound per enzyme (approx. 11 cardiolipins, 54 phosphatidylethanolamines and 64 phosphatidylcholines). For lipid-depleted cytochrome c oxidase only 6-18 lipids were bound per enzyme (1 or 2 cardiolipins, 3-8 phosphatidylethanolamines and 2-8 phosphatidylcholines). In contrast to earlier suggestions that cardiolipin is the only remaining lipid in lipid-depleted cytochrome c oxidase, the 31P-NMR studies demonstrate that all three lipids remain associated with the protein.  相似文献   

17.
Efaproxiral, an allosteric modifier of hemoglobin, reduces hemoglobin-oxygen binding affinity, facilitating oxygen release from hemoglobin, which is likely to increase tissue pO(2). The purpose of this study was to determine the effect of efaproxiral on tumor oxygenation and growth inhibition of RIF-1 tumors that received X radiation (4 Gy) plus oxygen breathing compared to radiation plus oxygen plus efaproxiral daily for 5 days. Two lithium phthalocyanine (LiPc) deposits were implanted in RIF-1 tumors in C3H mice for tumor pO(2) measurements using EPR oximetry. Efaproxiral significantly increased tumor oxygenation by 8.4 to 43.4 mmHg within 5 days, with maximum increases at 22-31 min after treatment. Oxygen breathing alone did not affect tumor pO(2). Radiation plus oxygen plus efaproxiral produced tumor growth inhibition throughout the treatment duration, and inhibition was significantly different from radiation plus oxygen from day 3 to day 5. The results of this study provide unambiguous quantitative information on the effectiveness of efaproxiral to consistently and reproducibly increase tumor oxygenation over the course of 5 days of treatment, modeling the clinical use of efaproxiral. Also, based on the tumor growth inhibition, the study shows the efaproxiral-enhanced tumor oxygenation was radiobiologically significant. This is the first study to demonstrate the ability of efaproxiral to increase tumor oxygenation and to increase the tumor growth inhibition of radiotherapy over 5 days of treatment.  相似文献   

18.
31P nuclear magnetic resonance spectroscopy (31P-NMR) was used to study phospholipid organization in hydrated preparations of N-methyl dioleoylphosphatidylethanolamine and a 'fusion peptide' with the sequence: FAGV-VLAGAALGVAAAAQI, which corresponds to the amino terminus of the F1 subunit of the membrane fusion protein of measles virus. These amino acids are believed to mediate syncytia formation, host-cell penetration and hemolysis by infectious virus. The presence of the peptide at 0.5 mole percent significantly facilitated the formation of isotropic 31P resonances. The effects at 1 mole percent peptide were substantially enhanced over the effects observed at 0.5 mole percent, leading to a decrease in the onset temperature of the formation of the isotropic 31P-NMR resonances by about 30 degrees C. The formation of such isotropic 31P-NMR resonances has been previously associated with an increased rate of fusion of large unilamellar vesicles composed of N-methyl dioleoylphosphatidylethanolamine. Enhanced fusion of octadecyl rhodamine-labelled Sendai virus with N-methyl dioleoylphosphatidylethanolamine large unilamellar vesicles was observed when the 'fusion peptide' was incorporated into the large unilamellar vesicles.  相似文献   

19.
The regulation of intracellular pH (pHi) in a renal epithelial cell line, LLC-PK1/Cl4, during re-acidification from an alkaline load was studied by 31P-NMR. Intracellular alkalinization was induced by 10 mM ammonium glucuronate or by preloading with and subsequent removal of 20% CO2; the rate of re-acidification was found to be 0.047 pH units/min and 0.053 pH units/min, respectively. This rate of re-acidification was inhibited by 83% if Cl- was removed from the extracellular medium. A similar inhibition was found in the presence of 1 mM 4-acetamido-4'-isothiocyanostilbene-2,2'-disulphonic acid (SITS) (76% inhibition) and 1 mM bumetanide (81% inhibition). No change in recovery was found after removing sodium from the extracellular medium, indicating that LLC-PK1/Cl4 cells recover from an intracellular alkaline load by a Cl-/HCO3- exchanger, which is SITS- and bumetanide-sensitive and has no requirement for sodium. In addition, the steady-state pHi in Cl4 cells was monitored by 31P-NMR. Removal of Cl- from the extracellular medium introduced an increase in pHi by 0.33 pH units, whereas 1 mM SITS and 1 mM bumetanide caused an increase in pHi by 0.14 or 0.13 pH units. In the presence of 1 mM amiloride, an inhibitor of the Na+/H+ exchanger, the steady-state pHi did not change significantly. These results indicate that at pHo 7.4 the steady-state intracellular pH of LLC-PK1/Cl4 cells strongly depends on the activity of the Cl-/HCO3- exchanger. Under the same conditions the activity of the Na+/H+ exchanger seems to be negligible.  相似文献   

20.
Both in vivo and in vitro 31P-NMR spectroscopy were used to demonstrate metabolic changes in rat liver as a function of time after exposure to either carbon tetrachloride (CCl4) or bromotrichloromethane (BrCCl3). The inorganic phosphate resonance, measured in vivo, moves upfield, which is associated with a decrease in cytosolic pH over a 12 or 20 h period (for BrCCl3 or CCl4, respectively). Intoxication by CCl4 or BrCCl3 causes an intracellular acidosis to pH 7.05 or 6.82 (+/- 0.05), respectively. Also, it has been found that halocarbon exposure increases the amounts of phosphomonoesters (PME) detected. High resolution in vitro 31P-NMR spectroscopy studies of perchloric acid extracts of CCl4-treated rat livers indicated a significant increase in the height of the phosphocholine resonance in the PME region 4-5 h after CCl4 exposure.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号