首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 10 毫秒
1.
The reduction or absence of TCR zeta-chain (zeta) expression in systemic lupus erythematosus (SLE) patients is thought to be related to the pathogenesis of SLE. Recently, we reported the predominant expression of zeta mRNA containing an alternatively spliced 3'-untranslated region (3'UTR; zetamRNA/as-3'UTR) and a reduction in the expression of zeta mRNA containing the wild-type 3'UTR (zetamRNA/w-3'UTR) in T cells from SLE patients. Here we show that AS3'UTR mutants (MA5.8 cells deficient in zeta protein that have been transfected with zetamRNA/as-3'UTR) exhibit a reduction in the expression of TCR/CD3 complex and zeta protein on their cell surface as well as a reduction in the production of IL-2 after stimulation with anti-CD3 Ab compared with that in wild-type 3'UTR mutants (MA5.8 cells transfected with zetamRNA/w-3'UTR). Furthermore, the real-time PCR analyses demonstrated that the half-life of zetamRNA/as-3'UTR in AS3'UTR mutants (3 h) was much shorter than that of zetamRNA/w-3'UTR in wild-type 3'UTR mutants (15 h). Thus, the lower stability of zetamRNA/as-3'UTR, which is predominant in SLE T cells, may be responsible for the reduced expression of the TCR/CD3 complex, including zeta protein, in SLE T cells.  相似文献   

2.
We show in this study that human T cells purified from peripheral blood, T cell clones, and Jurkat T cells release microvesicles in the culture medium. These microvesicles have a diameter of 50-100 nm, are delimited by a lipidic bilayer membrane, and bear TCR beta, CD3epsilon, and zeta. This microvesicle production is regulated because it is highly increased upon TCR activation, whereas another mitogenic signal, such as PMA and ionomycin, does not induce any release. T cell-derived microvesicles also contain the tetraspan protein CD63, suggesting that they originate from endocytic compartments. They contain adhesion molecules such as CD2 and LFA-1, MHC class I and class II, and the chemokine receptor CXCR4. These transmembrane proteins are selectively sorted in microvesicles because CD28 and CD45, which are highly expressed at the plasma membrane, are not found. The presence of phosphorylated zeta in these microvesicles suggests that the CD3/TCR found in the microvesicles come from the pool of complexes that have been activated. Proteins of the transduction machinery, tyrosine kinases of the Src family, and c-Cbl are also observed in the T cell-derived microvesicles. Our data demonstrate that T lymphocytes produce, upon TCR triggering, vesicles whose morphology and phenotype are reminiscent of vesicles of endocytic origin produced by many cell types and called exosomes. Although the exact content of T cell-derived exosomes remains to be determined, we suggest that the presence of TCR/CD3 at their surface makes them powerful vehicles to specifically deliver signals to cells bearing the right combination of peptide/MHC complexes.  相似文献   

3.
T cells isolated from patients with systemic lupus erythematosus (SLE) express low levels of CD3zeta-chain, a critical molecule involved in TCR-mediated signaling, but the involved mechanisms are not fully understood. In this study we examined caspase-3 as a candidate for cleaving CD3zeta in SLE T cells. We demonstrate that SLE T cells display increased expression and activity of caspase-3. Treatment of SLE T cells with the caspase-3 inhibitor Z-Asp-Glu-Val-Asp-FMK reduced proteolysis of CD3zeta and enhanced its expression. In addition, Z-Asp-Glu-Val-Asp-FMK treatment increased the association of CD3zeta with lipid rafts and simultaneously reversed the abnormal lipid raft preclustering, heightened TCR-induced calcium responses, and reduced the expression of FcRgamma-chain exclusively in SLE T cells. We conclude that caspase-3 inhibitors can normalize SLE T cell function by limiting the excessive digestion of CD3zeta-chain and suggest that such molecules can be considered in the treatment of this disease.  相似文献   

4.
T cells from patients with systemic lupus erythematosus are characterized by decreased expression of CD3zeta-chain and increased expression of FcRgamma-chain, which becomes part of the CD3 complex and contributes to aberrant signaling. Elf-1 enhances the expression of CD3zeta, whereas it suppresses the expression of FcRgamma gene and lupus T cells have decreased amounts of DNA-binding 98 kDa form of Elf-1. We show that the aberrantly increased PP2A in lupus T cells dephosphorylates Elf-1 at Thr-231. Dephosphorylation results in limited expression and binding of the 98 kDa Elf-1 form to the CD3zeta and FcRgamma promoters. Suppression of the expression of the PP2A leads to increased expression of CD3zeta and decreased expression of FcRgamma genes and correction of the early signaling response. Therefore, PP2A serves as a central determinant of abnormal T cell function in human lupus and may represent an appropriate treatment target.  相似文献   

5.
6.
7.
Autoimmune diseases are often treated by glucocorticoids and immunosuppressive drugs that could increase the risk for infection, which in turn deteriorate disease and cause mortality. Low-dose IL-2 (Ld-IL2) therapy emerges as a new treatment for a wide range of autoimmune diseases. To examine its influence on infection, we retrospectively studied 665 patients with systemic lupus erythematosus (SLE) including about one third receiving Ld-IL2 therapy, where Ld-IL2 therapy was found beneficial in reducing the incidence of infections. In line with this clinical observation, IL-2 treatment accelerated viral clearance in mice infected with influenza A virus or lymphocytic choriomeningitis virus (LCMV). Noticeably, despite enhancing anti-viral immunity in LCMV infection, IL-2 treatment exacerbated CD8+ T cell-mediated immunopathology. In summary, Ld-IL2 therapy reduced the risk of infections in SLE patients and enhanced the control of viral infection, but caution should be taken to avoid potential CD8+ T cell-mediated immunopathology.  相似文献   

8.
9.
10.
11.
Trichostatin A (TSA) is a potent reversible inhibitor of histone deacetylase, and it has been reported to have variable effects on the expression of a number of genes. In this report, we show that TSA suppresses the expression of the T cell receptor zeta chain gene, whereas, it upregulates the expression if its homologous gene Fc(epsilon) receptor I gamma chain. These effects are associated with decreased intracytoplasmic-free calcium responses and altered tyrosine phosphorylation pattern of cytosolic proteins. Along with these effects, we report that TSA suppresses the expression of the interleukin-2 gene. The effects of TSA on human T cells are predominantly immunosuppressive and reminiscent of the signaling aberrations that have been described in patients with systemic lupus erythematosus.  相似文献   

12.
The negative signaling receptor cytolytic T lymphocyte-associated Ag-4 (CTLA-4) resides primarily in intracellular compartments such as the Golgi apparatus of T cells. However, little is known regarding the molecular mechanisms that influence this accumulation. In this study, we demonstrate binding of the clathrin adaptor complex AP-1 with the GVYVKM motif of the cytoplasmic domain of CTLA-4. Binding occurred primarily in the Golgi compartment of T cells, unlike with AP-2 binding that occurs mostly with cell surface CTLA-4. Although evidence was not found to implicate AP-1 binding in the retention of CTLA-4 in the Golgi, AP-1 appears to play a role in shuttling of excess receptor from the Golgi to the lysosomal compartments for degradation. In support of this, increased CTLA-4 synthesis resulted in an increase in CTLA-4/AP-1 binding and a concomitant increase in the appearance of CTLA-4 in the lysosomal compartment. At the same time, the level of intracellular receptor was maintained at a constant level, suggesting that CTLA-4/AP-1 binding represents one mechanism to ensure steady state levels of intracellular CTLA-4 in T cells. Finally, we demonstrate that the TCR zeta/CD3 complex (but not CD28) also binds to AP-1 and AP-2 complexes, thus providing a possible link between these two receptors in the regulation of T cell function.  相似文献   

13.
To elucidate the Th cell activation mechanism through the TCR/CD3 complex, we examined the reactivity of T cell clones to soluble monovalent and divalent anti-CD3 without accessory cells or costimulatory factor. All T cell clones tested produced IL-2 in response to monovalent anti-CD3, although reactivity to divalent anti-CD3 was variable depending upon clones. IL-2 production of T cell clones induced by monovalent anti-CD3 was suppressed by cross-linking of the antibody with anti-hamster IgG. IL-2 mRNA expression and the increment of intracellular Ca2+ concentration were consistent with the IL-2 production. When T cell clones were stimulated with monovalent anti-CD3, they increased in size, although divalent anti-CD3 stimulation did not affect their size irrespective of their IL-2 production. These results indicate that monovalent anti-CD3 is more efficient than divalent anti-CD3 in induction of IL-2 production and that the cross-linkage of the TCR/CD3 complex is not necessarily required for the T cell clone activation.  相似文献   

14.
Despite the well known interrelationship between the CD2- and CD3-mediated signal transduction pathways, it is not well established whether the CD2 surface expression can be regulated by triggering of TCR/CD3 complex. In this study we show that the stimulation of human PBMC with the Cris-7 (CD3) mAb, both in soluble and particulate form, results in hyperexpression of the CD2 surface Ag, as assessed by immunofluorescence and semi-quantitative immunoprecipitation assays. Similar effects on CD2 surface expression were obtained when different CD3 mAb (OKT3, RW2-8C8 and Leu-4) were tested. The CD3-mediated CD2 up-regulation was suppressed by cycloheximide and actinomycin D, indicating that it requires de novo protein and RNA synthesis. In agreement with this, increased CD2 RNA levels were observed after 3 h of stimulation, reaching a plateau at 24 h that was maintained for 72 h. The CD2 up-regulation was concomitant to other CD3-induced activation-related events such as induction of surface CD25 and CD71 and high RNA levels for c-myc, IL-2R alpha- and beta-chains, CD71, and IFN-gamma. CD2 up-regulation appeared to be elicited by a protein kinase C-dependent mechanism because it was abrogated by staurosporine, a potent protein kinase C inhibitor. Moreover, IL-2-dependent events may also help in enhancing CD2 hyper-expression because it was only partially inhibitable by cyclosporine, dexamethasone, or Mar-108 (CD25) mAb. In conclusion, our data suggest that CD2 up-regulation can be a relevant event in T cell activation triggered by the physiologic engagement of the TCR/CD3 complex.  相似文献   

15.
During physiologic activation of mature CD8+ T cells, TCR and CD8 bind to the same Ag-complexed MHC class I molecule. Thereby, close proximity is induced between CD8 and the TCR/CD3 complex. During this engagement, CD8 may deliver TCR-independent signals via its associated protein tyrosine kinase, p56lck. We studied the potential biologic effects of close association between CD8 and TCR/CD3 complexes by using a bispecific antibody (bsAb) directed against both TCR and CD8 molecules. This hybrid hybridoma (quadroma)-produced bsAb binds as a monomeric molecule to CD3+ CD8+ but not CD3+ CD4+ T cells. The bsAb proved capable of inducing the cytotoxic effector function of cloned CD3+ CD8+ T cells but not of CD3+ CD4+ T cells. When the bsAb was presented to resting T cells by monocytes, proliferation of the CD3+ CD4+ but not the CD3+ CD8+ subset of T lymphocytes was induced. Parental anti-TCR antibody induced vigorous growth of cells of both subsets. Essentially identical results were obtained when bsAb was presented in an immobilized fashion. The unresponsiveness of the CD3+ CD8+ T cells with respect to mitogenesis could be restored by exogenous rIL-2. The data suggest that bsAb-induced activation differs from activation by monospecific anti-TCR antibody. The former appears to more closely mimic physiologic Ag-induced signaling, because it leads to a similar paracrine IL-2-dependent growth pattern. The bsAb may, therefore, be instrumental in studying T cell signaling pathways, in particular the role of CD8-associated p56lck therein.  相似文献   

16.

Introduction

CD4+CD25low/-GITR+ T lymphocytes expressing forkhead box protein P3 (FoxP3) and showing regulatory activity have been recently described in healthy donors. The objective of the study was to evaluate the proportion of CD4+CD25low/-GITR+ T lymphocytes within CD4+ T cells and compare their phenotypic and functional profile with that of CD4+CD25highGITR T lymphocytes in systemic lupus erythematosus (SLE) patients.

Methods

The percentage of CD4+CD25low/-GITR+ cells circulating in the peripheral blood (PB) of 32 patients with SLE and 25 healthy controls was evaluated with flow cytometry. CD4+CD25low/-GITR+ cells were isolated with magnetic separation, and their phenotype was compared with that of CD4+CD25highGITR cells. Regulatory activity of both cell subsets was tested in autologous and heterologous co-cultures after purification through a negative sorting strategy.

Results

Results indicated that CD4+CD25low/-GITR+ cells are expanded in the PB of 50% of SLE patients. Expansion was observed only in patients with inactive disease. Phenotypic analysis demonstrated that CD4+CD25low/-GITR+ cells display regulatory T-cell (Treg) markers, including FoxP3, cytotoxic T-lymphocyte-associated protein 4 (CTLA-4), transforming growth factor-beta (TGF-β), and interleukin (IL)-10. In contrast, CD4+CD25highGITR cells appear to be activated and express low levels of Treg markers. Functional experiments demonstrated that CD4+CD25low/-GITR+ cells exert a higher inhibitory activity against both autologous and heterologous cells as compared with CD4+CD25highGITR cells. Suppression is independent of cell contact and is mediated by IL-10 and TGF-β.

Conclusions

Phenotypic and functional data demonstrate that in SLE patients, CD4+CD25low/-GITR+ cells are fully active Treg cells, possibly representing peripheral Treg (pTreg) that are expanded in patients with inactive disease. These data may suggest a key role of this T-cell subset in the modulation of the abnormal immune response in SLE. Strategies aimed at expanding this Treg subset for therapeutic purpose deserve to be investigated.  相似文献   

17.
18.
TCR aggregation at the point of contact with an APC is thought to play an important role in T cell signal transduction. However, this potentially important phenomenon has never been documented during an immune response in vivo. Here we used immunohistology to show that the TCR on naive Ag-specific CD4 T cells in the lymph nodes of mice injected with Ag redistributed to one side of the cell. In cases where the APC could be identified, the TCR was concentrated on the side of the T cell facing the APC. In those T cells that produced IL-2, the TCR and IL-2 localized to the same side of the cell. In vivo IL-2 production depended on costimulatory signaling through CD28, whereas TCR redistribution did not. These results show that Ag-stimulated CD4 T cells produce IL-2 in a polarized fashion and undergo CD28-independent TCR redistribution in vivo.  相似文献   

19.
Human memory B cells comprise isotype-switched and nonswitched cells with both subsets displaying somatic hypermutation. In addition to somatic hypermutation, CD27 expression has also been considered a universal memory B cell marker. We describe a new population of memory B cells containing isotype-switched (IgG and IgA) and IgM-only cells and lacking expression of CD27 and IgD. These cells are present in peripheral blood and tonsils of healthy subjects and display a degree of hypermutation comparable to CD27+ nonswitched memory cells. As conventional memory cells, they proliferate in response to CpG DNA and fail to extrude rhodamine. In contrast to other recently described CD27-negative (CD27neg) memory B cells, they lack expression of FcRH4 and recirculate in the peripheral blood. Although CD27neg memory cells are relatively scarce in healthy subjects, they are substantially increased in systemic lupus erythematosus (SLE) patients in whom they frequently represent a large fraction of all memory B cells. Yet, their frequency is normal in patients with rheumatoid arthritis or chronic hepatitis C. In SLE, an increased frequency of CD27neg memory cells is significantly associated with higher disease activity index, a history of nephritis, and disease-specific autoantibodies (anti-dsDNA, anti-Smith (Sm), anti-ribonucleoprotein (RNP), and 9G4). These findings enhance our understanding of the B cell diversification pathways and provide mechanistic insight into the immunopathogenesis of SLE.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号