首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
MD-2 is an essential component of endotoxin (LPS) sensing, binding LPS independently and when bound to the ectodomain of the membrane receptor TLR4. Natural variation of proteins involved in the LPS-recognition cascade such as the LPS-binding protein, CD14, and TLR4, as well as proteins involved in intracellular signaling downstream of LPS binding, affect the cellular response to endotoxin and host defense against bacterial infections. We now describe the functional properties of two nonsynonymous coding polymorphisms of MD-2, G56R and P157S, documented in HapMap. As predicted from the MD-2 structure, the P157S mutation had little or no effect on MD-2 function. In contrast, the G56R mutation, located close to the LPS-binding pocket, significantly decreased cellular responsiveness to LPS. Soluble G56R MD-2 showed markedly reduced LPS binding that was to a large degree rescued by TLR4 coexpression or presence of TLR4 ectodomain. Thus, cells that express TLR4 without MD-2 and whose response to LPS depends on ectopically produced MD-2 were most affected by expression of the G56R variant of MD-2. Coexpression of wild-type and G56R MD-2 yielded an intermediate phenotype with responses to LPS diminished to a greater extent than that resulting from expression of the D299G TLR4 polymorphic variant.  相似文献   

2.
The Toll-like receptor (TLR) 4/MD-2 heterodimer senses lipopolysaccharide (LPS). RP105 (radioprotective 105 kDa), a TLR-related molecule, is similar to TLR4 in that the extracellular leucine-rich repeats associate with MD-1, the MD-2-like molecule. MD-2 has a unique hydrophobic cavity that directly binds to lipid A, the active center of LPS. LPS-bound MD-2 opens the secondary interface with TLR4, leading to dimerization of TLR4/MD-2. MD-1 also has a hydrophobic cavity that accommodates lipid IVa, a precursor of lipid A, suggesting a role for the RP105/MD-1 heterodimer in sensing LPS or related microbial products. Little is known, however, about the structure of the RP105/MD-1 heterodimer or its oligomer. Here, we have determined the crystal structures of mouse and human RP105/MD-1 complexes at 1.9 and 2.8 Å resolutions, respectively. Both mouse and human RP105/MD-1 exhibit dimerization of the 1:1 RP105/MD-1 complex, demonstrating a novel organization. The “m”-shaped 2:2 RP105/MD-1 complex exhibits an inverse arrangement, with N-termini interacting in the middle. Thus, the dimerization interface of RP105/MD-1 is located on the opposite side of the complex, compared to the 2:2 TLR4/MD-2 complex. These results demonstrate that the 2:2 RP105/MD-1 complex is distinct from previously reported TLR dimers, including TLR4/MD-2, TLR1/TLR2, TLR2/TLR6, and TLR3, all of which facilitate homotypic or heterotypic interaction of the C-terminal cytoplasmic signaling domain.  相似文献   

3.
MD-2, a eukaryotic accessory protein, is an essential component for the molecular pattern recognition of bacterial endotoxins. MD-2 interacts with lipid A of endotoxins [lipopolysaccharide (LPS) or lipooligosaccharide (LOS)] to activate human toll-like receptor (TLR) 4. The structure of lipid A influences the subsequent activation of human TLR4 and the immune response, but the basis for the discrimination of lipid A structures is unclear. A recombinant human MD-2 (rMD-2) protein was produced in the Pichia pastoris yeast expression system. Human embryonic kidney (HEK293) cells were transfected with human TLR4 and were stimulated with highly purified LOS (0.56 pmol) from Neisseria meningitidis or LPS from other structurally defined bacterial endotoxins in the presence or absence of human rMD-2. Human rMD-2 restored, in a dose-dependent manner, interleukin (IL-8) responsiveness to LOS or LPS in TLR4-transfected HEK293 cells. The interaction of endotoxin with human rMD-2 was then assessed by enzyme-linked immunosorbent assays. Wild-type meningococcal LOS (Wt m LOS) bound human rMD-2, and binding was inhibited by an anti-MD-2 antibody to MD-2 dose-dependently (P < 0.005). Wt m LOS or meningococcal KDO(2)-lipid A had the highest binding affinity for human rMD-2; unglycosylated meningococcal lipid A produced by meningococci with defects in the 3-deoxy-d-manno-2-octulosonic acid (KDO) biosynthesis pathway did not appear to bind human rMD-2 (P < 0.005). The affinity of meningococcal LOS with a penta-acylated lipid A for human rMD-2 was significantly less than that for hexa-acylated LOS (P < 0.05). The hierarchy in the binding affinity of different lipid A structures for human rMD-2 was directly correlated with differences in TLR4 pathway activation and cytokine production by human macrophages.  相似文献   

4.
Regulatory roles for MD-2 and TLR4 in ligand-induced receptor clustering   总被引:2,自引:0,他引:2  
LPS, a principal membrane component in Gram-negative bacteria, is recognized by a receptor complex consisting of TLR4 and MD-2. MD-2 is an extracellular molecule that is associated with the extracellular domain of TLR4 and has a critical role in LPS recognition. MD-2 directly interacts with LPS, and the region from Phe(119) to Lys(132) (Arg(132) in mice) has been shown to be important for interaction between LPS and TLR4/MD-2. With mouse MD-2 mutants, we show in this study that Gly(59) was found to be a novel critical amino acid for LPS binding outside the region 119-132. LPS signaling is thought to be triggered by ligand-induced TLR4 clustering, which is also regulated by MD-2. Little is known, however, about a region or an amino acid in the MD-2 molecule that regulates ligand-induced receptor clustering. MD-2 mutants substituting alanine for Phe(126) or Gly(129) impaired LPS-induced TLR4 clustering, but not LPS binding to TLR4/MD-2, demonstrating that ligand-induced receptor clustering is differentially regulated by MD-2 from ligand binding. We further show that dissociation of ligand-induced receptor clustering and of ligand-receptor interaction occurs in a manner dependent on TLR4 signaling and requires endosomal acidification. These results support a principal role for MD-2 in LPS recognition.  相似文献   

5.
Toll-like receptor 4 and MD-2 form a receptor for lipopolysaccharide (LPS), a major constituent of Gram-negative bacteria. MD-2 is a 20-25-kDa extracellular glycoprotein that binds to Tolllike receptor 4 (TLR4) and LPS and is a critical part of the LPS receptor. Here we have shown that the level of MD-2 expression regulates TLR4 activation by LPS. Using site-directed mutagenesis, we have found that glycosylation has no effect on MD-2 function as a membrane receptor for LPS. We used alanine-scanning mutagenesis to identify regions of human MD-2 that are important for TLR4 and LPS binding. We found that mutation in the N-terminal 46 amino acids of MD-2 did not substantially diminish LPS activation of Chinese hamster ovary (CHO) cells co-transfected with TLR4 and mutant MD-2. The residues 46-50 were important for LPS activation but not LPS binding. The residues 79-83, 121-124, and 125-129 are identified as important in LPS activation but not surface expression of membrane MD-2. The function of soluble MD-2 is somewhat more sensitive to mutation than membrane MD-2. Our results suggest that the 46-50 and 127-131 regions of soluble MD-2 bind to TLR4. The region 79-120 is not involved in LPS binding but affects monomerization of soluble MD-2 as well as TLR4 binding. We define the LPS binding region of monomeric soluble MD-2 as a cluster of basic residues 125-131. Studies on both membrane and soluble MD-2 suggest that domains of MD-2 for TLR4 and LPS binding are separate as well as overlapping. By mapping these regions on a three-dimensional model, we show the likely binding regions of MD-2 to TLR4 and LPS.  相似文献   

6.
Cellular responses to LPS are mediated by a cell surface receptor complex consisting of Toll-like receptor 4 (TLR4), MD-2, and CD14. MD-2 is a secreted protein that interacts with the extracellular portion of TLR4. Site-directed mutagenesis was used to identify the regions of human MD-2 involved in its ability to bind TLR4 and confer LPS responsiveness. A separate region of MD-2 was found to mediate each function. MD-2 binding to TLR4 was dependent on Cys(95) and Cys(105), which might form an intramolecular disulfide bond. Hydrophilic and charged residues surrounding this area, such as R90, K91, D100, and Y102, also contributed to the formation of the TLR4-MD-2 complex. A different region of MD-2 was found to be responsible for conferring LPS responsiveness. This region is not involved in TLR4 binding and is rich in basic and aromatic residues, several of which cooperate for LPS responsiveness and might represent a LPS binding site. Disruption of the endogenous MD-2-TLR4 complex by expression of mutant MD-2 inhibited LPS responses in primary human endothelial cells. Thus, our data indicate that MD-2 interaction with TLR4 is necessary but not sufficient for cellular response to LPS. Either of the two functional domains of MD-2 can be disrupted to impair LPS responses and therefore represent attractive targets for therapeutic interventions.  相似文献   

7.
The expression of MD-2, which associates with Toll-like receptor (TLR) 4 on the cell surface, confers LPS and LPS-mimetic Taxol responsiveness on TLR4. Alanine-scanning mutagenesis was performed to identify the mouse MD-2 residues important for conferring LPS and Taxol responsiveness on mouse TLR4, and for forming the cell surface TLR4-MD-2 complex recognized by anti-TLR4-MD-2 Ab MTS510. Single alanine mutations were introduced into mouse MD-2 (residues 17-160), and the mutants were expressed in a human cell line expressing mouse TLR4. Mouse MD-2 mutants, in which a single alanine mutation was introduced at Cys37, Leu71, Leu78, Cys95, Tyr102, Cys105, Glu111, Val113, Ile117, Pro118, Phe119, Glu136, Ile138, Leu146, Cys148, or Thr152, showed dramatically reduced ability to form the cell surface mouse TLR4-mouse MD-2 complex recognized by MTS510, and the mutants also showed reduced ability to confer LPS and Taxol responsiveness. In contrast, mouse MD-2 mutants, in which a single alanine mutation was introduced at Tyr34, Tyr36, Gly59, Val82, Ile85, Phe126, Pro127, Gly129, Ile153, Ile154, and His155 showed normal ability to form the cell surface mouse TLR4-mouse MD-2 complex recognized by MTS510, but their ability to confer LPS and Taxol responsiveness was apparently reduced. These results suggest that the ability of MD-2 to form the cell surface mouse TLR4-mouse MD-2 complex recognized by MTS510 is essential for conferring LPS and Taxol responsiveness on TLR4, but not sufficient. In addition, the required residues at codon numbers 34, 85, 101, 122, and 153 for the ability of mouse MD-2 to confer LPS responsiveness are partly different from those for Taxol responsiveness.  相似文献   

8.
MD-2 is an association molecule of Toll-like receptor 4 and is indispensable for the recognition of lipopolysaccharide. Here we report the identification of mRNA for an alternatively spliced form of MD-2, named MD-2B, which lacks the first 54 bases of exon 3. When overexpressed with MD-2, MD-2B competitively suppressed NF-kappaB activity induced by LPS. Regardless of the truncation, however, MD-2B still bound to TLR4 as efficiently as MD-2. Flow cytometric analyses revealed that MD-2B inhibited TLR4 from being expressed on the cell surface. Our data indicate that MD-2B may compete with MD-2 for binding to TLR4 and decrease the number of TLR4/MD-2 complexes on the cell surface, resulting in the inhibition of LPS signaling.  相似文献   

9.
Toll-like receptor 4 (TLR4) is a signaling receptor for lipopolysaccharide (LPS) but requires MD-2, a molecule associated with the extracellular TLR4 domain, to respond efficiently to LPS. The purpose of this study was to determine the critical stretch of primary sequence in the TLR4 region involved in MD-2 recognition. TLR4 and TLR4/2a chimera consisting of the TLR4 region Met(1)-Phe(54) and the TLR2 region Ala(53)-Ser(784) were coprecipitated with MD-2, but the deletion mutant TLR4(Delta E24-P34) in which the TLR4 region Glu(24)-Pro(34) was deleted failed to coprecipitate. In agreement with the MD-2 binding, LPS-conjugated beads sedimented TLR4 and TLR4/2a chimera but not TLR2 with MD-2. TLR4(Delta E24-P34) barely coprecipitated with LPS-beads. The cells that had been cotransfected with TLR4(Delta E24-P34) and MD-2 did not induce NF-kappa B activation in response to LPS. These results clearly demonstrate that the amino-terminal TLR4 region of Glu(24)-Pro(34) is critical for MD-2 binding and LPS signaling.  相似文献   

10.
Three cell-surface proteins have been recognized as components of the mammalian signaling receptor for bacterial lipopolysaccharide (LPS): CD14, Toll-like receptor-4 (TLR4), and MD-2. Biochemical and visual studies shown here demonstrate that the role of CD14 in signal transduction is to enhance LPS binding to MD-2, although its expression is not essential for cellular activation. These studies clarify how MD-2 functions: we found that MD-2 enables TLR4 binding to LPS and allows the formation of stable receptor complexes. MD-2 must be bound to TLR4 on the cell surface before binding can occur. Consequently, TLR4 clusters into receptosomes (many of which are massive) that recruit intracellular toll/IL-1/resistance domain-containing adapter proteins within minutes, thus initiating signal transduction. TLR4 activation correlates with the ability of MD-2 to bind LPS, as MD-2 mutants that still bind TLR4, but are impaired in the ability to bind LPS, conferred a greatly blunted LPS response. These findings help clarify the earliest events of TLR4 triggering by LPS and identify MD-2 as an attractive target for pharmacological intervention in endotoxin-mediated diseases.  相似文献   

11.
The receptor complex resulting from association of MD-2 and the ectodomain of Toll-like receptor 4 (TLR4) mediates lipopolysaccharide (LPS) signal transduction across the cell membrane. We prepared a tertiary structure model of MD-2, based on the known structures of homologous lipid-binding proteins. Analysis of circular dichroic spectra of purified bacterially expressed MD-2 indicates high content of beta-type secondary structure, in agreement with the structural model. Bacterially expressed MD-2 was able to confer LPS responsiveness to cells expressing TLR4 despite lacking glycosylation. We identified several clusters of basic residues on the surface of MD-2. Mutation of each of two clusters encompassing the residues Lys(89)-Arg(90)-Lys(91) and Lys(125)-Lys(125) significantly decreased the signal transduction of the respective MD-2 mutants either upon co-expression with TLR4 or upon addition as soluble protein into the supernatant of cells overexpressing TLR4. These basic clusters lie at the edge of the beta-sheet sandwich, which in cholesterol-binding protein connected to Niemann-Pick disease C2 (NPC2), dust mite allergen Der p2, and ganglioside GM2-activator protein form a hydrophobic pocket. In contrast, mutation of another basic cluster composed of Arg(69)-Lys(72), which according to the model lies further apart from the hydrophobic pocket only weakly decreased MD-2 activity. Furthermore, addition of the peptide, comprising the surface loop between Cys(95) and Cys(105), predicted by model, particularly in oxidized form, decreased LPS-induced production of tumor necrosis factor alpha and interleukin-8 upon application to monocytic cells and fibroblasts, respectively, supporting its involvement in LPS signaling. Our structural model of MD-2 is corroborated by biochemical analysis and contributes to the unraveling of molecular interactions in LPS recognition.  相似文献   

12.
Potent mammalian cell activation by Gram-negative bacterial endotoxin requires sequential protein-endotoxin and protein-protein interactions involving lipopolysaccharide-binding protein, CD14, MD-2, and Toll-like receptor 4 (TLR4). TLR4 activation requires simultaneous binding of MD-2 to endotoxin (E) and the ectodomain of TLR4. We now describe mutants of recombinant human MD-2 that bind TLR4 and react with E.CD14 but do not support cellular responsiveness to endotoxin. The mutants F121A/K122A MD-2 and Y131A/K132A MD-2 react with E.CD14 only when co-expressed with TLR4. Single mutants K122A and K132A each react with E.CD14 +/- TLR4 and promote TLR4-dependent cell activation by endotoxin suggesting that Phe(121) and Tyr(131) are needed for TLR4-independent transfer of endotoxin from CD14 to MD-2 and also needed for TLR4 activation by bound E.MD-2. The mutant F126A MD-2 reacts as well as wild-type MD-2 with E.CD14 +/- TLR4. E.MD-2(F126A) binds TLR4 with high affinity (K(d) approximately 200 pm) but does not activate TLR4 and instead acts as a potent TLR4 antagonist, inhibiting activation of HEK/TLR4 cells by wild-type E.MD-2. These findings reveal roles of Phe(121) and Tyr(131) in TLR4-independent interactions of human MD-2 with E.CD14 and, together with Phe(126), in activation of TLR4 by bound E.MD-2. These findings strongly suggest that the structural properties of E.MD-2, not E alone, determine agonist or antagonist effects on TLR4.  相似文献   

13.
LPS signals through a membrane bound-complex of the lipid binding protein MD-2 and the receptor TLR4. In this study we identify discrete regions in both MD-2 and TLR4 that are required for signaling by lipid IVa, an LPS derivative that is an agonist in horse but an antagonist in humans. We show that changes in the electrostatic surface potential of both MD-2 and TLR4 are required in order that lipid IVa can induce signaling. In MD-2, replacing horse residues 57-66 and 82-89 with the equivalent human residues confers a level of constitutive activity on horse MD-2, suggesting that conformational switching in this protein is likely to be important in ligand-induced activation of MD-2/TLR4. We identify leucine-rich repeat 14 in the C terminus of TLR4 as essential for lipid IVa activation of MD-2/TLR4. Remarkably, we identify a single residue in the glycan-free flank of the horse TLR4 solenoid that confers the ability to signal in response to lipid IVa. These results suggest a mechanism of signaling that involves crosslinking mediated by both MD-2-receptor and receptor-receptor contacts in a model that shows striking similarities to the recently published structure (Cell 130: 1071-1082) of the ligand-bound TLR1/2 ectodomain heterodimer.  相似文献   

14.
脂多糖(LPS)的识别和信号转导是宿主发生防御反应的关键,Toll样受体4(TLR4)与髓样分化蛋白-2(MD-2)形成复合物在LPS的识别及其信号转导中发挥了重要作用.研究TLR4与MD-2结合的功能结构域,对于深入了解LPS信号转导机制及其内毒素休克的防治具有重要意义.运用基于强度的三通道荧光共振能量转移技术(FRET)及基因突变和转染技术,研究了活细胞TLR4与MD-2作用的结构域.结果表明:N端Glu24~Met41缺失使TLR4与MD-2结合能力明显下降;LPS刺激后TLR4聚合迅速增加,而缺失Glu24~Met41的TLR4不能聚合.上述结果提示,TLR4的Glu24~Met41不仅是结合MD-2的区域,并且还参与了LPS刺激后TLR4的聚合作用.  相似文献   

15.
髓样分化蛋白-2在识别和转导内毒素信号中的作用   总被引:1,自引:0,他引:1  
脂多糖(LPS)通过TLR4介导细胞炎症反应.研究表明,髓样分化蛋白-2(MD-2)通过与TLR4形成复合物参与LPS诱导的细胞信号过程.TLR4/MD-2复合物中的MD-2结合LPS后,引起TLR4低聚化,进而激发下游信号.MD-2合成后,大部分在内质网/高尔基体和TLR4结合,然后以TLR4/MD-2复合物的形式在细胞表面表达.这既能调节TLR4的胞内分布,又能辅助TLR4识别LPS.还有一部分MD-2释放到血浆中,形成可溶性的MD-2(sMD-2).sMD-2在CD14参与下,能结合血浆中的LPS,形成LPS-sMD-2复合物从而辅助只表达TLR4而不表达MD-2的细胞识别LPS,但过度表达的sMD-2又能抑制LPS信号.MD-2在TLR4介导的内毒素识别和信号转导过程中发挥了重要的调控作用.  相似文献   

16.
MD-2 binds to bacterial lipopolysaccharide   总被引:16,自引:0,他引:16  
The exact roles and abilities of the individual components of the lipopolysaccharide (LPS) receptor complex of proteins remain unclear. MD-2 is a molecule found in association with toll-like receptor 4. We produced recombinant human MD-2 to explore its LPS binding ability and role in the LPS receptor complex. MD-2 binds to highly purified rough LPS derived from Salmonella minnesota and Escherichia coli in five different assays; one assay yielded an apparent KD of 65 nm. MD-2 binding to LPS did not require LPS-binding proteins LBP and CD14; in fact LBP competed with MD-2 for LPS. MD-2 enhanced the biological activity of LPS in toll-like receptor 4-transfected Chinese hamster ovary cells but inhibited LPS activation of U373 astrocytoma cells and of monocytes in human whole blood. These data indicate that MD-2 is a genuine LPS-binding protein and strongly suggest that MD-2 could play a role in regulation of cellular activation by LPS depending on its local availability.  相似文献   

17.
Toll-like receptor 4 (TLR4) is a signaling receptor for lipopolysaccharide (LPS), but its interaction with MD-2 is required for efficient responses to LPS. Previous studies with deletion mutants indicate a critical role of the amino-terminal TLR4 region in interaction with MD-2. However, it is uncertain which region in the TLR4 molecule directly binds to MD-2. The purpose of this study was to determine a critical stretch of primary sequence in the TLR4 region that directly binds MD-2 and is critical for LPS signaling. The synthetic TLR4 peptide corresponding to the TLR4 region Glu(24)-Lys(47) directly binds to recombinant soluble MD-2 (sMD-2). The TLR4 peptide inhibited the binding of a recombinant soluble form of the extracellular TLR4 domain (sTLR4) to sMD-2 and significantly attenuated LPS-induced NF-kappaB activation and IL-8 secretion in wild type TLR4-transfected cells. Reduction and S-carboxymethylation of sTLR4 abrogated its association with sMD-2. The TLR4 mutants, TLR4(C29A), TLR4(C40A), and TLR4(C29A,C40A), were neither co-precipitated with MD-2 nor expressed on the cell surface and failed to transmit LPS signaling. These results demonstrate that the TLR4 region Glu(24)-Lys(47) is a site for MD-2 binding and that Cys(29) and Cys(40) within this region are critical residues for MD-2 binding and LPS signaling.  相似文献   

18.
Lipopolysaccharide (LPS) from the outer cell wall of Gram-negative bacteria is a potent stimulator of the mammalian innate immune system. The Toll-like receptor 4 (TLR4) pathway triggers the inflammatory responses induced by LPS in a process that requires the interaction of LPS-bound myeloid differentiation-2 (MD-2) with TLR4. Here we propose two possible mechanisms for LPS recognition and signalling that take into account both the structural information available for TLR4 and MD-2, and the determinants of endotoxicity, namely, the acylation and phosphorylation patterns of LPS. In our first model, LPS induces the association of two TLR4-MD-2 heterodimers by binding to two different molecules of MD-2 through the acyl chains of lipid A. In our second model, the binding of LPS to a single TLR4-MD-2 complex facilitates the recruitment of a second TLR4-MD-2 heterodimer. These models contrast with the activation of Drosophila Toll, where the receptor is crosslinked by a dimeric protein ligand.  相似文献   

19.
Gram-negative bacterial endotoxin (i.e. lipopolysaccharide (LPS)) is one of the most potent stimulants of the innate immune system, recognized by the TLR4·MD-2 complex. Direct binding to MD-2 of LPS and LPS analogues that act as TLR4 agonists or antagonists is well established, but the role of MD-2 and TLR4 in receptor activation is much less clear. We have identified residues within the hairpin of MD-2 between strands five and six that, although not contacting acyl chains of tetraacylated lipid IVa (a TLR4 antagonist), influence activation of TLR4 by hexaacylated lipid A. We show that hydrophobic residues at positions 82, 85, and 87 of MD-2 are essential both for transfer of endotoxin from CD14 to monomeric MD-2 and for TLR4 activation. We also identified a pair of conserved hydrophobic residues (Phe-440 and Phe-463) in leucine-rich repeats 16 and 17 of the TLR4 ectodomain, which are essential for activation of TLR4 by LPS. F440A or F463A mutants of TLR4 were inactive, whereas the F440W mutant retained full activity. Charge reversal of neighboring cationic groups in the TLR4 ectodomain (Lys-388 and Lys-435), in contrast, did not affect cell activation. Our mutagenesis studies are consistent with a molecular model in which Val-82, Met-85, and Leu-87 in MD-2 and distal portions of a secondary acyl chain of hexaacylated lipid A that do not fit into the hydrophobic binding pocket of MD-2 form a hydrophobic surface that interacts with Phe-440 and Phe-463 on a neighboring TLR4·MD-2·LPS complex, driving TLR4 activation.Bacterial lipopolysaccharide (LPS)3 is recognized by the innate immune system of vertebrates via an elaborate mechanism involving the membrane receptor TLR4 (1, 2). The extracellular (or cell surface) proteins LPS-binding protein and CD14 promote extraction and transfer of individual molecules of LPS from the Gram-negative bacterial outer membrane to MD-2, either secreted monomeric soluble (s)MD-2 or MD-2 bound with high affinity to the ectodomain of TLR4 (37). In contrast to other Toll-like receptors, TLR4 requires an additional molecule, MD-2, for ligand recognition (8). In contrast to MD-2, there has been no evidence of direct binding of LPS to TLR4 (9, 10). Although LPS, and particularly the lipid A portion of LPS, is generally conserved among Gram-negative bacteria, there are many variables in LPS structure that affect TLR4 activation. Most important is the acylation pattern of the lipid A moiety, which represents the minimal segment of LPS that can trigger activation of TLR4 (11). Comparison of crystal structures of MD-2 with and without bound tetraacylated lipid IVa indicates no significant alteration of the protein fold in the absence or presence of bound ligand (12). It has been proposed that both LPS and MD-2 are key to the different effects of tetra- versus hexaacylated LPS on TLR4 (8, 13, 14). Lipid IVa complexed to murine MD-2 has weak agonist effects on murine TLR4 but acts as a receptor antagonist in the same complex containing human MD-2. Hexaacylated endotoxins complexed to human or murine MD-2 act as potent TLR4 agonists. The crystal structure of the TLR4·MD-2·eritoran complex revealed that MD-2 binds to the N-terminal region of TLR4 (15). It seems likely that for TLR4 activation, there needs to be an additional interaction between two ternary TLR4·MD-2·LPS complexes, which is agonist-dependent (1517). Because tetraacylated and hexaacylated endotoxins that act, respectively, as TLR4 antagonists and agonists differ only in their acylation pattern, we speculated that hydrophobic protein-lipid A interactions are essential in the agonist properties of hexaacylated lipid A. To pursue this hypothesis, we used molecular modeling to select and test the involvement of solvent-exposed hydrophobic residues of MD-2 and TLR4, which we reasoned could be needed for TLR4 activation. We show by mutagenesis studies that residues on the solvent-exposed hairpin of MD-2 support transfer of endotoxin from CD14 to MD-2 and TLR4 activation only when these sites contain hydrophobic residues. In the ectodomain of TLR4, we have identified two neighboring phenylalanine residues located on the convex face of consecutive leucine rich repeats that are required for LPS-triggered TLR4 activation. From those results and molecular docking, we propose that amino acid side chains of both MD-2 and TLR4 ectodomain form an acyl chain binding site, which envelops part of an acyl chain of lipid A that cannot fit into the binding pocket of MD-2 in a TLR4·MD-2 complex and represents a key to LPS-induced TLR4 activation.  相似文献   

20.
MD-1 is a glycoprotein that associates with a B-cell-specific RP105 protein and has a low sequence identity of 16% to MD-2 that associates with Toll-like receptor 4 and recognizes endotoxic lipopolysaccharide. MD-1 and RP105 are supposed to mediate lipopolysaccharide recognition; however, little is known about their structures and functions. Here, the crystal structure of mouse MD-1 is determined at 1.65 Å resolution. MD-1 has a hydrophobic cavity sandwiched by two β-sheets as is MD-2. The cavity is 25 Å long, 5 Å wide, and 10 Å deep: longer, narrower, and shallower than that of MD-2. No charged residues are located on the cavity entrance. MD-1 is primarily monomeric in solution but shows a dimeric assembly in the crystal lattices, with their cavity entrances facing each other. In the cavity, electron densities attributable to phosphatidylcholine are located. Together with the binding assay with tetra-acylated lipid IVa, MD-1 is shown to be a lipid-binding coreceptor.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号