首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 437 毫秒
1.
R Ye  S N Rehemtulla    S L Wong 《Journal of bacteriology》1994,176(11):3321-3327
Expression of the glucitol dehydrogenase gene (gutB) is suggested to be regulated both positively and negatively in Bacillus subtilis. A mutation in the gutR locus results in the constitutive expression of gutB. The exact nature of this mutation and the function of gutR are still unknown. Cloning and characterization of gutR indicated that this gene is located immediately upstream of gutB and is transcribed in the opposite direction relative to gutB. GutR is suggested to be a 95-kDa protein with a putative helix-turn-helix motif and a nucleotide binding domain at the N-terminal region. At the C-terminal region, a short sequence of GutR shows homology with two proteins, Cyc8 (glucose repression mediator protein) and GsiA (glucose starvation-inducible protein), known to be directly or indirectly involved in catabolite repression. Part of the C-terminal conserved sequence from these proteins shows all the features observed in the tetratricopeptide motif found in many eucaryotic proteins. To study the functional role of gutR, chromosomal gutR was insertionally inactivated. A total loss of glucitol inducibility was observed. Reintroduction of a functional gutR to the GutR-deficient strain through integration at the amyE locus restores the inducibility. Therefore, GutR serves as a regulatory factor to modulate glucitol induction. The nature of the gutR1 mutation was also determined. A single amino acid change (serine-289 to arginine-289) near the putative nucleotide binding motif B in GutR is responsible for the observed phenotype. Possible models for the action of GutR are discussed.  相似文献   

2.
3.
Cytidine deaminase from E. coli is a dimer of identical subunits (M(r) = 31 540), each containing a single zinc atom. Cytidine deaminase from B. subtilis is a tetramer of identical subunits (M(r) = 14 800). After purification from an overexpressing strain, the enzyme from B. subtilis is found to contain a single atom of zinc per enzyme subunit by flame atomic absorption spectroscopy. Fluorescence titration indicates that each of the four subunits contains a binding site for the transition state analogue inhibitor 5-fluoro-3,4-dihydrouridine. A region of amino acid sequence homology, containing residues that are involved in zinc coordination in the enzyme from E. coli, strongly suggests that in the enzyme from B. subtilis, zinc is coordinated by the thiolate side chains of three cysteine residues (Cys-53, Cys-86, and Cys-89) [Song, B. H., and Neuhard, J. (1989) Mol. Gen. Genet. 216, 462-468]. This pattern of zinc coordination appears to be novel for a hydrolytic enzyme, and might be expected to reduce the reactivity of the active site substantially compared with that of the enzyme from E. coli (His-102, Cys-129, and Cys-132). Instead, the B. subtilis and E. coli enzymes are found to be similar in their activities, and also in their relative binding affinities for a series of structurally related inhibitors with binding affinities that span a range of 6 orders of magnitude. In addition, the apparent pK(a) value of the active site is shifted upward by less than 1 unit. Sequence alignments, together with model building, suggest one possible mechanism of compensation.  相似文献   

4.
Malate dehydrogenase: a model for structure, evolution, and catalysis.   总被引:11,自引:0,他引:11       下载免费PDF全文
Malate dehydrogenases are widely distributed and alignment of the amino acid sequences show that the enzyme has diverged into 2 main phylogenetic groups. Multiple amino acid sequence alignments of malate dehydrogenases also show that there is a low degree of primary structural similarity, apart from in several positions crucial for nucleotide binding, catalysis, and the subunit interface. The 3-dimensional structures of several malate dehydrogenases are similar, despite their low amino acid sequence identity. The coenzyme specificity of malate dehydrogenase may be modulated by substitution of a single residue, as can the substrate specificity. The mechanism of catalysis of malate dehydrogenase is similar to that of lactate dehydrogenase, an enzyme with which it shares a similar 3-dimensional structure. Substitution of a single amino acid residue of a lactate dehydrogenase changes the enzyme specificity to that of a malate dehydrogenase, but a similar substitution in a malate dehydrogenase resulted in relaxation of the high degree of specificity for oxaloacetate. Knowledge of the 3-dimensional structures of malate and lactate dehydrogenases allows the redesign of enzymes by rational rather than random mutation and may have important commercial implications.  相似文献   

5.
The structure of the kidney microvillar membrane metallopeptidase meprin (EC 3.4.24.18) from rats has been examined. Previously reported to be a homotetramer, we demonstrate that the enzyme is composed of two similar but distinct subunits through tryptic peptide mapping and the sequencing of peptides of the papain solubilized form of the enzyme. Two-dimensional sodium dodecyl sulfate-polyacrylamide gel electrophoresis reveals that the native rat meprin tetramer is dissociated by detergent into disulfide-linked heterodimers. A full-length cDNA clone encoding one of the meprin subunits has been isolated and sequenced. The cDNA contains an open reading frame of 668 amino acids, coding for a polypeptide of molecular weight 75,054. The enzyme contains the zinc binding sequence HEFLH and a potential membrane-spanning region near its amino terminus. Comparison of this clone with peptide sequences from mouse meprins A and B shows that the clone is a B type or beta subunit. Northern blot analysis is consistent with the existence of two distinct subunits and further indicates that rat meprin subunits may be differentially expressed in various rat tissues.  相似文献   

6.
7.
The gene encoding an (S)-specific NAD-dependent alcohol dehydrogenase (RE-ADH) was isolated from the genomic DNA of Rhodococcus erythropolis DSM 43297. The nucleotide sequence of 1,047 bp, coding for 348 amino acids, was cloned in Escherichia coli cells and successfully expressed. The subunit molecular mass as deduced from the amino acid sequence was determined to be 36.026 kDa. The recombinant enzyme exhibited high thermostability, which facilitated its purification by heat treatment, followed by two column-chromatography steps. RE-ADH shows high similarity to several zinc-containing medium-chain alcohol dehydrogenases. All zinc ligands seem to be conserved except one of the catalytic zinc ligands, where Cys is probably substituted by Asp. A similarity of 84% with a phenylacetaldehyde reductase from Corynebacterium sp. ST-10 was determined. Biochemical properties such as thermostability and substrate specificity of the two enzymes were compared.  相似文献   

8.
The gene encoding the thermostable phenylalanine dehydrogenase [EC 1.4.1.-] of a thermophile, Thermoactinomyces intermedius, was cloned and its complete DNA sequence was determined. The phenylalanine dehydrogenase gene (pdh) consists of 1,098 nucleotides and encodes 366 amino acid residues corresponding to the subunit (Mr 41,000) of the hexameric enzyme. The amino acid sequence deduced from the nucleotide sequence of the pdh gene of T. intermedius was 56.0 and 42.1% homologous to those of the phenylalanine dehydrogenases of Bacillus sphaericus and Sporosarcina ureae, respectively. It shows 47.5% homology to that of the thermostable leucine dehydrogenase from B. stearothermophilus. The pdh gene was highly expressed in E. coli JM109, the amount of phenylalanine dehydrogenase produced amounting up to about 8.3% of that of the total soluble protein. We purified the enzyme to homogeneity from transformant cells in a day, with a 58% recovery.  相似文献   

9.
The Bacillus subtilis sleB gene, which codes for the enzyme homologous to the germination-specific amidase from Bacillus cereus, was cloned and its nucleotide sequence was determined. Sequence analysis showed that it had an open reading frame of 918 bp, coding for a polypeptide of 305 amino acids with a putative signal sequence of 29 residues. Enzyme activity was not found in germination exudate of B. subtilis spores, which differs from the case of B. cereus enzyme. A B. subtilis mutant with an insertionally inactivated sleB gene revealed normal behavior in growth and sporulation. However, the sleB mutant was unable to complete germination mediated by L-alanine.  相似文献   

10.
BACKGROUND: Bacillus stearothermophilus glycerol dehydrogenase (GlyDH) (glycerol:NAD(+) 2-oxidoreductase, EC 1.1.1.6) catalyzes the oxidation of glycerol to dihydroxyacetone (1,3-dihydroxypropanone) with concomitant reduction of NAD(+) to NADH. Analysis of the sequence of this enzyme indicates that it is a member of the so-called iron-containing alcohol dehydrogenase family. Despite this sequence similarity, GlyDH shows a strict dependence on zinc for activity. On the basis of this, we propose to rename this group the family III metal-dependent polyol dehydrogenases. To date, no structural data have been reported for any enzyme in this group. RESULTS: The crystal structure of B. stearothermophilus glycerol dehydrogenase has been determined at 1.7 A resolution to provide structural insights into the mechanistic features of this family. The enzyme has 370 amino acid residues, has a molecular mass of 39.5 kDa, and is a homooctamer in solution. CONCLUSIONS: Analysis of the crystal structures of the free enzyme and of the binary complexes with NAD(+) and glycerol show that the active site of GlyDH lies in the cleft between the enzyme's two domains, with the catalytic zinc ion playing a role in stabilizing an alkoxide intermediate. In addition, the specificity of this enzyme for a range of diols can be understood, as both hydroxyls of the glycerol form ligands to the enzyme-bound Zn(2+) ion at the active site. The structure further reveals a previously unsuspected similarity to dehydroquinate synthase, an enzyme whose more complex chemistry shares a common chemical step with that catalyzed by glycerol dehydrogenase, providing a striking example of divergent evolution. Finally, the structure suggests that the NAD(+) binding domain of GlyDH may be related to that of the classical Rossmann fold by switching the sequence order of the two mononucleotide binding folds that make up this domain.  相似文献   

11.
Succinate dehydrogenase consists of two protein subunits and contains one FAD and three iron-sulfur clusters. The flavin is covalently bound to a histidine in the larger, Fp, subunit. The reduction oxidation midpoint potentials of the clusters designated S-1, S-2, and S-3 in Bacillus subtilis wild-type membrane-bound enzyme were determined as +80, -240, and -25 mV, respectively. Magnetic spin interactions between clusters S-1 and S-2 and between S-1 and S-3 were detected by using EPR spectroscopy. The point mutations of four B. subtilis mutants with defective Fp subunits were mapped. The gene of the mutant specifically lacking covalently bound flavin in the enzyme was cloned. The mutation was determined from the DNA sequence as a glycine to aspartate substitution at a conserved site seven residues downstream from the histidine that binds the flavin in wild-type enzyme. The redox midpoint potential of the iron-sulfur clusters and the magnetic spin interactions in mutated succinate dehydrogenases were indistinguishable from the those of the wild type. This shows that flavin has no role in the measured magnetic spin interactions or in the structure and stability of the iron-sulfur clusters. It is concluded from sequence and mutant studies that conserved amino acid residues around the histidyl-FAD are important for FAD binding; however, amino acids located more than 100 residues downstream from the histidyl in the Fp subunit can also effect flavinylation.  相似文献   

12.
The 5' regulatory region and the portion of the structural gene coding for the amino-terminal sequence of alkaline phosphatase I (APase I) were isolated from Bacillus licheniformis MC14 using a synthetic oligodeoxynucleotide deduced from the amino acid sequence of the enzyme. The DNA sequence analysis of this region revealed an open reading frame of 129 amino acids containing the amino-terminal sequence of the mature APase protein. The protein sequence was preceded by a putative signal sequence of 32 amino acid residues. The predicted amino acid sequence of the partial APase clone as well as the experimentally determined amino acid sequence of the enzyme indicated that B. licheniformis APase retains the important features conserved among other APases of Bacillus subtilis, Escherichia coli, Saccharomyces cerevisiae, and various human tissues. Heterologous expression studies of the promoter using a fusion with the lacZ gene indicated that it functions as a very strong inducible promoter in B. subtilis that is tightly regulated by phosphate concentration.  相似文献   

13.
Motility of the alkalophilic Bacillus sp. C-125, a flagellate bacterium, was demonstrated to be Na(+)- and pH-dependent. Flagellin protein from this strain was purified to homogeneity and the N-terminal sequence determined. Using the hag gene of Bacillus subtilis as a probe, the hag gene of Bacillus sp. C-125 was identified and cloned into Escherichia coli. Sequencing of this hag gene revealed that it encodes a protein of 272 amino acids (M(r) 29,995). The predicted N terminal sequence of this protein was identical to that determined by N-terminal sequencing of the flagellin protein from strain C-125. The alkalophilic Bacillus sp. C-125 flagellin shares homology with other known flagellins in both the N- and C-terminal regions. The middle portion, however, shows considerable differences, even from that of flagellin from the related species, B. subtilis.  相似文献   

14.
Purification and characterization of human liver sorbitol dehydrogenase   总被引:1,自引:0,他引:1  
W Maret  D S Auld 《Biochemistry》1988,27(5):1622-1628
Sorbitol dehydrogenase from human liver was purified to homogeneity by affinity chromatography on immobilized triazine dyes, conventional cation-exchange chromatography, and high-performance liquid chromatography. The major form is a tetrameric, NAD-specific enzyme containing one zinc atom per subunit. Human liver sorbitol dehydrogenase oxidizes neither ethanol nor other primary alcohols. It catalyzes the oxidation of a secondary alcohol group of polyol substrates such as sorbitol, xylitol, or L-threitol. However, the substrate specificity of human liver sorbitol dehydrogenase is broader than that of the liver enzymes of other sources. The present report describes the stereospecific oxidation of (2R,3R)-2,3-butanediol, indicating a more general function of sorbitol dehydrogenase in the metabolism of secondary alcohols. Thus, the enzyme complements the substrate specificities covered by the three classes of human liver alcohol dehydrogenase.  相似文献   

15.
NAD+-dependent sorbitol dehydrogenase NAD-SDH, EC 1.1.1.14) from Japanese pear fruit was purified to apparent homogeneity (single band by SDS-PAGE with silver staining), and had a specific activity of 916.7 nKatal/mg protein. The molecular of the native enzyme was calculated to be 160 kDa by gel filtration, whereas SDS-PAGE gave a subunit size of 40 kDa, indicating that the native enzyme is a homotetramer. The protein immunologically reacted with an antibody raised in rabbit against the fusion protein expressed in E. coli harboring an apple NAD-SDH cDNA. The Km, values for sorbitol and fructose were 96.4+/-8.60 and 4239+/-33.5 mM, respectively, and optimum pH for sorbitol oxidation was 9.0 and 7.0 for fructose reduction. Pear NAD-SDH had a very narrow substrate specificity, that is, sorbitol, L-iditol, xylitol and L-threitol were oxidized but not any of the other alcohols tested. These data suggest the structural importance of an S configuration at C-2 and an R configuration at C-4 in the substrate(s). Its enzymatic activity was strongly inhibited both by heavy metal ions such as mercury, and by thiol compounds, such as L-cysteine. However, the addition of zinc ion reversed the enzyme inactivation caused by addition of L-cysteine.  相似文献   

16.
17.
The first alkaline phosphatase (APase) structural gene mutant of Bacillus subtilis 168 was constructed by using a clone identified by hybridization to a synthetic degenerative oligonucleotide. The design of the probe was based on the first 29 amino acids of the sequenced mature APase III protein, which had been isolated from the secreted fraction of vegetative, phosphate-starved cells. DNA sequencing of the clone revealed the first 80 amino acids of the APase III protein, including a typical procaryotic signal sequence of 32 amino acids preceding the start of the mature protein. The 29 amino acids encoded by the predicted open reading frame immediately following the signal sequence are identical to the first 29 amino acids of the sequenced mature protein. This region shows 80% identity to strand A of the beta sheet that is very well conserved in Escherichia coli and mammalian APases. A phoAIII structural mutant was constructed by insertional mutagenesis with a fragment internal to the coding region. The effects of this mutation on APase production in B. subtilis 168 were analyzed under both phosphate starvation and sporulation conditions. The mutation in APase III reduced the total vegetative APase specific activity by approximately 40% and sporulation APase specific activity by approximately 45%. An APase protein was isolated from sporulating cells at stage III and was identified as APase III by protein sequencing of the amino terminus and by its absence in the phoAIII mutant. The APase III gene has been mapped to approximately 50 degrees on the B. subtilis chromosome.  相似文献   

18.
NAD(+)-dependent D-lactate dehydrogenase from Lactobacillus helveticus was purified to apparent homogeneity, and the sequence of the first 36 amino acid residues determined. Using forward and reverse oligonucleotide primers, based on the N-terminal sequence and amino acid residues 220-215 of the Lactobacillus bulgaricus enzyme [Kochhar, S., Hunziker, P. E., Leong-Morgenthaler, P. & Hottinger, H. (1992) J. Biol. Chem. 267, 8499-8513], a 0.6-kbp DNA fragment was amplified from L. helveticus genomic DNA by the polymerase chain reaction. This amplified DNA fragment was used as a probe to identify two recombinant clones containing the D-lactate dehydrogenase gene. Both plasmids overexpressed D-lactate dehydrogenase (greater than 60% total soluble cell protein) and were stable in Escherichia coli, compared to plasmids carrying the L. bulgaricus and Lactobacillus plantarum genes. The entire nucleotide sequence of the L. helveticus D-lactate dehydrogenase gene was determined. The deduced amino acid sequence indicated a polypeptide consisting of 336 amino acid residues, which showed significant amino acid sequence similarity to the recently identified family of D-2-hydroxy-acid dehydrogenases [Kochhar, S., Hunziker, P. E., Leong-Morgenthaler, P. & Hottinger, H. (1992) Biochem. Biophys. Res. Commun. 184, 60-66]. The physicochemical and catalytic properties of recombinant D-lactate dehydrogenase were identical to those of the wild-type enzyme, e.g. alpha 2 dimeric subunit structure, isoelectric pH, Km and Kcat for pyruvate and other 2-oxo-acid substrates. The kinetic profiles of 2-oxo-acid substrates showed some marked differences from that of L-lactate dehydrogenase, suggesting different mechanisms for substrate binding and specificity.  相似文献   

19.
20.
Nucleotide sequence of a cellulase gene of Bacillus subtilis   总被引:8,自引:0,他引:8  
The nucleotide sequence of an endolytic cellulase gene of Bacillus subtilis was determined and compared with the NH2-terminal amino acid sequence of the purified enzyme. The mature protein appeared to be extended by a signal sequence of 36 amino acids. The putative AUG initiation codon was preceded by a sigma 43-type promoter of B. subtilis and an AAGGAGG sequence, typical of procaryotic ribosomal binding sites. Partial homology of amino acid sequences was found between B. subtilis cellulase and an alkalophilic Bacillus cellulase.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号