首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Recent studies have shown that progesterone, a sex steroid hormone, enhances the sexual transmission of various pathogens, including SIV. The goal of this study was to determine whether progesterone affects mechanisms underlying the sexual transmission of HIV-1. We first studied the effects of various physiologic concentrations of progesterone on the expression of chemokines and chemokine receptors by T cells and macrophages. Chemokines are involved in leukocyte recruitment to peripheral sites; in addition, the chemokine receptors CCR5 and CXCR4 are HIV-1 coreceptors, and their ligands can block HIV-1 infection. Progesterone treatment had no effect on constitutive expression of CCR5 and CXCR4 by nonactivated T cells and macrophages, but significantly inhibited IL-2-induced up-regulation of CCR5 and CXCR4 on activated T cells (p < 0.05). Progesterone also inhibited both mitogen-induced proliferation and chemokine secretion (macrophage inflammatory protein-1alpha, macrophage inflammatory protein-1beta, RANTES) by CD8+ T lymphocytes. Control and progesterone-treated PBMC cultures were also tested for susceptibility to infection by T cell-tropic (HIV-1MN) and macrophage-tropic (HIV-1JR-CSF) viral strains in vitro. Infection with low titers of HIV-1MN was consistently inhibited in progesterone-treated cultures; progesterone effects on infection with the HIV-1JR-CSF strain were more variable, but correlated with progesterone-induced reductions in CCR5 levels. These results indicate that progesterone treatment can inhibit mechanisms underlying HIV-1 transmission, including infection of CD4+ target cells via CXCR4/CCR5 coreceptors and effects on chemokine-mediated recruitment of lymphocytes and monocytes to mucosal epithelia.  相似文献   

2.
In the present sudy, chemokine receptor-usage of primary HIV-1 isolates was examined using U87-CD4 cells expressing chemokine receptors CCR3, CCR5 and CXCR4. HIV-1 was isolated from the peripheral blood mononuclear cells (PBMC) and/or plasma of eight HIV-1-infected individuals in late CDC-II and CDC-IV clinical stages using PHA-blast prepared from the PBMC of healthy blood donors. The primary HIV-1 isolates from patients in late CDC-II stage rarely infected monocyte-derived macrophages in the present study, whereas most isolates from patients in the CDC-IV stage infected the macrophages. In the experiments using U87-CD4 cells expressing chemokine receptors, the isolates from patients in the late CDC-II stage infected U87-CD4 cells expressing CXCR4, but not U87-CD4 cells expressing CCR5. In contrast, most isolates from patients in the CDC-IV stage infected both U87-CD4 cells expressing CXCR4 or CCR5. The isolates which infected both U87-CD4 cells were supposed to contain dual tropic HIV-1 or a mixture of CXCR4-tropic and CCR5-tropic HIV-1s. Analysis of the deduced amino acid sequence of the V3 region in proviral env gene showed that the V3 region in U87-CD4 cells infected with CXCR4-tropic HIV-1 isolates was largely different from that in the cells infected with CCR5-tropic isolates, but were highly similar to that in cells infected with dual tropic isolates. These results suggest that PHA-blasts may preferentially support the replication of the CXCR4-tropic and dual tropic HIV-1s, and that CXCR4-tropic and dual tropic HIV-1s are also present in peripheral blood from patients in the late stage of the asymptomatic phase.  相似文献   

3.
Human immunodeficiency virus type 1 (HIV-1) preferentially utilizes the CCR5 coreceptor for target cell entry in the acute phase of infection, while later in disease progression the virus switches to the CXCR4 coreceptor in approximately 50% of patients. In response to HIV-1 the adaptive immune response is triggered, and antibody (Ab) production is elicited to block HIV-1 entry. We recently determined that dendritic cells (DCs) can efficiently capture Ab-neutralized HIV-1, restore infectivity, and transmit infectious virus to target cells. Here, we tested the effect of Abs on trans transmission of CCR5 or CXCR4 HIV-1 variants. We observed that transmission of HIV-1 by immature as well as mature DCs was significantly higher for CXCR4- than CCR5-tropic viral strains. Additionally, neutralizing Abs directed against either the gp41 or gp120 region of the envelope such as 2F5, 4E10, and V3-directed Abs inhibited transmission of CCR5-tropic HIV-1, whereas Ab-treated CXCR4-tropic virus demonstrated unaltered or increased transmission. To further study the effects of coreceptor usage we tested molecularly cloned HIV-1 variants with modifications in the envelope that were based on longitudinal gp120 V1 and V3 variable loop sequences from a patient progressing to AIDS. We observed that DCs preferentially facilitated infection of CD4+ T lymphocytes of viral strains with an envelope phenotype found late in disease. Taken together, our results illustrate that DCs transmit CXCR4-tropic HIV-1 much more efficiently than CCR5 strains; we hypothesize that this discrimination could contribute to the in vivo coreceptor switch after seroconversion and could be responsible for the increase in viral load.  相似文献   

4.
We characterized human immunodeficiency virus type 1 (HIV-1) envelope glycoproteins (Env) isolated from two HIV-1-infected CCR5delta32 homozygotes. Envs from both subjects used CCR5 and CXCR4 for entry into transfected cells. Most R5X4 Envs were lymphocyte-tropic and used CXCR4 exclusively for entry into peripheral blood mononuclear cells (PBMC), but a subset was dually lymphocyte- and macrophage-tropic and used either CCR5 or CXCR4 for entry into PBMC and monocyte-derived macrophages. The persistence of CCR5-using HIV-1 in two CCR5delta32 homozygotes suggests the conserved CCR5 binding domain of Env is highly stable and provides new mechanistic insights important for HIV-1 transmission and persistence.  相似文献   

5.
Human immunodeficiency virus type 1 (HIV-1) entry into CD4(+) cells requires the chemokine receptors CCR5 or CXCR4 as co-fusion receptors. We have previously demonstrated that chemokine receptors are capable of cross-regulating the functions of each other and, thus, affecting cellular responsiveness at the site of infection. To investigate the effects of chemokine receptor cross-regulation in HIV-1 infection, monocytes and MAGIC5 and rat basophilic leukemia (RBL-2H3) cell lines co-expressing the interleukin-8 (IL-8 or CXCL8) receptor CXCR1 and either CCR5 (ACCR5) or CXCR4 (ACXCR4) were generated. IL-8 activation of CXCR1, but not the IL-8 receptor CXCR2, cross-phosphorylated CCR5 and CXCR4 and cross-desensitized their responsiveness to RANTES (regulated on activation normal T cell expressed and secreted) (CCL5) and stromal derived factor (SDF-1 or CXCL12), respectively. CXCR1 activation internalized CCR5 but not CXCR4 despite cross-phosphorylation of both. IL-8 pretreatment also inhibited CCR5- but not CXCR4-mediated virus entry into MAGIC5 cells. A tail-deleted mutant of CXCR1, DeltaCXCR1, produced greater signals upon activation (Ca(2+) mobilization and phosphoinositide hydrolysis) and cross-internalized CXCR4, inhibiting HIV-1 entry. The protein kinase C inhibitor staurosporine prevented phosphorylation and internalization of the receptors by CXCR1 activation. Taken together, these results indicate that chemokine receptor-mediated HIV-1 cell infection is blocked by receptor internalization but not desensitization alone. Thus, activation of chemokine receptors unrelated to CCR5 and CXCR4 may play a cross-regulatory role in the infection and propagation of HIV-1. Since DeltaCXCR1, but not CXCR1, cross-internalized and cross-inhibited HIV-1 infection to CXCR4, the data indicate the importance of the signal strength of a receptor and, as a consequence, protein kinase C activation in the suppression of HIV-1 infection by cross-receptor-mediated internalization.  相似文献   

6.
CCR5 and CXCR4 play an important role in the establishment of HIV infection and disease progression. Caucasian people exposed to HIV but uninfected (EU) present a deletion of 32bp in CCR5 that has not been reported in EU Hispanics from Latin America. Therefore, other factors besides mutations should be involved in this phenomenon. Studies in healthy women have shown that sex hormones such as progesterone (P) can modulate CCR5/CXCR4 expression through an unknown mechanism. The aim of this paper was to determine the role of P in the regulation of CCR5 and CXCR4 in peripheral blood mononuclear cells (PBMCs) of HIV-1 infected and EU women. We analyzed HIV-1-infected women with stable highly active antiretroviral therapy (HAART) with CD4+ cell counts <400/mm(3) or diminution of 20%, EU and HIV-1 seronegative healthy controls. 5×10(6) PBMCs, from HIV-1 infected women, EU women and HIV-1 seronegative healthy controls were cultured and incubated with P (10 or 100 nM), RU486 (P antagonist, 1 μM) or P (100 nM)+RU486 (1 μM). CCR5/CXCR4 content was determined by Western blot. Densitometry data were analyzed using Mann-Whitney test. We found that CCR5 content was reduced by P in all groups. In contrast, CXCR4 content was increased by P in healthy controls and in HIV-1 infected women. Interestingly, CXCR4 content was reduced by P in EU. RU486 did not block P effects in any group. These findings suggest that P should participate in the acquisition and progression of HIV-1 infection by modulating CCR5 and CXCR4 expression. P could contribute to the resistance acquisition of HIV by EU through the down-regulation of both coreceptors.  相似文献   

7.
HIV-1 infects target cells via a receptor complex formed by CD4 and a chemokine receptor, primarily CCR5 or CXCR4 (ref. 1). Commonly, HIV-1 transmission is mediated by CCR5-tropic variants, also designated slow/low, non-syncytia-inducer or macrophage-tropic, which dominate the early stages of HIV-1 infection and frequently persist during the entire course of the disease. In contrast, HIV-1 variants that use CXCR4 are typically detected at the later stages, and are associated with a rapid decline in CD4+ T cells and progression to AIDS (refs. 2,7-11). Disease progression is also associated with the emergence of concurrent infections that may affect the course of HIV disease by unknown mechanisms. A lymphotropic agent frequently reactivated in HIV-infected patients is human herpesvirus 6 (HHV-6), which has been proposed as a cofactor in AIDS progression. Here we show that in human lymphoid tissue ex vivo, HHV-6 affects HIV-1 infection in a coreceptor-dependent manner, suppressing CCR5-tropic but not CXCR4-tropic HIV-1 replication, as shown with both uncloned viral isolates and isogenic molecular chimeras. Furthermore, we demonstrate that HHV-6 increases the production of the CCR5 ligand RANTES ('regulated upon activation, normal T-cell expressed and secreted'), the most potent HIV-inhibitory CC chemokine, and that exogenous RANTES mimics the effects of HHV-6 on HIV-1, providing a mechanism for the selective blockade of CCR5-tropic HIV-1. Our data suggest that HHV-6 may profoundly influence the course of HIV-1 infection.  相似文献   

8.
The upper gastrointestinal tract is a principal route of HIV-1 entry in vertical transmission and after oral-genital contact. The phenotype of the newly acquired virus is predominantly R5 (CCR5-tropic) and not X4 (CXCR4-tropic), although both R5 and X4 viruses are frequently inoculated onto the mucosa. Here we show that primary intestinal (jejunal) epithelial cells express galactosylceramide, an alternative primary receptor for HIV-1, and CCR5 but not CXCR4. Moreover, we show that intestinal epithelial cells transfer R5, but not X4, viruses to CCR5+ indicator cells, which can efficiently replicate and amplify virus expression. Transfer was remarkably efficient and was not inhibited by the fusion blocker T-20, but was substantially reduced by colchicine and low (4 degrees C) temperature, suggesting endocytotic uptake and microtubule-dependent transcytosis of HIV-1. Our finding that CCR5+ intestinal epithelial cells select and transfer exclusively R5 viruses indicates a mechanism for the selective transmission of R5 HIV-1 in primary infection acquired through the upper gastrointestinal tract.  相似文献   

9.
HIV-1 entry requires the cell surface expression of CD4 and either the CCR5 or CXCR4 coreceptors on host cells. Individuals homozygous for the ccr5Δ32 polymorphism do not express CCR5 and are protected from infection by CCR5-tropic (R5) virus strains. As an approach to inactivating CCR5, we introduced CCR5-specific zinc-finger nucleases into human CD4+ T cells prior to adoptive transfer, but the need to protect cells from virus strains that use CXCR4 (X4) in place of or in addition to CCR5 (R5X4) remains. Here we describe engineering a pair of zinc finger nucleases that, when introduced into human T cells, efficiently disrupt cxcr4 by cleavage and error-prone non-homologous DNA end-joining. The resulting cells proliferated normally and were resistant to infection by X4-tropic HIV-1 strains. CXCR4 could also be inactivated in ccr5Δ32 CD4+ T cells, and we show that such cells were resistant to all strains of HIV-1 tested. Loss of CXCR4 also provided protection from X4 HIV-1 in a humanized mouse model, though this protection was lost over time due to the emergence of R5-tropic viral mutants. These data suggest that CXCR4-specific ZFNs may prove useful in establishing resistance to CXCR4-tropic HIV for autologous transplant in HIV-infected individuals.  相似文献   

10.
Human immunodeficiency virus type 1 (HIV-1) enters target cells by sequential binding to CD4 and specific seven-transmembrane-segment (7TMS) coreceptors. Viruses use the chemokine receptor CCR5 as a coreceptor in the early, asymptomatic stages of HIV-1 infection but can adapt to the use of other receptors such as CXCR4 and CCR3 as the infection proceeds. Here we identify one such coreceptor, Apj, which supported the efficient entry of several primary T-cell-line tropic (T-tropic) and dualtropic HIV-1 isolates and the simian immunodeficiency virus SIVmac316. Another 7TMS protein, CCR9, supported the less efficient entry of one primary T-tropic isolate. mRNAs for both receptors were present in phytohemagglutinin- and interleukin-2-activated peripheral blood mononuclear cells. Apj and CCR9 share with other coreceptors for HIV-1 and SIV an N-terminal region rich in aromatic and acidic residues. These results highlight properties common to 7TMS proteins that can function as HIV-1 coreceptors, and they may contribute to an understanding of viral evolution in infected individuals.  相似文献   

11.
Down-regulation of the HIV-1 coreceptor CCR5 holds significant potential for long-term protection against HIV-1 in patients. Using the humanized bone marrow/liver/thymus (hu-BLT) mouse model which allows investigation of human hematopoietic stem/progenitor cell (HSPC) transplant and immune system reconstitution as well as HIV-1 infection, we previously demonstrated stable inhibition of CCR5 expression in systemic lymphoid tissues via transplantation of HSPCs genetically modified by lentiviral vector transduction to express short hairpin RNA (shRNA). However, CCR5 down-regulation will not be effective against existing CXCR4-tropic HIV-1 and emergence of resistant viral strains. As such, combination approaches targeting additional steps in the virus lifecycle are required. We screened a panel of previously published shRNAs targeting highly conserved regions and identified a potent shRNA targeting the R-region of the HIV-1 long terminal repeat (LTR). Here, we report that human CD4+ T-cells derived from transplanted HSPC engineered to co-express shRNAs targeting CCR5 and HIV-1 LTR are resistant to CCR5- and CXCR4- tropic HIV-1-mediated depletion in vivo. Transduction with the combination vector suppressed CXCR4- and CCR5- tropic viral replication in cell lines and peripheral blood mononuclear cells in vitro. No obvious cytotoxicity or interferon response was observed. Transplantation of combination vector-transduced HSPC into hu-BLT mice resulted in efficient engraftment and subsequent stable gene marking and CCR5 down-regulation in human CD4+ T-cells within peripheral blood and systemic lymphoid tissues, including gut-associated lymphoid tissue, a major site of robust viral replication, for over twelve weeks. CXCR4- and CCR5- tropic HIV-1 infection was effectively inhibited in hu-BLT mouse spleen-derived human CD4+ T-cells ex vivo. Furthermore, levels of gene-marked CD4+ T-cells in peripheral blood increased despite systemic infection with either CXCR4- or CCR5- tropic HIV-1 in vivo. These results demonstrate that transplantation of HSPCs engineered with our combination shRNA vector may be a potential therapy against HIV disease.  相似文献   

12.
Recent epidemiologic studies show increasing human immunodeficiency virus type 1 (HIV-1) transmission through oral-genital contact. This paper examines the possibility that normal human oral keratinocytes (NHOKs) might be directly infected by HIV or might convey infectious HIV virions to adjacent leukocytes. PCR analysis of proviral DNA constructs showed that NHOKs can be infected by CXCR4-tropic (NL4-3 and ELI) and dualtropic (89.6) strains of HIV-1 to generate a weak but productive infection. CCR5-tropic strain Ba-L sustained minimal viral replication. Antibody inhibition studies showed that infection by CXCR4-tropic viral strains is mediated by the galactosylceramide receptor and the CXCR4 chemokine coreceptor. Coculture studies showed that infectious HIV-1 virions can also be conveyed from NHOKs to activated peripheral blood lymphocytes, suggesting a potential role of oral epithelial cells in the transmission of HIV infection.  相似文献   

13.
Chemokine receptors CCR5 and CXCR4 are the major coreceptors of HIV-1 infection and also play fundamental roles in leukocyte trafficking, metastasis, angiogenesis, and embyogenesis. Here, we show that transfection of CCR5 into CXCR4 and CD4 expressing 3T3 cells enhances the cell surface level of CXCR4. In CCR5 high expressing cells, cell surface level of CXCR4 was incompletely modulated in the presence of the CXCR4 ligand CXCL12/SDF-1alpha. CCR5 was resistant to ligand-dependent modulation with the CCR5 ligand CCL5/RANTES. Confocal laser microscopy revealed that CCR5 was colocalized with CXCR4 on the cell surface. In CD4 expressing CCR5 and CXCR4 double positive NIH 3T3 cells, immunoprecipitation followed by Western blot analysis revealed that CCR5 was associated with CXCR4 and CD4. CXCR4 and CCR5 were not co-immunoprecipitated in cells expressing CCR5 and CXCR4 but without CD4 expression. Compared to NIH 3T3CD4 cells expressing CXCR4, the entry of an HIV-1 X4 isolate (HCF) into NIH 3T3CD4 expressing both CXCR4 and CCR5 was reduced. Our data indicate that chemokine receptors interact with each other, which may modulate chemokine-chemokine receptor interactions and HIV-1 coreceptor functions.  相似文献   

14.
The chemokine receptors CCR5 and CXCR4 belong to the family of seven transmembrane-spanning G protein-coupled receptors, which have diverse functions in host cell defense and are associated with numerous diseases. CCR5 and CXCR4 are known as co-receptors for entry of HIV-1. In this study the intracellular carboxy-terminus of CCR5, which is deleted in HIV-infected long-term non-progressors, was shown to interact with the carboxy-terminus of alpha-catenin, a component of the cytoskeleton, in a yeast two-hybrid screen. This interaction was verified in mammalian cells. Furthermore, the interaction of alpha-catenin with CCR5 and CXCR4 at endogenous protein levels was demonstrated in PM1 T-lymphocytes, a host cell line of HIV-1. Our results suggest that alpha-catenin links CCR5 and CXCR4 to the cytoskeleton and is involved in the organization of these receptors at the membrane, thereby possibly affecting HIV-1 infection.  相似文献   

15.
The gastrointestinal mucosa harbors the majority of the body's CD4(+) cells and appears to be uniquely susceptible to human immunodeficiency virus type 1 (HIV-1) infection. We undertook this study to examine the role of differences in chemokine receptor expression on infection of mucosal mononuclear cells (MMCs) and peripheral blood mononuclear cells (PBMCs) by R5- and X4-tropic HIV-1. We performed in vitro infections of MMCs and PBMCs with R5- and X4-tropic HIV-1, engineered to express murine CD24 on the infected cell's surface, allowing for quantification of HIV-infected cells and their phenotypic characterization. A greater percentage of MMCs than PBMCs are infected by both R5- and X4-tropic HIV-1. Significant differences exist in terms of chemokine receptor expression in the blood and gastrointestinal mucosa; mucosal cells are predominantly CCR5(+) CXCR4(+), while these cells make up less than 20% of the peripheral blood cells. It is this cell population that is most susceptible to infection with both R5- and X4-tropic HIV-1 in both compartments. Regardless of whether viral isolates were derived from the blood or mucosa of HIV-1-infected patients, HIV-1 p24 production was greater in MMCs than in PBMCs. Further, the chemokine receptor tropism of these patient-derived viral isolates did not differ between compartments. We conclude that, based on these findings, the gastrointestinal mucosa represents a favored target for HIV-1, in part due to its large population of CXCR4(+) CCR5(+) target cells and not to differences in the virus that it contains.  相似文献   

16.
The presence or absence of the receptor CD4 and the coreceptors CCR5 and CXCR4 restrict the cell tropism of human immunodeficiency virus type 1 (HIV-1). Despite the importance of thymic infection by HIV-1, conflicting reports regarding the expression of HIV-1 coreceptors on human thymocytes have not been resolved. We assayed the expression and function of the major HIV-1 coreceptors, CCR5 and CXCR4, as well as CCR4 and CCR7 as controls, on human thymocytes. We detected CCR5 on 2.5% of thymocytes, CXCR4 on 53% of the cells, and CCR4 on 16% and CCR7 on 11% of human thymocytes. Moreover, infection by R5 HIV-1 did not significantly induce expression of CCR5. We found that two widely used anti-CCR5 monoclonal antibodies cross-reacted with CCR8, which may account for discrepancies among published reports of CCR5 expression on primary cells. This cross-reactivity could be eliminated by deletion of amino acids 2 through 4 of CCR8. Chemotaxis assays showed that SDF-1, which binds CXCR4; MDC, which binds CCR4; and ELC, which binds CCR7, mediated significant chemotaxis of thymocytes. In contrast, MIP-1beta, whose receptor is CCR5, did not induce significant chemotaxis. Our results indicate that CXCR4, CCR4, CCR7, and their chemokine ligands may be involved in thymocyte migration during development in the thymus. CCR5 and its ligands, however, are likely not involved in these processes. Furthermore, the pattern of CCR5 and CXCR4 expression that we found may explain the greater susceptibility of human thymocytes to infection by HIV-1 isolates capable of using CXCR4 in cell entry compared to those that use only CCR5.  相似文献   

17.
We investigated whether capsianosides, diterpene glycosides, extracted from Capsicum plants could affect human immunodeficiency virus type 1 (HIV-1) infection. Significant effect on virus infection in MAGI/CCR5 cells was neither observed for the X4 virus by capsianosides II, XI, and A, nor for an R5 virus by capsianoside G. Apparent enhancement of X4 HIV-1 infection by capsianoside G was observed and exclusively related to the usage of the CXCR4 coreceptor. The capsianoside G-treated cells had no change in the expression level of CD4, CXCR4, and CCR5, however, colocalization and capping of CD4 and CXCR4, but not of CD4 and CCR5 was observed. Our results suggested that capsianoside G enhanced X4 virus infection at the level of viral penetration through the capping and colocalization of receptors needed for infection.  相似文献   

18.
Like human immunodeficiency virus type 1 (HIV-1) and simian immunodeficiency virus (SIV), HIV-2 requires a coreceptor in addition to CD4 for entry into cells. HIV and SIV coreceptor molecules belong to a family of seven-transmembrane-domain G-protein-coupled receptors. Here we show that primary HIV-2 isolates can use a broad range of coreceptor molecules, including CCR1, CCR2b, CCR3, CCR4, CCR5, and CXCR4. Despite broad coreceptor use, the chemokine ligand SDF-1 substantially blocked HIV-2 infectivity of peripheral blood mononuclear cells, indicating that its receptor, CXCR4, was the predominant coreceptor for infection of these cells. However, expression of CXCR4 together with CD4 on some cell types did not confer susceptibility to infection by all CXCR4-using virus isolates. These data therefore indicate that another factor(s) influences the ability of HIV-2 to replicate in human cell types that express the appropriate receptors for virus entry.  相似文献   

19.
人CCR5Delta32突变个体能有效抵制HIV-1感染,主要是由于该个体淋巴细胞内表达的CCR5Delta32突变蛋白能通过反式显性失活效应(TDN)抑制细胞表面HIV-1辅受体CCR5和CXCR4的产生.通过构建CCR5Delta32慢病毒载体,体外转染人外周血单个核细胞(PBMCs),研究细胞内表达CCR5Delta32蛋白对HIV-1感染的抑制作用.结果表明,表达CCR5Delta32蛋白的人PBMCs对HIV-1 R5、X4及R5X4毒株感染均具有显著的抑制作用.这些工作为后续的AIDS基因治疗研究奠定了基础.  相似文献   

20.
Chemokine receptors CCR5 and CXCR4 are the primary fusion coreceptors utilized for CD4-mediated entry by macrophage (M)- and T-cell line (T)-tropic human immunodeficiency virus type 1 (HIV-1) strains, respectively. Here we demonstrate that HIV-1 Tat protein, a potent viral transactivator shown to be released as a soluble protein by infected cells, differentially induced CXCR4 and CCR5 expression in peripheral blood mononuclear cells. CCR3, a less frequently used coreceptor for certain M-tropic strains, was also induced. CXCR4 was induced on both lymphocytes and monocytes/macrophages, whereas CCR5 and CCR3 were induced on monocytes/macrophages but not on lymphocytes. The pattern of chemokine receptor induction by Tat was distinct from that by phytohemagglutinin. Moreover, Tat-induced CXCR4 and CCR5 expression was dose dependent. Monocytes/macrophages were more susceptible to Tat-mediated induction of CXCR4 and CCR5 than lymphocytes, and CCR5 was more readily induced than CXCR4. The concentrations of Tat effective in inducing CXCR4 and CCR5 expression were within the picomolar range and close to the range of extracellular Tat observed in sera from HIV-1-infected individuals. The induction of CCR5 and CXCR4 expression correlated with Tat-enhanced infectivity of M- and T-tropic viruses, respectively. Taken together, our results define a novel role for Tat in HIV-1 pathogenesis that promotes the infectivity of both M- and T-tropic HIV-1 strains in primary human leukocytes, notably in monocytes/macrophages.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号