首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The serine/threonine p21-activated kinase (PAK) is an effector for Rac and Cdc42, but its role in regulating cytoskeletal organization has been controversial. To address this issue, we investigated the role of PAK in migration of microvascular endothelial cells. We found that a dominant negative (DN) mutant of PAK significantly inhibited cell migration and increased stress fibers and focal adhesions. The DN effect mapped to the most NH(2)-terminal proline-rich SH3-binding sequence. Observation of a green fluorescent protein-tagged alpha-actinin construct in living cells revealed that the DN construct had no effect on membrane ruffling, but dramatically inhibited stress fiber and focal contact motility and turnover. Constitutively active PAK inhibited migration equally well and also increased stress fibers and focal adhesions, but had a somewhat weaker effect on their dynamics. In contrast to their similar effects on motility, DN PAK decreased cell contractility, whereas active PAK increased contractility. Active PAK also increased myosin light chain (MLC) phosphorylation, as indicated by staining with an antibody to phosphorylated MLC, whereas DN PAK had little effect, despite the increase in actin stress fibers. These results demonstrate that although PAK is not required for extension of lamellipodia, it has substantial effects on cell adhesion and contraction. These data suggest a model in which PAK plays a role coordinating the formation of new adhesions at the leading edge with contraction and detachment at the trailing edge.  相似文献   

2.
The G protein-coupled receptor kinase-interacting protein 1 (GIT1) is a multidomain protein that plays an important role in cell adhesion, motility, cytoskeletal remodeling, and membrane trafficking. GIT1 mediates the localization of the p21-activated kinase (PAK) and PAK-interactive exchange factor to focal adhesions, and its activation is regulated by the interaction between its C-terminal paxillin-binding domain (PBD) and the LD motifs of paxillin. In this study, we determined the solution structure of rat GIT1 PBD by NMR spectroscopy. The PBD folds into a four-helix bundle, which is structurally similar to the focal adhesion targeting and vinculin tail domains. Previous studies showed that GIT1 interacts with paxillin through the LD4 motif. Here, we demonstrated that in addition to the LD4 motif, the GIT1 PBD can also bind to the paxillin LD2 motif, and both LD2 and LD4 motifs competitively target the same site on the PBD surface. We also revealed that paxillin Ser(272) phosphorylation does not influence GIT1 PBD binding in vitro. These results are in agreement with the notion that phosphorylation of paxillin Ser(272) plays an essential role in regulating focal adhesion turnover.  相似文献   

3.
Cell migration is a dynamic process that requires the coordinated formation and disassembly of focal adhesions (FAs). Several proteins such as paxillin, focal adhesion kinase (FAK), and G protein-coupled receptor kinase-interacting protein 1 (GIT1) are known to play a regulatory role in FA disassembly and turnover. However, the mechanisms by which this occurs remain to be elucidated. Paxillin has been shown to bind the C-terminal domain of FAK in FAs, and an increasing number of studies have linked paxillin association with GIT1 during focal adhesion disassembly. It has been reported recently that phosphorylation of serine 273 in the LD4 motif of paxillin leads to an increased association with Git1 and focal adhesion turnover. In the present study, we examined the effects of phosphorylation of the LD4 peptide on its binding affinity to the C-terminal domain of FAK. We show that phosphorylation of LD4 results in a reduction of binding affinity to FAK. This reduction in binding affinity is not due to the introduction of electrostatic repulsion or steric effects but rather by a destabilization of the helical propensity of the LD4 motif. These results further our understanding of the focal adhesion turnover mechanism as well as identify a novel process by which phosphorylation can modulate intracellular signaling.  相似文献   

4.
p21-activated kinases (PAKs) associate with a guanine nucleotide exchange factor, Pak-interacting exchange factor (PIX), which in turn binds the paxillin-associated adaptor GIT1 that targets the complex to focal adhesions. Here, a detailed structure-function analysis of GIT1 reveals how this multidomain adaptor also participates in activation of PAK. Kinase activation does not occur via Cdc42 or Rac1 GTPase binding to PAK. The ability of GIT1 to stimulate alphaPAK autophosphorylation requires the participation of the GIT N-terminal Arf-GAP domain but not Arf-GAP activity and involves phosphorylation of PAK at residues common to Cdc42-mediated activation. Thus, the activation of PAK at adhesion complexes involves a complex interplay between the kinase, Rho GTPases and protein partners that provide localization cues.  相似文献   

5.
FAK, a cytoplasmic protein tyrosine kinase, is activated and localized to focal adhesions upon cell attachment to extracellular matrix. FAK null cells spread poorly and exhibit altered focal adhesion turnover. Rac1 is a member of the Rho-family GTPases that promotes membrane ruffling, leading edge extension, and cell spreading. We investigated the activation and subcellular location of Rac1 in FAK null and FAK reexpressing fibroblasts. FAK reexpressers had a more robust pattern of Rac1 activation after cell adhesion to fibronectin than the FAK null cells. Translocation of Rac1 to focal adhesions was observed in FAK reexpressers, but seldom in FAK null cells. Experiments with constitutively active L61Rac1 and dominant negative N17Rac1 indicated that the activation state of Rac1 regulated its localization to focal adhesions. We demonstrated that FAK tyrosine-phosphorylated betaPIX and thereby increased its binding to Rac1. In addition, betaPIX facilitated the targeting of activated Rac1 to focal adhesions and the efficiency of cell spreading. These data indicate that FAK has a role in the activation and focal adhesion translocation of Rac1 through the tyrosine phosphorylation of betaPIX.  相似文献   

6.
Daher Z  Noël J  Claing A 《Cellular signalling》2008,20(12):2256-2265
Several proteins act in concert to promote remodeling of the actin cytoskeleton during migration. This process is highly regulated by small GTP-binding proteins of the ADP-ribosylation factor (ARF) family of proteins. Here, we show that endothelin-1 (ET-1) can promote the activation of ARF6 and migration of endothelial cells through the activation of ETB receptors. Inhibition of ARF6 expression using RNA interference markedly impairs basal and ET-1 stimulated cell migration. In contrast, depletion of ARF1 has no significant effect. In order to delineate the underlying mechanism, we examined the signaling events activated in endothelial cells following ET-1 stimulation. Here, we show that this hormone promotes the phosphorylation of focal adhesion kinase (FAK), Erk1/2, and the association of FAK to Src, as well as of FAK to GIT1. These have been shown to be important for the formation and turnover of focal adhesions. In non-stimulated cells, depletion of ARF6 leads to increased FAK and Erk1/2 phosphorylation, similar to what is observed in ET-1 treated cells. In these conditions, FAK is found constitutively associated with the soluble tyrosine kinase, Src. In contrast, depletion of ARF6 impairs the ability of GIT1 to form an agonist promoted complex with FAK, thereby preventing disassembly of focal adhesions. As a consequence, ARF6 depleted endothelial cells are impaired in their ability to form capillary tubes. Taken together, our data suggest that ARF6 is central in regulating focal adhesion turnover in endothelial cells. Our study provides a molecular mechanism by which, this small GTPase regulates cell motility, and ultimately angiogenesis.  相似文献   

7.
The ArfGAP paxillin kinase linker (PKL)/G protein-coupled receptor kinase-interacting protein (GIT)2 has been implicated in regulating cell spreading and motility through its transient recruitment of the p21-activated kinase (PAK) to focal adhesions. The Nck-PAK-PIX-PKL protein complex is recruited to focal adhesions by paxillin upon integrin engagement and Rac activation. In this report, we identify tyrosine-phosphorylated PKL as a protein that associates with the SH3-SH2 adaptor Nck, in a Src-dependent manner, after cell adhesion to fibronectin. Both cell adhesion and Rac activation stimulated PKL tyrosine phosphorylation. PKL is phosphorylated on tyrosine residues 286/392/592 by Src and/or FAK and these sites are required for PKL localization to focal adhesions and for paxillin binding. The absence of either FAK or Src-family kinases prevents PKL phosphorylation and suppresses localization of PKL but not GIT1 to focal adhesions after Rac activation. Expression of an activated FAK mutant in the absence of Src-family kinases partially restores PKL localization, suggesting that Src activation of FAK is required for PKL phosphorylation and localization. Overexpression of the nonphosphorylated GFP-PKL Triple YF mutant stimulates cell spreading and protrusiveness, similar to overexpression of a paxillin mutant that does not bind PKL, suggesting that failure to recruit PKL to focal adhesions interferes with normal cell spreading and motility.  相似文献   

8.
P21 activated kinase (PAK), PAK interacting exchange factor (PIX), and G protein coupled receptor kinase interactor (GIT) compose a highly conserved signaling module controlling cell migrations, immune system signaling, and the formation of the mammalian nervous system. Traditionally, this signaling module is thought to facilitate the function of RAC and CDC-42 GTPases by allowing for the recruitment of a GTPase effector (PAK), a GTPase activator (PIX), and a scaffolding protein (GIT) as a regulated signaling unit to specific subcellular locations. Instead, we report here that this signaling module functions independently of RAC/CDC-42 GTPases in vivo to control the cell shape and migration of the distal tip cells (DTCs) during morphogenesis of the Caenorhabditis elegans gonad. In addition, this RAC/CDC-42–independent PAK pathway functions in parallel to a classical GTPase/PAK pathway to control the guidance aspect of DTC migration. Among the C. elegans PAKs, only PAK-1 functions in the GIT/PIX/PAK pathway independently of RAC/CDC42 GTPases, while both PAK-1 and MAX-2 are redundantly utilized in the GTPase/PAK pathway. Both RAC/CDC42–dependent and –independent PAK pathways function with the integrin receptors, suggesting that signaling through integrins can control the morphology, movement, and guidance of DTC through discrete pathways. Collectively, our results define a new signaling capacity for the GIT/PIX/PAK module that is likely to be conserved in vertebrates and demonstrate that PAK family members, which are redundantly utilized as GTPase effectors, can act non-redundantly in pathways independent of these GTPases.  相似文献   

9.
Remodeling of the vascular smooth muscle cytoskeleton is essential for cell motility involved in the development of diseases such as arteriosclerosis and restenosis. The p21-activated kinase (PAK), which is an effector of the Rho GTPases Rac and Cdc42, has been shown to be involved in cytoskeletal remodeling and cell motility. We show herein that expression of cytoskeletally active constructs of PAK1 is able to induce the formation of dynamic, podosome-like F-actin columns in the A7r5 vascular smooth muscle cell line. Most of these actin columns appear at the junctions between stress fibers and focal adhesions and contain several known podosomal protein markers, such as cortactin, Arp2/3, -actinin, and vinculin. The kinase activity of PAK plays a role in the regulation of the turnover rates of these actin columns but is not essential for their formation. The ability of PAK to interact with the PAK-interacting exchange factor (PIX) but not with Rac or Cdc42, however, is required for the formation of the actin columns as well as for the translocation of PIX and G protein-coupled receptor kinase-interacting protein (GIT) to focal adhesions adjacent to the actin columns. These findings suggest that interaction between PAK and PIX, as well as the recruitment of PIX and GIT to focal adhesions, plays an important role in the formation of actin columns that resemble podosomes induced by phorbol ester in vascular smooth muscle cells. actin cytoskeleton; p21-activated kinase  相似文献   

10.
Cell migration is a complex, highly regulated process that involves the continuous formation and disassembly of adhesions (adhesion turnover). Adhesion formation takes place at the leading edge of protrusions, whereas disassembly occurs both at the cell rear and at the base of protrusions. Despite the importance of these processes in migration, the mechanisms that regulate adhesion formation and disassembly remain largely unknown. Here we develop quantitative assays to measure the rate of incorporation of molecules into adhesions and the departure of these proteins from adhesions. Using these assays, we show that kinases and adaptor molecules, including focal adhesion kinase (FAK), Src, p130CAS, paxillin, extracellular signal-regulated kinase (ERK) and myosin light-chain kinase (MLCK) are critical for adhesion turnover at the cell front, a process central to migration.  相似文献   

11.
G protein-coupled receptor kinase-interacting protein (GIT)1 is a multidomain, adaptor protein that regulates cellular processes, such as migration and protrusive activity, by bringing together various signaling molecules, including PIX, PAK, and paxillin. Mutants of GIT1, which lack the C-terminal paxillin binding domain, fail to mediate its effects on migration and protrusions, suggesting that sites within this domain are critical to GIT1 function. In this study, we show that serine 709, which is located within the paxillin binding domain, regulates GIT1 function. Phosphorylation of serine 709 is necessary for GIT1-induced effects on protrusions. Phosphorylation of this site also regulates GIT1 interaction with paxillin, which could serve to target GIT1 to the leading edge of cells. As shown by an in vitro kinase assay, PAK phosphorylates GIT1 on serine 709. Taken together, our results indicate that GIT1 phosphorylation on serine 709 increases its binding to paxillin and regulates protrusive activity in cells.  相似文献   

12.
The PAK2/βPIX/GIT1 (p21-activated kinase 2/PAK-interacting exchange factor-β/G protein-coupled receptor kinase-interactor 1) complex has been shown to distribute to both membrane ruffles and focal adhesions of cells, where it plays an important role in regulating focal adhesion turnover. However, the detailed mechanism underlying this regulation is largely unknown. We previously reported that MYO18Aα interacts via its carboxyl terminus with the PAK2/βPIX/GIT1 complex through direct binding to βPIX, and that knockdown of MYO18Aα in epithelial cells causes accumulation of the complex in focal adhesions and decreased cell migration ability (Hsu et al., 2010). The current study characterized the detailed MYO18Aα–βPIX interaction mechanism and the biological significance of this interaction. We found that deletion of the carboxyl-terminal globular domain of MYO18Aα profoundly altered the cellular localization of βPIX and inhibited cell migration. βPIX interacts through its most carboxyl-terminus, PAWDETNL (639–646), with MYO18Aα and partially colocalized with MYO18Aα in membrane ruffles of cells, whereas βPIX1–638, a mutant with deletion of PAWDETNL, accumulated in focal adhesions. Both focal adhesion numbers and area in βPIX1–638-expressing cells were greater than those in cells expressing wild-type βPIXFL. Further experiments using deletion mutants of MYO18A and βPIX showed that disruption of MYO18A–βPIX interaction not only impaired cell motility but also decreased Rac1 activity. Collectively, our data unravel the interaction regions between MYO18A and βPIX and provide evidence for the critical role of this interaction in regulating cellular localization of βPIX, Rac1 activity, and adhesion and migration in epithelial cells.  相似文献   

13.
The p21-activated kinase (PAK) 2 is known to be involved in numerous biological functions, including the regulation of actin reorganization and cell motility. To better understand the mechanisms underlying this regulation, we herein used a proteomic approach to identify PAK2-interacting proteins in human epidermoid carcinoma A431 cells. We found that MYO18A, an emerging member of the myosin superfamily, is a novel PAK2 binding partner. Using a siRNA knockdown strategy and in vitro binding assay, we discovered that MYO18A binds to PAK2 through the βPIX/GIT1 complex. Under normal conditions, MYO18A and PAK2 colocalized in lamellipodia and membrane ruffles. Interestingly, knockdown of MYO18A in cells did not prevent formation of the PAK2/βPIX/GIT1 complex, but rather apparently changed its localization to focal adhesions. Moreover, MYO18A-depleted cells showed dramatic changes in morphology and actin stress fiber and membrane ruffle formation and displayed increases in the number and size of focal adhesions. Migration assays revealed that MYO18A-depleted cells had decreased cell motility, and reexpression of MYO18A restored their migration ability. Collectively, our findings indicate that MYO18A is a novel binding partner of the PAK2/βPIX/GIT1 complex and suggest that MYO18A may play an important role in regulating epithelial cell migration via affecting multiple cell machineries.  相似文献   

14.
The continuous assembly and disassembly of focal adhesions is required for efficient cell spreading and migration. The G-protein-coupled receptor kinase-interacting protein 1 (GIT1) is a multidomain protein whose dynamic localization to sites of cytoskeletal remodeling is critically involved in the regulation of these processes. Here we provide evidence that the subcellular localization of GIT1 is regulated by protein kinase D3 (PKD3) through direct phosphorylation on serine 46. GIT1 phosphorylation on serine 46 was abrograted by PKD3 depletion, thereby identifying GIT1 as the first specific substrate for this kinase. A GIT1 S46D phosphomimetic mutant localized to motile, paxillin-positive cytoplasmic complexes, whereas the phosphorylation-deficient GIT1 S46A was enriched in focal adhesions. We propose that phosphorylation of GIT1 on serine 46 by PKD3 represents a molecular switch by which GIT1 localization, paxillin trafficking, and cellular protrusive activity are regulated.  相似文献   

15.
Cell migration is initiated in response to biochemical or physical cues in the environment that promote actin-mediated lamellipodial protrusion followed by the formation of nascent integrin adhesions (NAs) within the protrusion to drive leading edge advance. Although FAK is known to be required for cell migration through effects on focal adhesions, its role in NA formation and lamellipodial dynamics is unclear. Live-cell microscopy of FAK−/− cells with expression of phosphorylation deficient or a FERM-domain mutant deficient in Arp2/3 binding revealed a requirement for FAK in promoting the dense formation, transient stabilization, and timely turnover of NA within lamellipodia to couple actin-driven protrusion to adhesion and advance of the leading edge. Phosphorylation on Y397 of FAK promotes dense NA formation but is dispensable for transient NA stabilization and leading edge advance. In contrast, transient NA stabilization and advance of the cell edge requires FAK–Arp2/3 interaction, which promotes Arp2/3 localization to NA and reduces FAK activity. Haptosensing of extracellular matrix (ECM) concentration during migration requires the interaction between FAK and Arp2/3, whereas FAK phosphorylation modulates mechanosensing of ECM stiffness during spreading. Taken together, our results show that mechanistically separable functions of FAK in NA are required for cells to distinguish distinct properties of their environment during migration.  相似文献   

16.
Cytoskeletal remodeling is critical for cell adhesion, spreading, and motility. p21-activated kinase (PAK), an effector molecule of the Rho GTPases Rac and Cdc42, has been implicated in cytoskeletal remodeling and cell motility. PAK kinase activity and subcellular distribution are tightly regulated by rapid and transient localized Rac and Cdc42 activation, and by interactions mediated by adapter proteins. Here, we show that endogenous PAK is constitutively activated in certain breast cancer cell lines and that this active PAK is mislocalized to atypical focal adhesions in the absence of high levels of activated Rho GTPases. PAK localization to focal adhesions in these cells is independent of PAK kinase activity, NCK binding, or GTPase binding, but requires the association of PAK with PIX. Disruption of the PAK-PIX interaction with competitive peptides displaces PAK from focal adhesions and results in a substantial reduction in PAK hyperactivity. Moreover, disruption of the PAK-PIX interaction is associated with a dramatic decrease of PIX and paxillin in focal adhesions, indicating that PAK localization to these structures via PIX is required for the maintenance of paxillin- and PIX-containing focal adhesions. Abnormal regulation of PAK localization and activity may contribute to the tumorigenic properties of certain breast cancer cells.  相似文献   

17.
Lysophosphatidic acid (LPA) mediates diverse biological responses, including cell migration, through the activation of G-protein-coupled receptors. Recently, we have shown that LPA stimulates p21-activated kinase (PAK) that is critical for focal adhesion kinase (FAK) phosphorylation and cell motility. Here, we provide the direct evidence that p85 beta-PIX is required for cell motility of NIH-3T3 cells by LPA through FAK and p38 MAP kinase phosphorylations. LPA induced p85 beta-PIX binding to FAK in NIH-3T3 cells that was inhibited by pretreatment of the cells with phosphoinositide 3-kinase inhibitor, LY294002. Furthermore, the similar inhibition of the complex formation was also observed, when the cells were transfected with either p85 beta-PIX mutant that cannot bind GIT or dominant negative mutants of Rac1 (N17Rac1) and PAK (PAK-PID). Transfection of the cells with specific p85 beta-PIX siRNA led to drastic inhibition of LPA-induced FAK phosphorylation, peripheral redistribution of p85 beta-PIX with FAK and GIT1, and cell motility. p85 beta-PIX was also required for p38 MAP kinase phosphorylation induced by LPA. Finally, dominant negative mutant of Rho (N19Rho)-transfected cells did not affect PAK activation, while the cells stably transfected with p85 beta-PIX siRNA or N17Rac1 showed the reduction of LPA-induced PAK activation. Taken together, the present data suggest that p85 beta-PIX, located downstream of Rac1, is a key regulator for the activations of FAK or p38 MAP kinase and plays a pivotal role in focal complex formation and cell motility induced by LPA.  相似文献   

18.
Podosomes are actin- and fimbrin-containing adhesions at the leading edge of macrophages. In cells transfected with beta-actin-ECFP and L-fimbrin-EYFP, quantitative four-dimensional microscopy of podosome assembly shows that new adhesions arise at the cell periphery by one of two mechanisms; de novo podosome assembly, or fission of a precursor podosome into daughter podosomes. The large podosome cluster precursor also appears to be an adhesion structure; it contains actin, fimbrin, integrin, and is in close apposition to the substratum. Microtubule inhibitors paclitaxel and demecolcine inhibit the turnover and polarized formation of podosomes, but not the turnover rate of actin in these structures. Because daughter podosomes and podosome cluster precursors are preferentially located at the leading edge, they may play a critical role in continually generating new sites of cell adhesion.  相似文献   

19.
The GIT proteins, GIT1 and GIT2, are GTPase-activating proteins for the ADP-ribosylation factor family of small GTP-binding proteins, but also serve as adaptors to link signaling proteins to distinct cellular locations. One role for GIT proteins is to link the PIX family of Rho guanine nucleotide exchange factors and their binding partners, the p21-activated protein kinases, to remodeling focal adhesions by interacting with the focal adhesion adaptor protein paxillin. We here identified the C-terminal domain of GIT1 responsible for paxillin binding. Combining structural and mutational analyses, we show that this region folds into an anti-parallel four-helix domain highly reminiscent to the focal adhesion targeting (FAT) domain of focal adhesion kinase (FAK). Our results suggest that the GIT1 FAT-homology (FAH) domain and FAT bind the paxillin LD4 motif quite similarly. Since only a small fraction of GIT1 is bound to paxillin under normal conditions, regulation of paxillin binding was explored. Although paxillin binding to the FAT domain of FAK is regulated by tyrosine phosphorylation within this domain, we find that tyrosine phosphorylation of the FAH domain GIT1 is not involved in regulating binding to paxillin. Instead, we find that mutations within the FAH domain may alter binding to paxillin that has been phosphorylated within the LD4 motif. Thus, despite apparent structural similarity in their FAT domains, GIT1 and FAK binding to paxillin is differentially regulated.  相似文献   

20.
GIT1 is a scaffold for ERK1/2 activation in focal adhesions   总被引:6,自引:0,他引:6  
GIT1 (G protein-coupled receptor kinase-interacting protein 1) has been shown to regulate focal adhesion disassembly. We previously reported that GIT1 associates with MEK1 and acts as a scaffold to enhance ERK1/2 activation. Here, we show that GIT1 co-localizes with ERK1/2 in focal adhesions and regulates cell migration in vascular smooth muscle cells, HEK293 cells, and HeLa cells. Immunofluorescence showed that GIT1 co-localized with phospho-ERK1/2 in focal adhesions after epidermal growth factor stimulation. Because Src is required for both GIT1 tyrosine phosphorylation and focal adhesion disassembly, we studied the effects of Src on GIT1-ERK1/2 interactions. PP2 (4-amino-5-(4-chlorophenyl)-7-(t-butyl)pyrazolo[3,4-d]pyrimidine) inhibited association of GIT1 with ERK1/2, and their co-localization in focal adhesions was dramatically decreased in SYF-/- cells. GIT1 small interfering RNA significantly inhibited ERK1/2 recruitment to and activation in focal adhesions. GIT1 small interfering RNA and mutated GIT1 lacking the MEK1 binding domain significantly decreased epidermal growth factor-stimulated cell spreading and migration, suggesting that GIT1-mediated events such as ERK1/2 activation are required for spreading and migration. In summary, the present study further supports a key role for GIT1 (a MEK1-binding protein) as a scaffold for signal transduction in focal adhesions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号