首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Sterol ester hydrolase (cholesterol esterase, E.C. 3.1.1.13) of bovine adrenal cortex has been extensively purified by ammonium sulfate fractionation, acid precipitation, hydroxylapatite chromatography, and Sephadex G-200 chromatography. During the purification sequence, the hydrolase activity was purified free of endogenous protein kinase. With this purified preparation, activation by cyclic AMP and ATP-Mg2+ did not occur unless exogenous protein kinase was included in the activating system. Using [gamma-32P]ATP, the transfer of the terminal phosphate to the enzyme protein was demonstrated by three separate experimental approaches. With pooled fractions from Sephadex G-200 chromatography, significant binding of 32P by the enzyme protein was observed only in the presence of exogenous protein kinase. Time course studies disclosed a close concurrence between the extent of activation of the purified enzyme by cyclic AMP-dependent protein kinase and the level of 32P transfer from [gamma-32P]ATP to the enzyme protein. Finally, assays carried out during Sephadex G-200 chromatography showed a correspondence in the peaks for activated sterol ester hydrolase and for 32P binding by protein. The data confirm that activation of adrenal sterol ester hydrolase by cyclic AMP and ATP-Mg2+ involves protein kinase-catalyzed phosphorylation of the enzyme protein.  相似文献   

2.
The lipid mediators, platelet activating factor (PAF) and the eicosanoids, can be coordinately produced from the common phospholipid precursor, 1-O-alkyl-2-arachidonoylglycerophosphocholine (1-O-alkyl-2-arachidonoyl-GPC), through the initial action of a phospholipase A2 that cleaves arachidonic acid from the sn-2 position. The mouse macrophage cell line RAW 264.7, which was used as a model macrophage system to study the arachidonoyl-hydrolyzing phospholipase A2 enzyme(s), could be induced to release arachidonic acid in response to inflammatory stimuli. A phospholipase A2 that hydrolyzed 1-O-hexadecyl-2-[3H]arachidonoyl-GPC was identified in the cytosolic fraction of these macrophages. This phospholipase activity was optimal at pH 8 and dependent on calcium. Enzyme activity could be stimulated 3-fold by heparin, suggesting the presence of phospholipase inhibitory proteins in the macrophage cytosol. Compared to 1-alkyl-2-arachidonoyl-GPC, the enzyme hydrolyzed 1-acyl-2-arachidonoylglycerophosphoethanolamine (1-acyl-2-arachidonoyl-GPE) with similar activity but showed slightly greater activity against 1-acyl-2-arachidonoyl-GPC, suggesting no specificity for the sn-1 linkage or the phospholipid base group. Although comparable activity against 1-acyl-2-arachidonoylglycerophosphoinositol (1-acyl-2-arachidonoyl-GPI) could be achieved, the enzyme exhibited much lower affinity for the inositol-containing substrate. The enzyme did, however, show apparent specificity for arachidonic acid at the sn-2 position, since much lower activity was observed against choline-containing substrates with either linoleic or oleic acids at the sn-2 position. The cytosolic phospholipase A2 was purified by first precipitating the enzyme with ammonium sulfate followed by chromatography over Sephadex G150, where the phospholipase A2 eluted between molecular weight markers of 67,000 and 150,000. The active peak was then chromatographed over DEAE-cellulose, phenyl-Sepharose, Q-Sepharose, Sephadex G150 and finally hydroxylapatite. The purification scheme has resulted in over a 1000-fold increase in specific activity (2 mumol/min per mg protein). Under non-reducing conditions, a major band on SDS-polyacrylamide gels at 70 kDa was observed, which shifted to a lower molecular weight, 60,000, under reducing conditions. The properties of the purified enzyme including the specificity for sn-2-arachidonoyl-containing phospholipids was similar to that observed for the crude enzyme. The results demonstrate the presence of a phospholipase A2 in the macrophage cell line. RAW 264.7, that preferentially hydrolyzes arachidonoyl-containing phospholipid substrates.  相似文献   

3.
The purpose of this study was purification and characterization of catechol 1,2-dioxygenase from Geobacillus sp. G27 strain, which degrades α-naphthol by the β-ketoadipate pathway. The catechol 1,2-dioxygenase (C1,2O) was purified using four steps of ammonium sulfate precipitation, DEAE-celullose, Sephadex G-150 and hydroxylapatite chromatographies. The enzyme was purified about 18-fold with a specific activity of 7.42 U mg of protein−1. The relative molecular mass of the native enzyme estimated on gel chromatography of Sephadex G-150 was 96 kDa. The pH and temperature optima for enzyme activity were 7 and 60°C, respectively. A half-life of the catechol 1,2-dioxygenase at the optimum temperature was 40 min. The kinetic parameters of the Geobacillus sp. G27 strain catechol 1,2-dioxygenase were determined. The enzyme had apparent Km of 29 μM for catechol and the cleavage activities for methylcatechols were much less than for catechol and no activity with gentisate or protocatechuate was detected.  相似文献   

4.
J Ike  P Sangan  M Gunasekaran 《Microbios》1992,69(279):119-127
The lactate dehydrogenase (LDH) from Nocardia asteroides was purified to homogeneity by ammonium sulphate precipitation, gel filtration on Sephadex G-150 and DEAE-Sepharose column chromatography. The purified enzyme showed a single band in native condition which indicated its homogeneity. SDS-PAGE of the purified enzyme showed the presence of three bands which correspond to molecular weights of 60, 66 and 74 kDa. The pH and temperature optima of the purified enzyme were 9.5 and 50 degrees C, respectively. The metal ions Mn++, Fe++, Co++, Mg++ and Ca++, increased the purified LDH activity. On the other hand, enzyme activity was completely inhibited by CuCl2. Potassium chloride, ammonium sulphate and sodium chloride did not alter the enzyme activity. The purified enzyme exhibited a Km value of 1.6 x 10(-5) M for pyruvate.  相似文献   

5.
A cellobiose-utilizing bacterium isolated from sugar cane bagasse and identified as a strain of Alcaligenes faecalis (ATCC 21400) produced an inducible beta-glucoside-splitting enzyme. The enzyme was purified by a series of streptomycin and ammonium sulfate fractionations and by Sephadex and diethylaminoethyl column chromatography. The final preparation was purified 130-fold, with a recovery of about 10% of the initial enzyme activity. The enzyme had a wide pH range, with optimal activity at pH 6.0 to 7.0. The enzyme was stable in solution at pH 6.5 to 7.8 when kept at 30 C for 2 hr, but it was destroyed by temperatures above 55 C. At 58 and 60 C, the time required to inactivate 90% of the initial activity was 16 and 6.5 min, respectively. An activation energy of 9,500 cal/mole and a K(m) of 1.25 x 10(-4)m were obtained by using p-nitrophenyl beta-glucoside as a substrate. The K(i) value and hydrolysis of cellobiose by the enzyme indicated a high affinity of the enzyme for the cellobiose. The enzyme had its specificity on beta-glucosidic linkage and the rate of hydrolisis of glucosides depended upon the nature of the aglycon moiety. The inactivation studies showed the presence of sulfhydryl groups in the enzyme. The activity of the enzyme was easily destroyed by the Cu(++) and Hg(++) ions. The Michaelis-Menton relationship and the rate of heat inactivation indicated the presence of one type of noninteracting active site in the bacterial beta-glucosidase. Molecular weight of the enzyme was estimated by gel filtration (Sephadex G-200) and sucrose density gradient, and a value of 120,000 to 160,000 was obtained.  相似文献   

6.
Iodoacetamide (IAA) and its fluorescent derivative, 5-(2-iodoacetamidoethyl) amino-naphthalene-1-sulfonate (IAEDANS) specifically bind to a site on the C-terminal half of sarcoplasmic reticulum (SR) Ca2+,Mg2+-ATPase. The location of this specific binding site was identified. SR membranes were treated with 150 microM [14C]IAA at pH 7.0 and 30 degrees C. One mole of IAA per mole of ATPase was bound in 6 h without affecting the Ca2+-transport activity. [14C]IAA-labeled SR membranes were cleaved with BrCN, and 14C-labeled peptide fragments were separated by Sephadex LH-60 chromatography and then digested further with trypsin. A radioactive peptide (Ala-Cys 674-Cys-Phe-Ala-Arg) was purified by Sephadex LH-20 chromatography and C18 reversed phase HPLC (Cys denotes the [14C]IAA-binding site). IAEDANS-labeling was carried out by reacting SR membranes with 50 microM IAEDANS for 5 h, at pH 7.0 and 30 degrees C. A fluorescent peptide was successfully purified by the same procedures as for the IAA-labeled peptide, and the amino acid sequence analysis of this peptide revealed that the IAEDANS labeling site was identical with the IAA binding site.  相似文献   

7.
Cyclic GMP-dependent protein kinase was purified from foetal calf hearts, and its general properties and subunit structure were studied. The enzyme was purified over 900-fold from the heart extract by pH 5.3-isoelectric precipitation, DEAE-cellulose chromatography, Sephadex G-200 filtration and hydroxyapatite treatment. The purified myocardial enzyme, free from cyclic AMP-dependent protein kinase contamination, exhibited an absolute requirement of stimulatory modulator (or crude modulator containing the stimulatory modulator component) for its cyclic GMP-stimulated activity. Inhibitory modulator (protein inhibitor) of cyclic AMP-dependent protein kinase could not stimulate nor inhibit the cyclic GMP target enzyme. The enzyme had Ka values of 0.013, 0.033 and 3.0 micronM for 8-bromo cyclic GMP, cyclic GMP and cyclic AMP respectively. The cyclic GMP-dependent enzyme required Mg2+ and Co2+ for its activity, with optimal concentrations of about 30 and 0.5 mM respectively. The pH optimum for the enzyme activity ranged from 6 to 9. Histones were generally effective substrate proteins. The enzyme exhibited a greater affinity for histones than did the cyclic AMP-dependent class of protein kinase. The holoenzyme (apparent mol.wt. 150 000) of the myocardial cyclic GMP-dependent protein kinase was dissociated into a cyclic GMP-independent catalytic subunit (apparent mol.wt. 60 000) by cyclic GMP and histone. The catalytic subunit required the stimulatory modulator for its activity, as in the case of the holoenzyme in the presence of cyclic GMP.  相似文献   

8.
We investigated the diacyglycerol kinase species present in several baboon tissues using the substrates sn-1-stearoyl-2-arachidonoyl diacylglycerol and sn-1,2-didecanoyl diacylglycerol. Chromatography of octyl glucoside extracts of the baboon (Papio cynocephalus papio) tissues on hydroxyapatite columns revealed the presence of three diacylglycerol kinase species with different substrate preferences. One species markedly 'preferred' the substrate sn-1-stearoyl-2-arachidonoylglycerol, the two other species preferred sn-1,2-didecanoylglycerol. Measurement of the activity of the baboon brain diacylglycerol kinases toward diacylglycerols with a range of different fatty acid chains revealed a strict preference of the arachidonoyl diacylglycerol kinase for sn-1-acyl-2-arachidonoyl diacylglycerol, whereas the other enzymes showed no preference toward several long-chain-fatty-acid-containing diacylglycerols. The arachidonoyl diacylglycerol kinase was particularly abundant in brain and testis, whereas liver was practically devoid of this enzyme. The arachidonoyl diacylglycerol kinase from baboon brain was found to be predominantly associated with the particulate fraction and exhibited an apparent molecular mass of 130 kDa.  相似文献   

9.
The lipid cofactor requirement of Escherichia coli sn-1,2-diacylglycerol kinase was studied using a beta-octylglucoside mixed micellar assay (Walsh, J. P., and Bell, R. M. (1986) J. Biol. Chem. 261, 6239-6247). The enzyme was shown to have an absolute requirement for a lipid activator. sn-1,2-Dioleoylglycerol was both an activator and a substrate for the enzyme, 1,3-dioleoylglycerol was an activator but not a substrate, and sn-1,2-dioctanoylglycerol was a substrate but not an activator. Activation was observed with a large number of phospholipids, sulfolipids, neutral lipids, and detergents. Lipids with longer alkyl/acyl chains stimulated activity to a greater extent and at lower concentrations than their shorter chain homologs. Anionic lipids were the best activators, and neutral lipids were somewhat less effective. Cationic lipids were poor activators. Lipid activation was cooperative in all cases, with Hill coefficients ranging from 2.9 to 4.7. Lipid activators stabilized the enzyme against inactivation induced by diacylglycerols. The effectiveness of several lipids in stabilizing the enzyme correlated with their effectiveness as kinetic activators, suggesting a common mechanism. Kinetic analyses also suggested that a lipid cofactor-induced conformational change occurs as a part of the activation process. beta-Octylglucoside was shown not to function as a lipid cofactor for diacylglycerol kinase. The requirement for detergent in the assay was related, instead, to the need to disperse and deliver water-insoluble substrates and cofactors to the enzyme. beta-Octylglucoside also provided an inert matrix to which lipid substrates and cofactors could be added, enabling study of their concentration dependencies.  相似文献   

10.
The sn-1,2-diacylglycerol kinase structural gene from Escherichia coli was demonstrated to be the dgkA locus previously sequenced (Lightner, V. A., Bell, R. M., and Modrich, P. (1983) J. Biol. Chem. 258, 10856-10861). The dgkA gene product was shown by maxicell analysis to be an Mr = 14,000 membrane-bound protein. When dgkA was placed on a hybrid plasmid under control of the lambda pL promoter, a 100-fold overproduction of diacylglycerol kinase activity was obtained. Diacylglycerol kinase was solubilized from membranes with 2-propanol/heptane/trifluoroacetic acid and purified to near homogeneity by high performance liquid chromatography. Activity was reconstituted in a mixed micellar assay containing beta-octylglucoside, cardiolipin, and sn-1,2-dioleoylglycerol. Amino acid analysis, partial NH2-terminal analysis and COOH-terminal analysis permitted alignment of the polypeptide on the sequenced gene. The data establish that dgkA is the structural gene for the diacylglycerol kinase and establish the primary structure of the enzyme of 122 residues, 13,245 daltons. Secondary structure analysis predicted a protein conformation consisting of three transmembrane alpha-helical segments, an amphipathic helix, and an alpha-helix. Taken together, the predicted helical segments comprise more than 75% of the polypeptide.  相似文献   

11.
The purification procedure for endo-beta-N-acetylglucosaminidase D was improved to yield an enzyme preparation which was homogeneous upon gel electrophoresis. The molecular weight of the enzyme as estimated by Sephadex G-200 column chromatography was 280,000, while SDS-gel electrophoresis after reduction with 2-mercaptoethanol gave a value of 150,000. The purified enzyme did not show any chitinase, hyaluronidase or lysozyme activity. In the presence of exoglycosidases removing peripheral sugars, the endoglycosidase acted on serum glycoproteins such as transferrin and fetuin. The enzyme also hydrolyzed an oligosaccharide, (Man)5(GlcNAc)2, indicating that the peptide portion of substrates does not have much effect on susceptibility to the enzyme.  相似文献   

12.
We have studied the specificity of the acyl-CoA:diglyceride acyltransferase reaction in lactating rat mammary gland to provide a rational explanation at the enzyme level for the nonrandom distribution of fatty acids in milk fat triglycerides. Acyl-CoA:diglyceride acyltransferase activity was measured using various diglyceride and radioactive acyl-CoA substrates; products were identified as triglycerides by thin-layer and gas-liquid chromatography. Most of the enzymatic activity was located in the microsomal fraction and showed a broad specificity for the acyl donors tested C10, C12, C14, C16, C18, and C18:1 CoA esters). The acyltransferase activity was highly specific for sn-1,2-diglyceride enantiomers; rac-1,3- and sn-2,3-diglycerides were relatively inactive. The acyl-CoA specificity was not affected by the type of 1,2-diglyceride acceptor offered, although dilaurin was the best acceptor and sn-1,2-dilaurin greater than sn-1,2-dimyristin greater than sn-1,2-dipalmitin greater than sn-1,2-distearin. We have previously shown that in the microsomal fraction from lactating rat mammary gland, the acyltransferase activities concerned with the conversion of sn-glycero-3-phosphate to diacylglycerophosphate show a very marked specificity for long chain acyl-CoA's. Therefore, we conclude that the predominant localization of long chain fatty acids in the 1 and 2 positions, and of shorter chain fatty acids in the 3 position of the glycerol backbone, results at least in part from the specificities of the mammary gland acyltransferases.  相似文献   

13.
The phospholipid, sn-1,2-diacylglycerol, and calcium dependencies of rat brain protein kinase C were investigated with a mixed micellar assay (Hannun, Y., Loomis, C., and Bell, R.M. (1985) J. Biol. Chem. 260, 10039-10043). Protein kinase C activity was independent of the number of Triton X-100, phosphatidylserine (PS), and sn-1,2-dioleoylglycerol (diC18:1) mixed micelles. Activation was strongly dependent on the mole per cent of PS and diC18:1. Activity of protein kinase C was dependent on PS, diC18:1, and calcium in mixed micelles prepared from detergents other than Triton X-100. This is consistent with the micelle providing an inert surface into which the lipid cofactors partition. Molecular sieve chromatography provided direct evidence for the homogeneity of Triton X-100, PS, and diC18:1 mixed micelles. Mixing studies and surface dilution studies indicated that PS and diC18:1 rapidly equilibrate among the mixed micelles. At saturating calcium, the diC18:1 dependence was strongly dependent on the mole per cent PS present. At 10 mol % PS, 0.25 mol % diC18:1 gave maximal activity whereas 6 mol % PS and 6 mol % diC18:1 did not give maximal activity. diC18:1 dependencies were hyperbolic at all PS levels tested. The data support the conclusion that a single molecule of diC18:1/micelle is sufficient to activate monomeric protein kinase C. The mole per cent PS required for maximal activation was reduced markedly as the mole per cent diC18:1 increased. Under all conditions tested, the PS dependence of protein kinase C activation lagged until greater than 3 mol % PS was present. Then activation occurred in a cooperative manner with Hill numbers near 4. These data indicate that 4 or more molecules of PS are required to activate monomeric protein kinase C. PS was the most effective of all the phospholipids tested in the mixed micelle assay. diC18:1 was found to modulate the amount of calcium required for maximal activity. As the level of Ca2+ increased, the mole per cent PS required reached a limiting value of 3 mol %. A number of sn-1,2-diacylglycerols containing short chain fatty acids activated protein kinase C in a saturable manner in mixed micelles. The data are discussed in relation to a model for protein kinase activation.  相似文献   

14.
海枣曲霉β—葡萄糖苷酶的提纯与性质   总被引:9,自引:4,他引:5  
A beta-glucosidase has been purified to electrophoretically homogeneity from the wheat bran culture of Aspergillus phoenicis by PEG 6000-phosphate biphasic separation, column chromatography on Sephadex G-100, DEAE-Sephadex A-50 and SE-Sephadex C-50. The enzyme showed optimal activity at pH 5.0 and 60 degrees C. It was stable in the pH range of 4.0-7.5 and up to 55 degrees C. The enzyme activity was strongly inhibited by Ag+ and Hg2+. The molecular weight of the enzyme was 118000 as determined by SDS-PAGE and 195000 by gradient-PAGE. The isoelectric point was pI 3.95 as determined by PAGIF.  相似文献   

15.
16.
An intracellular aminopeptidase from Streptococcus salivarius subsp. thermophilus strain ACA-DC 114, isolated from traditional Greek yoghurt, was purified by chromatography on DEAE-cellulose and Sephadex G-100. The enzyme had a molecular weight of 89,000. It was active over a pH range 4.5-9.5 and had optimum activity on L-lysyl-4-nitroanilide at pH 6.5 and 35 degrees C with Km = 1.80 mmol/l; above 55 degrees C the enzyme activity declined rapidly. The aminopeptidase was capable of degrading substrates by hydrolysis of the N-terminal amino acid; it had very low endopeptidase and no carboxypeptidase activity. The enzyme was strongly inactivated by EDTA. Serine and sulphydryl group reagents had no effect on enzyme activity.  相似文献   

17.
Radiolabeled slow reacting substance (SRS) from rat basophilic leukemia cells (RBL-1) or rat peritoneal mast cells was generated by stimulation with the divalent cation ionophore A23187 in the presence of [1?14C]-arachidonic acid (AA). These radiolabeled SRSs were purified by sequential adsorption, gel filtration and partition chromatography on Sephadex LH-20 with correspondence of bio- and radioactivities. Two-dimensional high performance thin layer chromatography of the active principles continued to show comigration of bio- and radioactivities. RBL-1 and mast cells incorporated [14C]-AA into bioactive SRS which are analogous based upon similar behavior during purification.  相似文献   

18.
Pyruvate kinase (ATP: pyruvate 2-0-phosphotransferase, EC 2. 7. 1. 40) from bovine adrenal cortex was purified 243 fold. The whole purification procedure included ammonium sulphate fractionation, heat treatment, Sephadex HW-55 chromatography and phosphocellulose chromatography. The specific activity of the preparation is 15.6 U/mg at 30 degrees C, the yield--36%. Pyruvate kinase showed only one protein band as judged by sodium dodecyl sulphate acrylamide gel electrophoresis. The enzyme displayed a hyperbolic saturation curve with respect to P-enolpyruvate. The apparent Km for this substrate was 0.55 X 10(-4) M, pH optimum--6.8-7.0. K+ concentrations above 0.1 M inhibit the enzyme.  相似文献   

19.
Glutathione S-transferase (GST) has been implicated in the process of biotransformation of polycyclic aromatic hydrocarbons and of other organic pollutants by Chironomidae larvae. We have purified and characterized GST from cytosolic fractions of Chironomidae larvae. GST with an M(r) of 23 kDa has been purified to homogeneity from larvae by centrifugation, size exclusion chromatography on Sephadex G25, and glutathione affinity and anion exchange chromatography. The purified enzyme exhibited moderate activity towards 1,2-dichloro-4-nitrobenzene, 1-chloro-2,4-dinitrobenzene, 4-nitropyridine-N-oxide, p-nitrobenzyl chloride, ethacrynic acid, and cumene hydroperoxide. The enzyme was homogeneous on gel isoelectric focusing and on SDS gel electrophoresis. Its isoelectric point was estimated to be 5.5. The enzyme had a maximum activity at approximately pH 8 and showed activity between 30 and 40 degrees C. It became inactive at higher temperature (>50 degrees C) for 5 min. The N-terminal sequence analysis of the amino acids shows a high % of conserved regions in the enzyme. The enzyme activity was comparable to levels of metabolism observed by animal GST involved in the detoxification of xenobiotics.  相似文献   

20.
A rabbit lung cyclic nucleotide phosphodiesterase (PDE) prepared by successive chromatography on DEAE-cellulose and G-200 Sephadex columns in the presence of EGTA was activated by Ca2+ and contained calmodulin (CaM), suggesting that the enzyme exists as a stable CaM X PDE complex (Sharma, R. K., and Wirch, E. (1979) Biochem. Biophys. Res. Commun. 91, 338-344). An enzyme with similar properties was demonstrated to exist in bovine lung extract. C1, a monoclonal antibody previously shown to react with the 60-kDa subunit of bovine brain PDE isozymes (Sharma, R. K., Adachi, A.-M., Adachi, K., and Wang, J. H.) (1984) J. Biol. Chem. 259, 9248-9254), cross-reacted with the lung enzyme. Purification of the lung enzyme by C1 antibody immunoaffinity chromatography rendered the enzyme dependent on exogenous CaM for Ca2+ stimulation. Further purification was achieved by CaM affinity chromatography. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis analysis of the purified enzyme showed a predominant polypeptide of Mr 58,000 and a minor band of about 50,000. The purified enzyme could be reconstituted into a PDE X CaM complex upon incubation with CaM in the presence of either Ca2+ or EGTA. The reconstituted protein complex did not dissociate in buffers containing 0.1 mM EGTA. Analysis of the purified and reconstituted lung phosphodiesterase by Sephacryl S-300 gel filtration indicated that the lung enzyme is a dimeric protein and that the reconstituted enzyme contained two molecules of calmodulin. Analysis of the reconstituted phosphodiesterase by sodium dodecyl sulfate-polyacrylamide gel electrophoresis also showed it to contain equimolar calmodulin and the enzyme subunit. The CaM antagonists, fluphenazine, compound 48/80, and calcineurin at concentrations abolishing CaM stimulation of bovine brain PDE had little effect on the activity of reconstituted bovine lung phosphodiesterase.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号