首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Bgl II restriction endonuclease digestion of genomic DNA from lymphoblastoid cell lines homozygous for HLA DR and DQ serological specificities, followed by hybridization with a DQ alpha cDNA probe, identified a genomic polymorphism characterized by two reciprocal patterns, one associated with DR 3, 5 and 8 and the other with DR 1, 2, 4, 7, and 9. The former pattern corresponded precisely to the reactivity of monoclonal antibody SFR20-DQ alpha 5, shown by Western blotting to react with isolated alpha-chains, but not with beta-chains. Additional variants of the DQ alpha genes were identified by using a locus-specific oligonucleotide probe for the DQ alpha gene, indicating differences among the DQ alpha 5-negative set of alleles. This analysis defines a set of DQ alpha allelic markers that are distinct from the well-established DQ serologic specificities DQw1, 2, 3 or "blank." Although most DQ alpha 5+ cells carry the DRw52 specificity associated with the DR beta 2 gene, analysis of DQ alpha polymorphisms on DR5, DQw1; DR8, DQw1; and DRw13, DQw1 cells verified that this DQ alpha family of alleles was not invariably linked to the DR beta 2 locus.  相似文献   

2.
The polymorphism of HLA class II molecules in man is particularly evident when comparisons between population groups are made. This study describes a DR3 haplotype commonly present in the American black population. Unlike the Northern European population in which almost all DR3 individuals are DQw2, approximately 50% of DR3-positive American blacks express a serologically undefined DQ allelic product. DNA restriction fragment analysis with the use of several unrelated individuals and an informative family has allowed us to identify unique DQ alpha- and beta-fragments associated with the DR3, DQw- haplotype. Based on fragment size, the DQ alpha genes of the DR3, DQw- and DRw8, DQw- haplotypes are similar as are the DQ beta genes of DR3, DQw-; DRw8, DQw-; and DR4, DQw- haplotypes. In addition, a DX beta gene polymorphism has been identified which is associated with some DR3 haplotypes including the American black DR3, DQw- haplotype. cDNA sequence analysis has revealed a DQw2-like alpha gene and a DQ beta gene which is similar to that previously described for a DR4, DQw- haplotype. It is postulated that recombination between DQ alpha and DQ beta genes and between the DQ and DX subregions has generated the various DR3 haplotypes and has played an important role in creating diversity in the HLA-D region.  相似文献   

3.
The association of the class II genes of the DRw10 haplotype from a cell line, NASC, initiated from a member of a well characterized family, was analyzed by sequencing cDNA clones corresponding to DR beta I, DQ alpha, and DQ beta genes. An identical haplotype was also identified in the Raji cell line. In addition to typing as DRw10 and DQw1 with HLA typing sera both, the NASC and Raji cell lines were shown to react strongly with the monoclonal antibodies 109d6 (specific for DRw10 beta 1 and DRw53 beta 2 gene products) and Genox 3.5.3 (specific for DQw1) and exhibited the restriction fragment length polymorphism indicative of a DRw10, DQw1 haplotype. The DR beta 1 gene corresponding to the DRw10 specificity was found to have a first domain sequence different from all other DR beta I genes. Sequence analysis of the 3'-untranslated region of this DR beta-chain gene showed a significant divergence from the 3' untranslated region of the DRw53 family of haplotypes and a lesser divergence from that of the DRw52 and DR1/DR2 families. The sequence of the DQ beta genes corresponding to the DQw1 specificity in the DRw10 haplotype was found to be identical to the DQ beta gene from a DR1, DQw1 haplotype. Surprisingly, however, the DQ alpha gene did not resemble other DQw1-like DQ alpha genes, but was identical in sequence to the DQ alpha gene found in DR4 haplotypes. The novel association of DQ alpha and DQ beta genes in the DRw10 haplotype revealed in these studies may result from a double recombinational event. More consequentially, these studies strongly suggest that the DQw1 specificity recognized by Genox 3.5.3 is determined by the DQ beta chain and is not affected by the DQ alpha-chain.  相似文献   

4.
Recombination sites in the HLA class II region are haplotype dependent   总被引:3,自引:0,他引:3  
We have analyzed DNA sequence polymorphisms of DQ alpha and DQ beta chains from three haplotypes from the DRw52 family: DR5 DQw1 (FPA, GM3106), DRw6 DQw1 (CB6B, 10w9060), and DRw6 DQw3 (AMALA, 10w9064). The results indicate that the DR5 DQw1 and DRw6 DQw1 haplotypes have arisen by recombination between the DR beta 1 and DQ alpha loci. This contrasts with our previous analysis of DR4 DQ"Wa", DR3 DQ"Wa", and DR7 DQw3 haplotypes, all of which appear to have arisen by virtue of recombination between DQ alpha and DQ beta. Thus, there appear to be at least two different sites where recombination has occurred within the DR and DQ subregions. These differing patterns of recombination were interpreted in the context of the three major family groups of class II haplotypes, the DRw53, DRw52, and DR1/2 haplotype families. The data indicate that haplotypes from these family groups tend to undergo recombination at different locations. We propose that these differences in site of recombination are a reflection of differences in the molecular organization of the haplotypes belonging to each family group.  相似文献   

5.
We detected restriction fragment length polymorphisms that distinguish the extended haplotype HLA-B8,DR3,SCO1 from HLA-B18,DR3,F1C30 at the DR beta and DQ beta loci with five of seven restriction endonucleases used. One set of restriction fragments was always found on HLA-B8,DR3,SCO1 and associated with DRw52a, while the other was present on HLA-B18, DR3,F1C30 and correlated with DRw52b (the gene encoding the subtype of DRw52 associated with the BO1 or LB-Q1 antigen). Furthermore, using a full-length DQ beta gene probe, we found division in the DQw2 haplotype, in which DQw2a always associated with HLA-B8, DR3,SCO1, while DQw2b always occurred with HLA-B18,DR3,F1C3O. Our evidence thus indicates that serologically defined HLA-DR3, HLA-DRw52, and HLA-DQw2 are each produced by two structurally very different sets of genes, one set occurring in HLA-B8, DR3,SCO1, and the other in HLA-B18,DR3,F1C30.Abbreviations used in this paper BSA bovine serum albumin - MHC major histocompatibility complex - EDTA ethylenediaminetetraacetic acid - SDS sodium dodecyl sulfate  相似文献   

6.
Previous studies of HLA-restricted antigen recognition by cloned T cells have frequently demonstrated reactivity that did not correlate precisely with the expression of serologically defined HLA specificities. To further explore such discrepancies, we utilized monoclonal antibody (MoAb) blocking, partial NH2-terminal amino acid sequencing, and Southern blot hybridization techniques to analyze the fine specificity of four autologous trinitrophenyl-specific T cell lines restricted to DR2-linked epitopes. MoAb blocking studies demonstrated that two of these lines recognized determinants on DR molecules while the other two recognized determinants on the same molecule that expresses the DQw1 determinant. However, these latter two lines appeared to recognize a DQw1-related determinant found primarily in association with DR2, but not the other DQw1-associated DR alleles, DR1 and DRw6. To ascertain whether these lines were defining a functional split of DQw1, we performed partial NH2-terminal amino acid sequencing of the molecules precipitated with a DQw1-specific MoAb (Genox 3.53) from different stimulator lines. The results showed that these T cell lines recognized a subtype of DQw1 that is in linkage disequilibrium with DR2. Moreover, we identified characteristic restriction fragment length polymorphisms with a DQ -specific cDNA that correlated with stimulatory capacity for the DQw1-restricted lines. These results demonstrate that: (1) DQ molecules may provide restriction determinants that are incorrectly assigned to DR molecules on stimulator panel analyses; (2) cloned antigen-specific T cell lines recognize polymorphic regions of class II molecules not distinguished by either conventional typing antisera or xenogeneic MoAb; and (3) the DQw1 epitope(s) is located on a heterogeneous group of DQ molecules that differ from each other in the primary sequence of their chains.Abbreviations used in this paper ATCC American type culture collection; cpm, counts per minute - DNA deoxyribonucleic acid - EBV Epstein-Barr virus - FCS fetal calf serum - MoAb monoclonal antibody - PBMC peripheral blood mononuclear cells - % RAgS percent relative antigen stimulation - RFLP restriction fragment length polymorphism - SDS sodium dodecyl sulfate - S-RPMI supplemented-RPMI - TCL T-cell line - TNP trinitrophenyl  相似文献   

7.
Almost all patients with cataplectic narcolepsy are DR2-positive. It has been suggested that thenon-DR2 allele/haplotype might not be neutral with respect to disease susceptibility. It has also been reported thatTaq IDQA andBam HI,Eco RI,Eco RV, andPst IDQB restriction fragments might differentiate between narcoleptic and healthy DR2-positive individuals. In the present study,HLA class II gene polymorphisms were investigated by restriction fragment length polymorphism (RFLP) analysis in 47 Swedish patients with cataplectic narcolepsy, 100 random controls, and DR2-associated homozygous cell lines. All patients hadTaq IDRBDQA-DQB patterns corresponding to theDRw15,DQw6, Dw2 haplotype. The non-DR2 haplotype was found to be neutral. This genotyped group of patients allows firm rejection of a recessive mode of inheritance and supports a dominant or additive model. NoDQA orDQB RFLPs were found that could differentiate between DR2-positive narcoleptics, DRw15,DQw6,Dw2-positive controls, orDw2-homozygous cell lines. No significantMsp IHLA-DP association was found. No linkage disequilibrium was observed between theDRw15,DQw6,Dw2 haplotype and alleles of theDP subregion in patients or controls. Thus, theHLA-D region-associated narcolepsy susceptibility gene may be located telomeric to theHLA-DP subregion. No RFLPs have been observed that can locate the narcolepsy susceptibility gene closer to theDQ than to theDR subregion.  相似文献   

8.
The HLA-D region of individuals with the DRw11, w52, DQw3 haplotype encodes multiple molecular products of three distinct subregions, DR, DP, and DQ. Since each molecule can carry multiple stimulatory epitopes, the repertoire of allogeneic T-cell responses to determinants of this haplotype can be quite large. In the present experiments, alloreactive cloned T-cell lines recognized six distinct epitopes associated with DRw11, DRw52, DQw3 haplotypes. Panel studies established that three epitopes were DRwll-like and three were DRw52-like. Blocking with monoclonal antibodies showed that two DRw11-like epitopes were carried by DR-subregion products and one DRwll-like epitope was carried by DQ-subregion molecules. DRw52-like epitopes were detected on separate DR subregion-encoded molecules. One of them carried both DRwl1-and DRw52-like epitopes, the other carried two of the DRw52-like epitopes. These epitopes, which represent functional units that trigger T-cell responses, can be detected at the present time only with the methods used in this report. Conventional allogeneic T-cell responses represent the summation of responses to multiple epitopes encoded by different D-subregion genes.  相似文献   

9.
We have compared the sequence polymorphism of HLA class II genes of two distinct DRw6 haplotypes. cDNA libraries were constructed from two lymphoblastoid cell lines: CB6B (10w9060) which types as DRw13 DQw1, and AMALA (10w9064) which types as DRw14 DQw3. Multiple sequence differences were found at the DR beta I, DQ alpha, and DQ beta loci when these two haplotypes were compared. The DR beta I allele found in the DRw14 DQw3 haplotype appears to have diverged primarily as a result of a gene conversion event with a DR1 allele acting as donor. In contrast, the DRw13 DQw1 haplotype appears to have arisen by means of a recombination event between the DR and DQ subregions. Thus, multiple genetic mechanisms, including point mutation, gene conversion, and recombination, have generated diversity among DRw6 haplotypes.  相似文献   

10.
Expressible HLA class II alpha- and beta-chain cDNA were used for DNA-mediated gene transfer to produce L cell transfectants expressing single types of human class II molecules. Cloned transfectants expressing nine different class II molecules were isolated: DR alpha: DR1 beta I, DR alpha: DR4 beta I, DR alpha: DR5 beta I, DR alpha: DR5 beta III (DRw52), DR alpha: DR7 beta I, DR alpha: DR4/7 beta IV (DRw53), DQ7 alpha: DQw2 beta, DQ7 alpha: DQw3 beta, and DPw4 alpha: DPw4 beta. These class II-expressing transfectants were used to analyze by flow cytometry the molecular specificities of 20 anti-class II mAb. These analyes indicate that some mAb are more broadly reactive than was previously thought based on immunochemical studies. In contrast, the narrow molecular specificities of other anti-class II mAb were confirmed by this approach. Transfectants expressing human class II molecules should be valuable reagents for studies of B cell and T cell defined epitopes on these molecules.  相似文献   

11.
Fifty-six unrelated Japanese patients with insulin-dependent diabetes mellitus (IDDM) were HLA-typed, and restriction fragment length polymorphism (RFLP) analysis was performed after enzyme digestion with Bam HI and Taq I by using both DR and DQ probes. As previously reported, increased frequencies of Bw54, Cw1, DR4, and DRw53, which are in strong linkage disequilibrium in the Japanese population and make the characteristic Japanese haplotype, were confirmed. DQw4, a new allele of the DQ system recognized by the monoclonal antibody HU-46 and in linkage disequilibrium with this haplotype, presented the highest IDDM association. The RFLP analysis also showed the strongest correlation to IDDM when the DQ probe was applied. These results indicate that HLA-DQ might play the most important role in the development of IDDM in Japanese as well as in Caucasians. The correlation of DQ amino acid sequences strongly associated with IDDM in Japanese are discussed in this study, and contrasting results were found when such sequences were compared with those of Caucasians.Abbreviations used in this paper IDDM insulin-dependent diabetes mellitus - RFLP restriction fragment length polymorphism - Asp aspartic acid - Asp-57 aspartic acid at the 57th residue of the DQ chain - non-Asp-57 nonaspartic acid at the 57th residue of the DQ chain - R.R. relative risk of Woolf and Haldane  相似文献   

12.
Human genomic DNA samples from Melanesians, Micronesians, and Caucasoids of known HLA-DR type were examined with cDNA probes for HLA-DR alpha, -DR beta, -DQ alpha, and -DQ beta chain genes. DR beta hybridizations with TaqI-digested DNA did not detect any new DR specificities in the Pacific. However, within the DR5 specificity a common DNA subtype was found in Pacific Islanders that was not seen in Caucasoids. Altogether, four DNA subtypes of DR5 are described. With the DQ alpha and DQ beta probes, significantly more variation could be demonstrated between populations. For example, DR2 was associated with a DQ beta TaqI pattern in the Pacific that was very rare in Caucasoids and additional RFLP analysis with other enzymes showed that this pattern is probably associated with the Dw12 subtype of DR2. DRw8-positive samples showed two different DQ alpha TaqI patterns, and these correlated with DQw1 and DQw3 specificities. DR alpha hybridizations with BglII-digested DNA also revealed different linkage relationships of the HLA-class II region genes between Pacific and Caucasoid specimens. The different population linkage disequilibrium relationships have permitted tentative assignment of TaqI fragments to either the DR beta 1 or DR beta 2 genes and are highly suggestive that the DQw1 specificity is encoded by the DQ alpha chain gene. This study shows the value of population comparisons in contributing to knowledge of the genetic organization of the genome.  相似文献   

13.
In order to identify better markers for HLA-DR4-associated autoimmune disorders, we have studied the complexity of the HLA class II region in DR4-positive cells at the DNA level and compared the DNA polymorphism with that defined by serology, mixed lymphocyte culture (MLC) reactivity, and protein chemistry. At the DNA level, HLA-DR4 can be characterized by a homogeneous pattern of bands hybridizing to HLA class II cDNA probes. Besides, subtypes can be defined within DR4 using HLA-DR , -DQ , and -DQ cDNA probes in Southern blot analysis. Three subtypes are found using the DR cDNA probe. One of these subtypes correlates with the cellularly defined Dw15 specificity, another with the serologically defined LB4 and LB14 specificities. None of the restriction fragment length polymorphism (RFLP) patterns coincide with the MLC-defined DR4 subtypes Dw4, DW10, Dw13, and Dw14 separately. Variation of two fragments hybridizing to the DQ cDNA probe obtained after either Pvu II or Taq I digestion yields three subtypes. Pvu II- and Eco RI-digested DR4 DNA give rise to three DQ detectable subtypes. Correlation between these subtypes, isoelectric point variation of DQ molecules, and the DQ-related allelic system TA10/2B3 are demonstrated. Some of the patterns obtained with DQ and DQ cDNA probes display heterozygosity in the DQ region, as demonstrated by family segregation. No correlation was observed between DQ and the cellularly defined Dw determinants. A new polymorphism has been obtained with the DQ probe, probably due to DX polymorphism. DR RFLP divides the LB 14 supertypic specificity into two new subtypes. A combination of the four different techniques applied to a panel of 16 DR4 homozygous cell lines reveals at least nine different haplotypes in DR4. These newly defined haplotypes may be of help in further studies concerning the relationship of micropolymorphism with several diseases.  相似文献   

14.
The HLA-D region is composed of three subregions termed DR, DQ, and DP. We previously reported the sequence of a DR5 beta I and two DR5 beta III cDNA from the DR5 cell line Swei. We now report on the nucleotide and deduced amino acid sequence of the DQ alpha and DQ beta cDNA from the same DR5 cell line, which also types as DQw3. Comparison with other available DQ sequences indicates that DQ alpha has one region of major variability, whereas DQ beta appears to have four regions of variability. In addition, these comparisons indicate that DQw3 alpha from DR5 is different from DQw3 alpha from DR4, but identical to DQw2 alpha from DR3. In contrast, DQw3 beta from DR5 is very similar to DQw3 beta from DR4. These data indicate that at least for DQw2 and DQw3 it is the DQ beta chain that is responsible for DQ typing. Most sequence differences in DQ alleles can be attributed to point mutations; however, codon additions/deletions in the DQ alpha chain may contribute to variability. In addition, regions of possible gene conversion in the DQ alpha and DQ beta chains is suggested by the presence of a chi-like sequence in each chain. Finally, comparison of available haplotypes suggest recombination events may take place between DQ beta and DQ alpha, between DQ alpha and DR beta I, and between DR beta I and DR beta III.  相似文献   

15.
The single DR beta chain gene of the DRw8 haplotype has been suggested to carry both the DRw8 and the DRw52 epitopes. Cellular typing has shown that the DRw8 haplotype can be split into three subtypes, Dw8.1. Dw8.2, and Dw8.3, presumably due to a polymorphism in the DRw8 chain. Furthermore, Dw8.1 and Dw8.2 cells present influenza virus antigen to different T-cell clones. In the present study, DRw8/Dw8.2 chain cDNA was cloned and characterized. A comparison of this sequence with a partial DRw8/Dw8.1 chain gene suggested that the DRw8 split is due to a single amino acid replacement of ser 57 -asp 57 caused by three nucleotide substitutions in the same codon. In most DR haplotypes, two expressed DR beta chain genes exist. Comparing the nucleotide sequence of the single beta gene in the DRw8 haplotype to those of other DR beta genes revealed that the DRw8 beta gene sequence is most closely related to the DRBI genes of the DR3, 5, and w6 haplotypes. However, the comparisons also showed that it was not possible from sequence similarities to divide the DR beta genes into two or more distinct allelic series.  相似文献   

16.
Histocompatibility leukocyte antigen DQ molecules exhibit polymorphism of both DQ alpha- and beta-chains. Histocompatibility leukocyte antigen-DQw3 is associated with both DR4 and DR5 and can be further subdivided by reactivity with the monoclonal antibody TA10. To determine the molecular nature of the DQ polymorphic alleles associated with the DR4 haplotype, we have sequenced and analyzed DQ alpha and beta cDNA clones obtained from a DR4, Dw4, DQw3 cell line which is TA10-positive. The DQ alpha-chain sequence was identical to previously published sequences from the DR4 haplotype, but the DQ beta sequence differed from published DR4-DQ beta sequences obtained from DQw3-positive TA10-negative cell lines by eight amino acids, six of which were located in the beta 1 domain. Thus, the TA10 serologic determinants reside on the DQ beta-chain. A TA10-specific oligonucleotide probe was constructed based on the DQ beta sequence, and its specificity was confirmed in a panel of TA10-positive and TA10-negative cell lines. An additional band was observed in Southern blotting experiments which may indicate a donor sequence for gene conversion.  相似文献   

17.
The polymorphism of HLA-DR antigens has been studied by Southern blot hybridization under conditions specific for the detection of the DR chain genes. Haplotype-specific patterns were defined with DNA from DR1, 2, 3, 4, 7, w8, w11, w12, and W13 homozygous typing cells, with restriction enzymes Eco RI, Bgl I, and Pvu II. Certain serological specificities, such as DR2, DR3, and DR7, can be encoded by distinct allelic forms of DR chain genes. The procedure of DNA typing was applied to family analysis of individuals expressing only a single DR specificity upon serological typing. Three cases are described here: (1) in family GR, phenotypic DR 7 homozygotes correspond to genomic heterozygotes, and a novel DR7 allele is described: (2) in family RU, the genes corresponding to a serologically undetected (blank) DR allele were identified by restriction fragment length polymorphism (RFLP); this novel DR haplotype has an RFLP pattern similar to those of the DRw52 family, even though this specificity was not expressed on the DR-blank lymphocytes; (3) in family RG, there is no blank allele, but a homozygote RFLP situation at the DR subregion.  相似文献   

18.
The restriction fragment length polymorphisms have been determined for six restriction enzymes (Bam HI, Bg1 II, Eco RI, Hinc II, Hind III, and Pvu II) and a DQ beta probe on 25 cell lines that are homozygous by consanguinuity at the MHC. These patterns reflect both DR haplotypes and DQ types of the cells tested. At least one non-polymorphic band is present in all the cell lines with every restriction enzyme except Hinc II. This band most probably represents DX beta hybridization. The polymorphic bands indicate that more polymorphism exists in the DQ subregion than is predicted serologically. Each DR haplotype is associated with a unique set of restriction fragments except for DR2 and DR6. The patterns are largely consistent within each DR haplotype. In addition, some bands reflect the established DQ specificities DQw1 and DQw2. Individual bands can be identified that are unique to the haplotypes DR1, DR4, DR5, and DR6 and the DQw1- and DQw2-associated haplotypes. Subdivisions of haplotypes can be identified with this probe. In particular, MVL (DR1), Akiba (DR2), QBL (DR3), FPF (DR5), and APD (DR6) have polymorphisms that distinguish them from other members of their DR haplotype.  相似文献   

19.
Analysis of DR beta and DQ beta chain cDNA clones from a DR7 haplotype   总被引:3,自引:0,他引:3  
A cDNA library was constructed from a DR7, DRw53, DQw2 homozygous cell line, cDNA clones corresponding to DR beta and DQ beta chains were isolated, and the nucleotide sequences of the polymorphic first domains of these chains were determined. A novel screening strategy allowed rapid and simple identification of cDNA clones corresponding to both DR beta chains (DR7 beta1 and DR7 beta2): DR7 beta2 clones have a recognition site for the enzyme BssHII, whereas DR7 beta1 clones do not. The DR7 beta 1 sequence differs significantly from all previously described DR beta chains. As predicted by the presence of the BssHII site in DR7 beta 2 clones, the DR7 beta 2 sequence differs from the DR7 beta 1 sequence. The sequence of the DRw53-associated DR7 beta 2 chain is identical to the reported sequence of the DRw53-associated DR4 beta 2 chain. In addition, the sequence of the DQ beta chain from the DR7, DQw2 cell line is identical to the reported sequence of a DQ beta chain from a DR3, DQw2 cell. These findings raise interesting questions about the evolution of the DR3, DR4, and DR7 haplotypes.  相似文献   

20.
Homozygous lymphoblastoid cell lines representing various Dw subtypes of DR2 were examined for polymorphism at the DQ locus by molecular and cellular techniques. The subtypes studied included Dw2, Dw12, and a group heterogenous by cellular typing that we shall refer to as non-Dw2/non-Dw12. Restriction fragment length polymorphism analysis of cell lines representing these subtypes revealed DQ -specific patterns consistent with cellular typing. Two-dimensional gel electrophoresis of DQ molecules from representative cell lines revealed a structural polymorphism of DQ among the three subtypes. The DQ chain migrated to a position that was unique to each subtype and was consistent among various representative cell lines of each subtype. Nucleotide sequence analysis of cDNA clones of DQ from Dw2, Dw12, and non-Dw2/non-Dw12 lines confirmed that the variability resided at the genetic level. Variability was found in the form of numerous scattered nucleotide substitutions throughout the first domain of these alleles. The DQ gene of the non-Dw2/non-Dw12 cell line AZH was further found to be almost identical with the DQ gene of a DR1 line (Bell et al. 1985b), implicating a common evolutionary origin of these alleles. The only difference between these two sequences was due to an apparent gene conversion event at amino acid 57. T-cell cloning experiments resulted in the derivation of Epstein-Barr virus-specific, DQw1-restricted clones that proliferated against only those cell lines that exhibited the DQ gene common to AZH and the DR1 cell line. Thus, the polymorphism among DQ alleles within DR2 results in subtype-specific restriction.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号