首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The Functional Genomics Experiment data model (FuGE) has been developed to facilitate convergence of data standards for high-throughput, comprehensive analyses in biology. FuGE models the components of an experimental activity that are common across different technologies, including protocols, samples and data. FuGE provides a foundation for describing entire laboratory workflows and for the development of new data formats. The Microarray Gene Expression Data society and the Proteomics Standards Initiative have committed to using FuGE as the basis for defining their respective standards, and other standards groups, including the Metabolomics Standards Initiative, are evaluating FuGE in their development efforts. Adoption of FuGE by multiple standards bodies will enable uniform reporting of common parts of functional genomics workflows, simplify data-integration efforts and ease the burden on researchers seeking to fulfill multiple minimum reporting requirements. Such advances are important for transparent data management and mining in functional genomics and systems biology.  相似文献   

2.
The chicken genome is sequenced and this, together with microarray and other functional genomics technologies, makes post-genomic research possible in the chicken. At this time, however, such research is hindered by a lack of genomic structural and functional annotations. Bio-ontologies have been developed for different annotation requirements, as well as to facilitate data sharing and computational analysis, but these are not yet optimally utilized in the chicken. Here we discuss genomic annotation and bio-ontologies. We focus specifically on the Gene Ontology (GO), chicken GO annotations and how these can facilitate functional genomics in the chicken. The GO is the most developed and widely used bio-ontology. It is the de facto standard for functional annotation. Despite its critical importance in analyzing microarray and other functional genomics data, relatively few chicken gene products have any GO annotation. When these are available, the average quality of chicken gene products annotations (defined using evidence code weight and annotation depth) is much less than in mouse. Moreover, tools allowing chicken researchers to easily and rapidly use the GO are either lacking or hard to use. To address all of these problems we developed ChickGO and AgBase. Chicken GO annotations are provided by complementary work at MSU-AgBase and EBI-GOA. The GO tools pipeline at AgBase uses GO to derive functional and biological significance from microarray and other functional genomics data. Not only will improved genomic annotation and tools to use these annotations benefit the chicken research community but they will also facilitate research in other avian species and comparative genomics.  相似文献   

3.
The Microarray Gene Expression Data (MGED) society is an international organization established in 1999 for facilitating sharing of functional genomics and proteomics array data. To facilitate microarray data sharing, the MGED society has been working in establishing the relevant data standards. The three main components (which will be described in more detail later) of MGED standards are Minimum Information About a Microarray Experiment (MIAME), a document that outlines the minimum information that should be reported about a microarray experiment to enable its unambiguous interpretation and reproduction; MAGE, which consists of three parts, The Microarray Gene Expression Object Model (MAGE-OM), an XML-based document exchange format (MAGE-ML), which is derived directly from the object model, and the supporting tool kit MAGEstk; and MO, or MGED Ontology, which defines sets of common terms and annotation rules for microarray experiments, enabling unambiguous annotation and efficient queries, data analysis and data exchange without loss of meaning. We discuss here how these standards have been established, how they have evolved, and how they are used.  相似文献   

4.
Next‐generation technologies generate an overwhelming amount of gene sequence data. Efficient annotation tools are required to make these data amenable to functional genomics analyses. The Mercator pipeline automatically assigns functional terms to protein or nucleotide sequences. It uses the MapMan ‘BIN’ ontology, which is tailored for functional annotation of plant ‘omics’ data. The classification procedure performs parallel sequence searches against reference databases, compiles the results and computes the most likely MapMan BINs for each query. In the current version, the pipeline relies on manually curated reference classifications originating from the three reference organisms (Arabidopsis, Chlamydomonas, rice), various other plant species that have a reviewed SwissProt annotation, and more than 2000 protein domain and family profiles at InterPro, CDD and KOG. Functional annotations predicted by Mercator achieve accuracies above 90% when benchmarked against manual annotation. In addition to mapping files for direct use in the visualization software MapMan, Mercator provides graphical overview charts, detailed annotation information in a convenient web browser interface and a MapMan‐to‐GO translation table to export results as GO terms. Mercator is available free of charge via http://mapman.gabipd.org/web/guest/app/Mercator .  相似文献   

5.
This article describes the origins, working practices and various development projects of the HUman Proteome Organisation's Proteomics Standards Initiative (HUPO PSI), specifically, our work on reporting requirements, data exchange formats and controlled vocabulary terms. We also offer our view of the two functional genomics projects in which the PSI plays a role (FuGE and FuGO), discussing their impact on our process and laying out the benefits we see as accruing, both to the PSI and to biomedical science as a whole as a result of their widespread acceptance.  相似文献   

6.
Uncertainty and inconsistency of gene structure annotation remain limitations on research in the genome era, frustrating both biologists and bioinformaticians, who have to sort out annotation errors for their genes of interest or to generate trustworthy datasets for algorithmic development. It is unrealistic to hope for better software solutions in the near future that would solve all the problems. The issue is all the more urgent with more species being sequenced and analyzed by comparative genomics - erroneous annotations could easily propagate, whereas correct annotations in one species will greatly facilitate annotation of novel genomes. We propose a dynamic, economically feasible solution to the annotation predicament: broad-based, web-technology-enabled community annotation, a prototype of which is now in use for Arabidopsis.  相似文献   

7.
8.
The development of the Functional Genomics Investigation Ontology (FuGO) is a collaborative, international effort that will provide a resource for annotating functional genomics investigations, including the study design, protocols and instrumentation used, the data generated and the types of analysis performed on the data. FuGO will contain both terms that are universal to all functional genomics investigations and those that are domain specific. In this way, the ontology will serve as the "semantic glue" to provide a common understanding of data from across these disparate data sources. In addition, FuGO will reference out to existing mature ontologies to avoid the need to duplicate these resources, and will do so in such a way as to enable their ease of use in annotation. This project is in the early stages of development; the paper will describe efforts to initiate the project, the scope and organization of the project, the work accomplished to date, and the challenges encountered, as well as future plans.  相似文献   

9.
A great deal of data in functional genomics studies needs to be annotated with low-resolution anatomical terms. For example, gene expression assays based on manually dissected samples (microarray, SAGE, etc.) need high-level anatomical terms to describe sample origin. First-pass annotation in high-throughput assays (e.g. large-scale in situ gene expression screens or phenotype screens) and bibliographic applications, such as selection of keywords, would also benefit from a minimum set of standard anatomical terms. Although only simple terms are required, the researcher faces serious practical problems of inconsistency and confusion, given the different aims and the range of complexity of existing anatomy ontologies. A Standards and Ontologies for Functional Genomics (SOFG) group therefore initiated discussions between several of the major anatomical ontologies for higher vertebrates. As we report here, one result of these discussions is a simple, accessible, controlled vocabulary of gross anatomical terms, the SOFG Anatomy Entry List (SAEL). The SAEL is available from http://www.sofg.org and is intended as a resource for biologists, curators, bioinformaticians and developers of software supporting functional genomics. It can be used directly for annotation in the contexts described above. Importantly, each term is linked to the corresponding term in each of the major anatomy ontologies. Where the simple list does not provide enough detail or sophistication, therefore, the researcher can use the SAEL to choose the appropriate ontology and move directly to the relevant term as an entry point. The SAEL links will also be used to support computational access to the respective ontologies.  相似文献   

10.
We have developed GFam, a platform for automatic annotation of gene/protein families. GFam provides a framework for genome initiatives and model organism resources to build domain-based families, derive meaningful functional labels and offers a seamless approach to propagate functional annotation across periodic genome updates. GFam is a hybrid approach that uses a greedy algorithm to chain component domains from InterPro annotation provided by its 12 member resources followed by a sequence-based connected component analysis of un-annotated sequence regions to derive consensus domain architecture for each sequence and subsequently generate families based on common architectures. Our integrated approach increases sequence coverage by 7.2 percentage points and residue coverage by 14.6 percentage points higher than the coverage relative to the best single-constituent database within InterPro for the proteome of Arabidopsis. The true power of GFam lies in maximizing annotation provided by the different InterPro data sources that offer resource-specific coverage for different regions of a sequence. GFam’s capability to capture higher sequence and residue coverage can be useful for genome annotation, comparative genomics and functional studies. GFam is a general-purpose software and can be used for any collection of protein sequences. The software is open source and can be obtained from http://www.paccanarolab.org/software/gfam/.  相似文献   

11.
ArrayPlex is a software package that centrally provides a large number of flexible toolsets useful for functional genomics, including microarray data storage, quality assessments, data visualization, gene annotation retrieval, statistical tests, genomic sequence retrieval and motif analysis. It uses a client-server architecture based on open source components, provides graphical, command-line, and programmatic access to all needed resources, and is extensible by virtue of a documented application programming interface. ArrayPlex is available at http://sourceforge.net/projects/arrayplex/.  相似文献   

12.
Laboratories working with draft phase genomes have specific software needs, such as the unattended processing of hundreds of single scaffolds and subsequent sequence annotation. In addition, it is critical to follow the "movement" and the manual annotation of single open reading frames (ORFs) within the successive sequence updates. Even with finished genomes, regular database updates can lead to significant changes in the annotation of single ORFs. In functional genomics it is important to mine data and identify new genetic targets rapidly and easily. Often there is no need for sophisticated relational databases (RDB) that greatly reduce the system-independent access of the results. Another aspect is the internet dependency of most software packages. If users are working with confidential data, this dependency poses a security issue. GAMOLA was designed to handle the numerous scaffolds and changing contents of draft phase genomes in an automated process and stores the results for each predicted ORF in flatfile databases. In addition, annotation transfers, ORF designation tracking, Blast comparisons, and primer design for whole genome microarrays have been implemented. The software is available under the license of North Carolina State University. A website and a downloadable example are accessible under (http://fsweb2.schaub. ncsu.edu/TRKwebsite/index.htm).  相似文献   

13.
14.
The accurate prediction of higher eukaryotic gene structures and regulatory elements directly from genomic sequences is an important early step in the understanding of newly assembled contigs and finished genomes. As more new genomes are sequenced, comparative approaches are becoming increasingly practical and valuable for predicting genes and regulatory elements. We demonstrate the effectiveness of a comparative method called pattern filtering; it utilizes synteny between two or more genomic segments for the annotation of genomic sequences. Pattern filtering optimally detects the signatures of conserved functional elements despite the stochastic noise inherent in evolutionary processes, allowing more accurate annotation of gene models. We anticipate that pattern filtering will facilitate sequence annotation and the discovery of new functional elements by the genetics and genomics communities.  相似文献   

15.
In the post-genomic era, data management and development of bioinformatic tools are critical for the adequate exploitation of genomics data. In this review, we address the actual situation for the subset of crops represented by the perennial fruit species. The agronomical singularity of these species compared to plant and crop model species provides significant challenges on the implementation of good practices generally not addressed in other species. Studies are usually performed over several years in non-controlled environments, usage of rootstock is common, and breeders heavily rely on vegetative propagation. A reference genome is now available for all the major species as well as many members of the economically important genera for breeding purposes. Development of pangenome for these species is beginning to gain momentum which will require a substantial effort in term of bioinformatic tool development. The available tools for genome annotation and functional analysis will also be presented.  相似文献   

16.
17.
SUMMARY: A brief overview of Tree-Maps provides the basis for understanding two new implementations of Tree-Map methods. TreeMapClusterView provides a new way to view microarray gene expression data, and GenePlacer provides a view of gene ontology annotation data. We also discuss the benefits of Tree-Maps to visualize complex hierarchies in functional genomics. AVAILABILITY: Java class files are freely available at http://mendel.mc.duke.edu/bioinformatics/ CONTACT: mccon012@mc.duke.edu SUPPLEMENTARY INFORMATION: For more information on TreeMapClusterView (see http://mendel.mc.duke.edu/bioinformatics/software/boxclusterview/), and http://mendel.mc.duke.edu/bioinformatics/software/geneplacer/).  相似文献   

18.
ArrayPlex is a software package that centrally provides a large number of flexible toolsets useful for functional genomics, including microarray data storage, quality assessments, data visualization, gene annotation retrieval, statistical tests, genomic sequence retrieval and motif analysis. It uses a client-server architecture based on open source components, provides graphical, command-line, and programmatic access to all needed resources, and is extensible by virtue of a documented application programming interface. ArrayPlex is available at http://sourceforge.net/projects/arrayplex/.  相似文献   

19.

Background

Grapevine (Vitis vinifera L.) is one of the most important fruit crops in the world and serves as a valuable model for fruit development in woody species. A major breakthrough in grapevine genomics was achieved in 2007 with the sequencing of the Vitis vinifera cv. PN40024 genome. Subsequently, data on structural and functional characterization of grape genes accumulated exponentially. To better exploit the results obtained by the international community, we think that a coordinated nomenclature for gene naming in species with sequenced genomes is essential. It will pave the way for the accumulation of functional data that will enable effective scientific discussion and discovery. The exploitation of data that were generated independently of the genome release is hampered by their heterogeneous nature and by often incompatible and decentralized storage. Classically, large amounts of data describing gene functions are only available in printed articles and therefore remain hardly accessible for automatic text mining. On the other hand, high throughput “Omics” data are typically stored in public repositories, but should be arranged in compendia to better contribute to the annotation and functional characterization of the genes.

Results

With the objective of providing a high quality and highly accessible annotation of grapevine genes, the International Grapevine Genome Project (IGGP) commissioned an international Super-Nomenclature Committee for Grape Gene Annotation (sNCGGa) to coordinate the effort of experts to annotate the grapevine genes. The goal of the committee is to provide a standard nomenclature for locus identifiers and to define conventions for a gene naming system in this paper.

Conclusions

Learning from similar initiatives in other plant species such as Arabidopsis, rice and tomato, a versatile nomenclature system has been developed in anticipation of future genomic developments and annotation issues. The sNCGGa’s first outreach to the grape community has been focused on implementing recommended guidelines for the expert annotators by: (i) providing a common annotation platform that enables community-based gene curation, (ii) developing a gene nomenclature scheme reflecting the biological features of gene products that is consistent with that used in other organisms in order to facilitate comparative analyses.  相似文献   

20.
TreeGenes and tree fruit Genome Database Resources serve the international forestry and fruit tree genomics research communities, respectively. These databases hold similar sequence data and provide resources for the submission and recovery of this information in order to enable comparative genomics research. Large-scale genotype and phenotype projects have recently spawned the development of independent tools and interfaces within these repositories to deliver information to both geneticists and breeders. The increase in next generation sequencing projects has increased the amount of data as well as the scale of analysis that can be performed. These two repositories are now working towards a similar goal of archiving the diverse, independent data sets generated from genotype/phenotype experiments. This is achieved through focused development on data input standards (templates), pipelines for the storage and automated curation, and consistent annotation efforts through the application of widely accepted ontologies to improve the extraction and exchange of the data for comparative analysis. Efforts towards standardization are not limited to genotype/phenotype experiments but are also being applied to other data types to improve gene prediction and annotation for de novo sequencing projects. The resources developed towards these goals represent the first large-scale coordinated effort in plant databases to add informatics value to diverse genotype/phenotype experiments.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号