首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
 Cell migration is a highly complex process that requires the coordinated formation of membrane protrusion and focal adhesions (FAs). Focal adhesion kinase (FAK), a major signaling component of FAs, is involved in the disassembly process of FAs through phosphorylation and dephosphorylation of its tyrosine residues, but the role of such phosphorylations in nascent FA formation and turnover near the cell front and in cell protrusion is less well understood. In the present study, we demonstrate that, depending on the phosphorylation status of Tyr-925 residue, FAK modulates cell migration via two specific mechanisms. FAK−/− mouse embryonic fibroblasts (MEFs) expressing nonphosphorylatable Y925F-FAK show increased interactions between FAK and unphosphorylated paxillin, which lead to FA stabilization and thus decreased FA turnover and reduced cell migration. Conversely, MEFs expressing phosphomimetic Y925E-FAK display unchanged FA disassembly rates, show increase in phosphorylated paxillin in FAs, and exhibit increased formation of nascent FAs at the cell leading edges. Moreover, Y925E-FAK cells present enhanced cell protrusion together with activation of the p130CAS/Dock180/Rac1 signaling pathway. Together, our results demonstrate that phosphorylation of FAK at Tyr-925 is required for FAK-mediated cell migration and cell protrusion.  相似文献   

2.
3.
We have previously demonstrated that the CrkII and CrkL adapter proteins are required for the spreading of epithelial colonies and the breakdown of adherens junctions in response to hepatocyte growth factor. When overexpressed, CrkII and CrkL promote lamellipodia formation, cell spreading, and the loss of epithelial adherens junctions in the absence of hepatocyte growth factor. The exact mechanism by which Crk proteins elicit these changes is unclear. We show that the overexpression of CrkII or CrkL, but not Src homology 2 or amino-terminal Src homology 3 domain mutant Crk proteins, promotes the relocalization of Paxillin to focal contacts throughout the cell and within lamellipodia in a Rac-dependent manner. In stable cell lines overexpressing CrkII, enhanced lamellipodia formation and cell spreading correlate with an increased association of CrkII with Paxillin, GIT2 (an ARF-GAP) and beta-PIX (a Rac1 exchange factor). Mutants of Paxillin that fail to associate with Crk or GIT2, or do not target to focal adhesions inhibit Crk-dependent cell spreading and lamellipodia formation. We conclude from these studies that the association of Crk with Paxillin is important for the spreading of epithelial colonies, by influencing the recruitment of Paxillin to focal complexes and promoting the enhanced assembly of Paxillin/GIT2/beta-PIX complexes.  相似文献   

4.
The IRS-1 PH and PTB domains are essential for insulin-stimulated IRS-1 Tyr phosphorylation and insulin signaling, while Ser/Thr phosphorylation of IRS-1 disrupts these signaling events. To investigate consensus PKC phosphorylation sites in the PH-PTB domains of human IRS-1, we changed Ser24, Ser58, and Thr191 to Ala (3A) or Glu (3E), to block or mimic phosphorylation, respectively. The 3A mutant abrogated the inhibitory effect of PKCdelta on insulin-stimulated IRS-1 Tyr phosphorylation, while reductions in insulin-stimulated IRS-1 Tyr phosphorylation, cellular proliferation, and Akt activation were observed with the 3E mutant. When single Glu mutants were tested, the Ser24 to Glu mutant had the greatest inhibitory effect on insulin-stimulated IRS-1 Tyr phosphorylation. PKCdelta-mediated IRS-1 Ser24 phosphorylation was confirmed in cells with PKCdelta catalytic domain mutants and by an RNAi method. Mechanistic studies revealed that IRS-1 with Ala and Glu point mutations at Ser24 impaired phosphatidylinositol-4,5-bisphosphate binding. In summary, our data are consistent with the hypothesis that Ser24 is a negative regulatory phosphorylation site in IRS-1.  相似文献   

5.
Cell adhesion and spreading depend on activation of mitogen-activated kinase, which in turn is regulated both by growth factor and integrin signaling. Growth factors, such as epidermal growth factor, are capable of activating Ras and Raf, but integrin signaling is required to couple Raf to MEK and MEK to extracellular signal-regulated protein kinase (ERK). It was previously shown that Rac-p21-activated kinase (PAK) signaling regulated the physical association of MEK1 with ERK2 through phosphorylation sites in the proline-rich sequence (PRS) of MEK1. It was also shown that activation of MEK1 and ERK by integrins depends on PAK phosphorylation of S298 in the PRS. Here we report a novel MEK1-specific regulatory feedback mechanism that provides a means by which activated ERK can terminate continued PAK phosphorylation of MEK1. Activated ERK can phosphorylate T292 in the PRS, and this blocks the ability of PAK to phosphorylate S298 and of Rac-PAK signaling to enhance MEK1-ERK complex formation. Preventing ERK feedback phosphorylation on T292 during cellular adhesion prolonged phosphorylation of S298 by PAK and phosphorylation of S218 and S222, the MEK1 activating sites. We propose that activation of ERK during adhesion creates a feedback system in which ERK phosphorylates MEK1 on T292, and this in turn blocks additional S298 phosphorylation in response to integrin signaling.  相似文献   

6.
Protein incorporated later into tight junctions (Pilt), also termed tight junction-associated protein 1 or tight junction protein 4, is a coiled-coil domain-containing protein that was originally identified as a human discs large-interacting protein. In this study, we identified Pilt as an Arf6-binding protein by yeast two-hybrid screening. By immunocytochemical analysis, Pilt was shown to be predominantly localized at the trans-Golgi complex and to exhibit diffuse cytoplasmic distribution in association with endosomes and plasma membrane in NIH3T3 cells. Silencing of endogenous Pilt disrupted the Golgi structure. The present findings suggest the functional involvement of Pilt in the maintenance of the Golgi structure.

Structured summary of protein interactions

GM130 and Piltcolocalize by fluorescence microscopy (View interaction)Arf6(Q67L)physically interacts with Pilt by two hybrid (View Interaction: 1, 2)Piltphysically interacts with Arf6(Q67L) by pull down (View interaction)  相似文献   

7.
8.
Integrin-mediated adhesion to the extracellular matrix permits efficient growth factor-mediated activation of extracellular signal-regulated kinases (ERKs). Points of regulation have been localized to the level of receptor phosphorylation or to activation of the downstream components, Raf and MEK (mitogen-activated protein kinase/ERK kinase). However, it is also well established that ERK translocation from the cytoplasm to the nucleus is required for G1 phase cell cycle progression. Here we show that phosphorylation of the nuclear ERK substrate, Elk-1 at serine 383, is anchorage dependent in response to growth factor treatment of NIH 3T3 fibroblasts. Furthermore, when we activated ERK in nonadherent cells by expression of active components of the ERK cascade, subsequent phosphorylation of Elk-1 at serine 383 and Elk-1-mediated transactivation were still impaired compared with adherent cells. Elk-1 phosphorylation was dependent on an intact actin cytoskeleton, as discerned by treatment with cytochalasin D (CCD). Finally, expression of active MEK failed to predominantly localize ERK to the nucleus in suspended cells or adherent cells treated with CCD. These data show that integrin-mediated organization of the actin cytoskeleton regulates localization of activated ERK, and in turn the ability of ERK to efficiently phosphorylate nuclear substrates.  相似文献   

9.
Microtubule-associated end-binding protein 3 (EB3) accumulates asymmetrically at the tip-end of growing microtubules, providing a central platform for linking various cellular components. EB3 orchestrates microtubule dynamics and targeting, enabling diverse processes within neurons. Inositol 1, 4, 5-trisphosphate 3-kinase A (IP3K-A; also known as ITPKA) is a neuron-enriched protein that binds to microtubules by PKA-dependent manners. In this study, we found that IP3K-A binds to EB3 and their binding affinity is precisely regulated by protein kinase A (PKA)-dependent phosphorylation of IP3K-A at Ser119 (pSer119). We also revealed that the complex of IP3K-A and EB3 dissociates and reassociates rapidly during chemically induced LTP (cLTP) condition. This dynamic rearrangement of IP3K-A and EB3 complex will contribute remodeling of microtubule cytoskeleton allowing effective structural plasticity in response to synaptic stimulations.  相似文献   

10.
Paxillin is an adaptor molecule involved in the assembly of focal adhesions. Using different fluorescence fluctuation approaches, we established that paxillin-EGFP is dynamic on many timescales within the cell, ranging from milliseconds to seconds. In the cytoplasmic regions, far from adhesions, paxillin is uniformly distributed and freely diffusing as a monomer, as determined by single-point fluctuation correlation spectroscopy and photon-counting histogram analysis. Near adhesions, paxillin dynamics are reduced drastically, presumably due to binding to protein partners within the adhesions. The photon-counting histogram analysis of the fluctuation amplitudes reveals that this binding equilibrium in new or assembling adhesions is due to paxillin monomers binding to quasi-immobile structures, whereas in disassembling adhesions or regions of adhesions, the equilibrium is due to exchange of large aggregates. Scanning fluctuation correlation spectroscopy and raster-scan image correlation spectroscopy analysis of laser confocal images show that the environments within adhesions are heterogeneous. Relatively large adhesions appear to slide transversally due to a treadmilling mechanism through the addition of monomeric paxillin at one side and removal of relatively large aggregates of proteins from the retracting edge. Total internal reflection microscopy performed with a fast acquisition EM-CCD camera completes the overall dynamic picture and adds details of the heterogeneous dynamics across single adhesions and simultaneous bursts of activity at many adhesions across the cell.  相似文献   

11.
Paxillin and HIC5 are closely related adapter proteins that regulate cell migration and are tyrosine-phosphorylated by focal adhesion kinase (FAK). Paxillin, HIC5, and FAK tyrosine phosphorylation increase upon cell attachment and decrease upon detachment from extracellular matrix. Unexpectedly, we found that although FAK tyrosine phosphorylation in attached cells did not require paxillin, in detached fibroblasts there was remaining FAK tyrosine phosphorylation that required expression of paxillin and was not supported by HIC5. The support of attachment-independent FAK tyrosine phosphorylation required the paxillin LIM domains and suggested that paxillin might facilitate oncogenic transformation. Paxillin but not HIC5 augmented anchorage-independent cell proliferation induced by RAS. Both anchorage-independent FAK tyrosine phosphorylation and RAS-induced colony formation required multiple docking sites on paxillin, including LD4 (docking sites for FAK-Src and GIT1/2-PIX-NCK-PAK complex), LD5, and all four carboxyl-terminal LIM domains (that bind tubulin and PTP-PEST). Analysis using paxillin mutants dissociated domains of paxillin that are required for regulation of cell migration from domains that are required for anchorage-independent cell proliferation and demonstrated essential functions of the paxillin LIM domains that are not found in HIC5 LIM domains. These results highlight the role of paxillin in facilitating attachment-independent signal transduction implicated in cancer.  相似文献   

12.
The GIT proteins, GIT1 and GIT2, are GTPase-activating proteins for the ADP-ribosylation factor family of small GTP-binding proteins, but also serve as adaptors to link signaling proteins to distinct cellular locations. One role for GIT proteins is to link the PIX family of Rho guanine nucleotide exchange factors and their binding partners, the p21-activated protein kinases, to remodeling focal adhesions by interacting with the focal adhesion adaptor protein paxillin. We here identified the C-terminal domain of GIT1 responsible for paxillin binding. Combining structural and mutational analyses, we show that this region folds into an anti-parallel four-helix domain highly reminiscent to the focal adhesion targeting (FAT) domain of focal adhesion kinase (FAK). Our results suggest that the GIT1 FAT-homology (FAH) domain and FAT bind the paxillin LD4 motif quite similarly. Since only a small fraction of GIT1 is bound to paxillin under normal conditions, regulation of paxillin binding was explored. Although paxillin binding to the FAT domain of FAK is regulated by tyrosine phosphorylation within this domain, we find that tyrosine phosphorylation of the FAH domain GIT1 is not involved in regulating binding to paxillin. Instead, we find that mutations within the FAH domain may alter binding to paxillin that has been phosphorylated within the LD4 motif. Thus, despite apparent structural similarity in their FAT domains, GIT1 and FAK binding to paxillin is differentially regulated.  相似文献   

13.
3-Phosphoinositide-dependent protein kinase-1 (PDK1) mediates phosphorylation and activation of members of the AGC protein kinase family and plays an essential role in insulin signaling and action. However, whether and how PDK1 activity is regulated in cells remains largely uncharacterized. In the present study, we show that PDK1 undergoes insulin-stimulated and phosphatidylinositol 3-kinase-dependent phosphorylation at Ser244 in the activation loop and at a novel site: Ser163 in the hinge region between the two lobes of the kinase domain. Sequence alignment studies revealed that the residue corresponding to Ser163 of PDK1 in all other AGC kinases is glutamate, suggesting that a negative charge at this site may be important for PDK1 function. Replacing Ser163 with a negatively charged residue, glutamate, led to a 2-fold increase in PDK1 activity. Molecular modeling studies suggested that phosphorylated Ser163 may form additional hydrogen bonds with Tyr149 and Gln223. In support of this, mutation of Tyr149 to Ala is sufficient to reduce PDK1 activity. Taken together, our results suggest that PDK1 phosphorylation of Ser163 may provide a mechanism to fine-tune PDK1 activity and function in cells.  相似文献   

14.
15.
16.
Mammalian cDNA expression cloning was used to identify novel regulators of integrin-mediated cell-substratum adhesions. Using a focal adhesion morphology screen, we identified a cDNA with homology to a receptor for activated protein kinase C (RACK1) that induced a loss of central focal adhesions and stress fibers in CHO-K1 cells. The identified cDNA was a C-terminal truncated form of RACK1 that had one of the putative protein kinase C binding sites but lacked the region proposed to bind the beta integrin cytoplasmic domain and the tyrosine kinase Src. To investigate the role of RACK1 during cell spreading and migration, we tagged RACK1, a C-terminal truncated RACK1 and a point mutant that does not bind Src (RACK Y246F) with green fluorescent protein and expressed them in CHO-K1 cells. We found that RACK1 regulates the organization of focal adhesions and that it localizes to a subset of nascent focal complexes in areas of protrusion that contain paxillin but not vinculin. We also found that RACK1 regulates cell protrusion and chemotactic migration through its Src binding site. Together, these findings suggest that RACK1 regulates adhesion, protrusion, and chemotactic migration through its interaction with Src.  相似文献   

17.
alpha4beta1 integrin plays an important role in cell migration. We show that when ectopically expressed in Chinese hamster ovary cells, alpha4beta1 is sufficient and required for promoting protrusion of broad lamellipodia in response to scratch-wounding, whereas alpha5beta1 does not have this effect. By time-lapse microscopy of cells expressing an alpha4/green fluorescent protein fusion protein, we show that alpha4beta1 forms transient puncta at the leading edge of cells that begin to protrude lamellipodia in response to scratch-wounding. The cells expressing a mutant alpha4/green fluorescent protein that binds paxillin at a reduced level had a faster response to scratch-wounding, forming alpha4-positive puncta and protruding lamellipodia much earlier. While enhancing lamellipodia protrusion, this mutation reduces random motility of the cells in Transwell assays, indicating that lamellipodia protrusion and random motility are distinct types of motile activities that are differentially regulated by interactions between alpha4beta1 and paxillin. Finally, we show that, at the leading edge, alpha4-positive puncta and paxillin-positive focal complexes/adhesions do not colocalize, but alpha4beta1 and paxillin colocalize partially in ruffles. These findings provide evidence for a specific role of alpha4beta1 in lamellipodia protrusion that is distinct from the motility-promoting functions of alpha5beta1 and other integrins that mediate cell adhesion and signaling events through focal complexes and focal adhesions.  相似文献   

18.
19.
Cell polarity is critical for cell migration and requires localized signal transduction in subcellular domains. Recent evidence demonstrates that activation of ERK1/2 (extracellular‐signal‐regulated kinase 1/2) in focal adhesions is essential for cell migration. GIT1 (G‐protein‐coupled receptor kinase‐interacting protein 1) has been shown to bind paxillin and regulate focal‐adhesion disassembly. We have previously reported that GIT1 binds to MEK1 [MAPK (mitogen‐activated protein kinase)/ERK kinase 1] and acts as a scaffold to enhance ERK1/2 activation in response to EGF (epidermal growth factor). In the present study we show that GIT1 associates with ERK1/2 in focal adhesions and this association increases after EGF stimulation. The CC (coiled‐coil) domain of ERK1/2 is required for association with GIT1, translocation to focal adhesions, and cell spreading and migration. Immunofluorescent staining showed that, after EGF stimulation, GIT1 co‐localized with pERK1/2 (phosphorylated ERK1/2) in focal adhesions. The binding of GIT1 and ERK1/2 was functionally important, since transfecting an ERK2 mutant lacking the CC domain [ERK2(del CC)] significantly decreased pERK1/2 translocation to focal adhesions, cell spreading and migration induced by EGF. In summary, the CC domain of ERK1/2 is necessary for binding to GIT1, for ERK1/2 activation in focal adhesions, and for cell spreading and migration.  相似文献   

20.
We previously reported Chk1 to be phosphorylated at Ser286 and Ser301 by cyclin-dependent kinase (Cdk) 1 during mitosis [T. Shiromizu et al., Genes Cells 11 (2006) 477-485]. Here, we demonstrated that Chk1-Ser286 and -Ser301 phosphorylation also occurs in hydroxyurea (HU)-treated or ultraviolet (UV)-irradiated cells. Unlike the mitosis case, however, Chk1 was phosphorylated not only at Ser286 and Ser301 but also at Ser317 and Ser345 in the checkpoint response. Treatment with Cdk inhibitors diminished Chk1 phosphorylation at Ser286 and Ser301 but not at Ser317 and Ser345 with the latter. In vitro analyses revealed Ser286 and Ser301 on Chk1 to serve as two major phosphorylation sites for Cdk2. Immunoprecipitation analyses further demonstrated that Ser286/Ser301 and Ser317/Ser345 phosphorylation occur in the same Chk1 molecule during the checkpoint response. In addition, Ser286/Ser301 phosphorylation by Cdk2 was observed in Chk1 mutated to Ala at Ser317 and Ser345 (S317A/S345A), as well as Ser317/Ser345 phosphorylation by ATR was in S286A/S301A. Therefore, Chk1 phosphorylation in the checkpoint response is regulated not only by ATR but also by Cdk2.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号